
Reducing Costs of Spot Instances via Checkpointing

in the Amazon Elastic Compute Cloud

Sangho Yi and Derrick Kondo

INRIA Grenoble Rhône-Alpes, France

{sangho.yi, derrick.kondo}@inrialpes.fr

Artur Andrzejak

Zuse Institute Berlin (ZIB), Germany

andrzejak@zib.de

Abstract—Recently introduced spot instances in the Amazon
Elastic Compute Cloud (EC2) offer lower resource costs in
exchange for reduced reliability; these instances can be revoked
abruptly due to price and demand fluctuations. Mechanisms
and tools that deal with the cost-reliability trade-offs under
this schema are of great value for users seeking to lessen their
costs while maintaining high reliability. We study how one such
a mechanism, namely checkpointing, can be used to minimize
the cost and volatility of resource provisioning. Based on the
real price history of EC2 spot instances, we compare several
adaptive checkpointing schemes in terms of monetary costs and
improvement of job completion times. Trace-based simulations
show that our approach can reduce significantly both price and
the task completion times.

I. INTRODUCTION

The vision of computing as a utility has reached new heights

with the recent advent of Cloud Computing. Compute and

storage resources can be allocated and deallocated almost

instantaneously and transparently on an as-need basis.

Pricing of these resources also resembles a utility, and

resources prices can differ in at least two ways. First prices can

differ by vendor. The growing number of Cloud Computing

vendors has created a diverse market with different pricing

models for cost-cutting, resource-hungry users.

Second, prices can differ dynamically (as frequently as

an hourly basis) based on current demand and supply. In

December 2009, Amazon released spot instances, which sell

the spare capacity of their data centers. Their dynamic pricing

model is based on bids by users. If the users’ bid price is

above the current spot instance price, their resource request

is allocated. If at any time the current price is above the bid

price, the request is terminated. Clearly, there is a trade-off

between the cost of the instance and its reliability.

The current middleware run on top of these infrastructures

cannot cope or leverage changes in pricing or reliability.

Ideally, the middleware would have mechanisms to seek by

itself the cheapest source of computing power given the

demands of the application and current pricing.

In this paper, we investigate one mechanism, namely check-

pointing, that can be used to achieve the goal of minimizing

monetary costs while maximizing reliability. Using real price

traces of Amazon’s spot instances, we study various dynamic

checkpointing strategies that can adapt to the current instance

price and show their benefit compared to static, cost-ignorant

strategies. Our key result is that the dynamic checkpointing

strategies significantly reduce the monetary cost, while im-

proving reliability.

The remainder of this paper is organized as follows. Sec-

tion II presents checkpointing strategies on spot instances in

the Amazon Elastic Compute Cloud (EC2). Section III eval-

uates performance of several checkpointing strategies based

on the previous price history of the spot instances. Section IV

describes related work. Finally, Section V presents conclusions

and possible extensions of this work.

II. SPOT INSTANCES ON AMAZON EC2

In this section we describe the system model used in this

paper and introduce the considered checkpointing schemes.

A. System Model

Figure 1. Spot price fluctuations of eu-west-1.linux instance types

Amazon allows users to bid on unused EC2 capacity pro-

vided as 42 types of spot instances that differ by computing

/ memory capacity, OS type and geographical location [1].

Their prices called spot prices change dynamically based on

supply and demand. Figure 1 shows examples of spot price

fluctuations for three eu-west-1.linux instance types during 8
days in January 2010. Customers whose bids meet or exceed

the current spot price gain access to the requested resources.

Figure 2 shows how Amazon EC2 charges per-hour price



Figure 2. Examples of pricing for Amazon EC2’s spot instance

for using a spot instance. The following system model was

made according to the characteristics of Amazon EC2’s spot

instances.

⋄ Amazon provides a spot instance when a user’s bid is

greater than the current price.

⋄ Amazon stops immediately without any notice when a

user’s bid is less than or equal to the current price. We

call this an out-of-bid event or a failure.

⋄ Amazon does not charge the latest partial hour when

Amazon stops an instance.

⋄ Amazon charges the last partial hour when a user termi-

nates an instance.

⋄ The price of a partial-hour is considered the same as a

full-hour.

⋄ Amazon charges each hour by the last price.

⋄ Amazon freely provides the spot price history.

⋄ The price of Amazon’s storage service is negligible 1.

B. Definitions

Let tr denote the remaining computing time of a task

to finish (for a fixed instance type), and T (t) the expected

execution time of a task without taking checkpoints. By tc we

denote the time for taking a checkpoint. For a given bid price

ub on an instance type, we are interested in the probability of a

failure (i.e. out-of-bid situation). For this purpose we introduce

a probability density function f(t, ub) of failure occurrences

where t is the time since the last checkpoint. This function

can be approximated from the history of price fluctuations. Let

ta be the time needed for analyzing this history in order to

approximate f(t, ub) (for a bid ub). Figure 3 shows an example

of f(t, ub) for the eu-west-1.linux-c1.medium instance type. It

shows that the probability density function is a function of

both the time and the user’s bid. With the term rising edge,

we refer to the event (and its time) where the spot price for a

1Amazon provides free storage service up to June 30th 2010, and after July
1st, the price will be 0.15 USD for 1 GB-month. This is much lower than
the price of computation [2].

Figure 3. Examples of probability density function of failure (out-of-bid)
occurrence, f(t, ub) on eu-west-1.linux-c1.medium instance type

Table I
NOTATIONS AND SYMBOLS USED IN THIS PAPER

Notation Description

tr remaining work of task in time

tc time to take a checkpoint

ta time to analyze price history for obtaining f(t, ub)
r time to restart a task

ub user’s bid on a spot instance type

f(t, ub) probability density function of a failure occurrence
where t is time, and ub is the user’s given bid

e(t, ub) probability density function of a rising edge occurrence
where t is time, and ub is the user’s given bid

ne number of rising edges of spot price that arrived in the
current availability interval

me(ub) mean number of rising edges in an availability interval
according to ub

T (t) expected execution time of a task without checkpointing
when executing t time units

Htake(t) expected recovery time of a task with hour-boundary

checkpointing at t time units after taking checkpoint

Hskip(t) expected recovery time of a task without hour-boundary

checkpointing at t time units after taking checkpoint

Etake(t) expected recovery time of a task with rising edge-driven

checkpointing at t time units after taking checkpoint

Eskip(t) expected recovery time of a task without rising edge-

driven checkpointing at t time units after taking checkpoint

given instance type has increased. The e(t, ub) is a probability

density function of rising edge occurrences where t is the time

since the last checkpoint.

Htake(t) and Hskip(t) are the expected recovery time

of a task if we take a checkpoint or skip it at the hour-

boundary time. Here t is time since last checkpoint. Etake(t)
and Eskip(t) are the expected recovery time if we take a

checkpoint or skip it at a rising edge. Table I describes

notations and symbols used in this paper. From the price

history, we can calculate other metrics shown in Table I such

as the mean spot price, and the mean number of rising edges

in an available duration.

C. Expected recovery time

In this section, we derive analytical formulas for Htake(t),
Hskip(t), Etake(t) and Eskip(t) describing the expected re-

covery time in various situations. They are used in Section



Figure 4. Effects of skipping and taking a checkpoint on the recovery time

II-D3 for adaptive checkpointing schemes. To this aim, we

modify the determination functions and notations from [3],

[4]2. This yields the following Theorem 1 on the expected

execution time of a process without checkpointing.

Theorem 1: The expected execution time T (t) of a process

without checkpointing when executing t time units is

T (t) =
t +

∑t−1
k=0 (k + r − t)f(k, ub)

1 −
∑t−1

k=0 f(k, ub)
. (1)

Proof: The conditional expected execution time is written

as [3]:

T (t) =

{

t if k≥t

k + r + T (t) otherwise.

By the law of total expectation

T (t) =

∞
∑

k=t

tf(k, ub) +

t−1
∑

k=0

(k + r + T (t))f(k, ub).

Rearranging with respect to T (t), we obtain

T (t) =

∑

∞

k=0 tf(k, ub) +
∑t−1

k=0 (k + r − t)f(k, ub)

1 −
∑t−1

k=0 f(k, ub)
.

Since
∑

∞

k=0 tf(k, ub) = t, we have

T (t) =
t +

∑t−1
k=0 (k + r − t)f(k, ub)

1 −
∑t−1

k=0 f(k, ub)
.

In Eq. (1) f(k, ub) significantly affects the T (t). For example,

without failures
∑t−1

k=0 f(k, ub) goes to 0, and thus T (t) = t.

Otherwise, T (t) is larger because
∑t−1

k=0 f(k, ub) > 0. Based

on Eq. (1) we can calculate the expected recovery time for both

cases of skipping and taking a checkpoint, which is illustrated

in Fig. 4.

Theorem 2: The expected recovery time when skipping

an hour-boundary checkpoint at t time units after taking

checkpoint, Hskip(t) is given by

2We modified Theorem 1 in [3] because we use discrete time series and
the measured probability density function of failure occurrence based on the
real traces. For more information, please see Fig. 1 and Theorem 1 in [3].

Hskip(t) =

tr−1
∑

k=0

(k + r + T (t))f(k, ub). (2)

Proof: When a failure occurs within tr time units, the

task should be re-executed from the last checkpoint, and thus,

Hskip(t) =

{

k + r + T (t) if k < t

0 otherwise.

By integrating above, we obtain Eq. (2).

Theorem 3: The expected recovery time when taking an

hour-boundary checkpoint at t time units after taking check-

point, Htake(t) is given by

Htake(t) =

tr−1
∑

k=0

(k + r)f(k, ub)

+

tc−1
∑

k=0

T (t)f(k, ub) + T (tc).

(3)

Proof: When a failure occurs within tc time units, the task

should be re-executed from the last checkpoint, and when a

failure occurs in tc ≤ k < tr the task can be recovered from

the new checkpoint. In addition, Htake(t) has overhead T (tc)
of taking a checkpoint, and thus,

Htake(t) = T (tc) +











k + r + T (t) if k < tc

k + r else if tc ≤ k < tr

0 otherwise.

By the law of total expectation

Htake(t) =

tc−1
∑

k=0

(k + r + T (t))f(k, ub)

+

tr−1
∑

k=tc

(k + r)f(k, ub) + T (tc).

Simplifying above with k + r, we obtain Eq. (3).

To derive formulas for Etake(t) and Eskip(t) we use the mean

rising edge me(ub), the number of arrived rising edges in

the current duration ne, and the probability density function

of rising edge occurrence e(k, ub). We obtain Eskip(t) and

Etake(t) by substituting
nee(k,ub)
me(ub)

for f(k, ub) in Eq. (2) and

Eq. (3), respectively.

Eskip(t): The expected recovery time when skipping a

rising edge-driven checkpoint is given by

Eskip(t) =

tr−1
∑

k=0

(k + r + T (t))nee(k, ub)

me(ub)
(4)

Etake(t): The expected recovery time when taking a rising

edge-driven checkpoint is given by



Figure 5. Hour-boundary checkpointing

Figure 6. Rising edge-driven checkpointing

Etake(t) =

tr−1
∑

k=0

(k + r)nee(k, ub)

me(ub)

+

tc−1
∑

k=0

T (t)nee(k, ub)

me(ub)
+ T (tc)

(5)

In Eq. (4) and Eq. (5), the combined density factor
nee(k,ub)
me(ub)

denotes how the current point of time is close to (or far from)

the expected failure occurrence from the current time. For

example, when a system has a significantly large number of

rising edges for each availability duration, and a few rising

edges have arrived, then the density factor
∑tc−1

k=0
nee(k,ub)
me(ub)

goes to 0. In this case, Eskip(t) goes to 0, while Etake(t) =
T (tc). On the other hand, when the ne approaches to me(ub),
the factor goes to e(k, ub). In this case, Eskip(t) may be

greater than Etake(t).

D. Checkpointing Schemes

In the following we describe the proposed checkpointing

schemes in the considered scenario.

1) Hour-boundary Checkpointing: Figure 5 illustrates the

hour-boundary checkpointing method. Here checkpoints are

taken periodically at hour boundaries. It is the most intuitive

one for the spot instances, because an hour is the lowest gran-

ularity of spot instance pricing. It also provides a guarantee

of paying for the actual progress of computation.

A variation of this policy is the fine-grained checkpointing

which evaluates whether to take a checkpoint periodically

every 10 or 30 minutes. See [3] for details.

2) Rising edge-driven Checkpointing: Figure 6 presents the

rising edge-driven checkpointing which is novel compared

to previous checkpoint methods. In the world of the spot

instances, rising (and falling) edges occur according to the

number of available resources, the bids from users, and the

number of bidders. A rising edge is likely to indicate that

the system has less available resources, more bidding users,

or higher bids from users, and so an out-of-bid event (for a

constant bid) is more likely. However, taking checkpoints at

Table II
DESCRIPTION OF CHECKPOINTING POLICIES

Name Description

OPT the optimal base (takes checkpoints just prior to failures)

NONE without checkpointing

H hour-boundary checkpointing

E rising edge-driven checkpointing

AH adaptive hour-boundary checkpointing
(decides every hour-boundary whether to take or skip)

AE adaptive rising edge-driven checkpointing
(decides every rising-edge whether to take or skip)

H+E hour-boundary and rising edge-driven checkpointing

H+AE hour-boundary and adaptive rising edge-driven checkpointing

AH+E adaptive hour-boundary and rising edge-driven checkpointing

AH+AE adaptive hour-boundary and adaptive rising edge-driven
checkpointing

AF(10) adaptive fine-grained checkpointing [3]
(decides every 10 minutes whether to take or skip)

AF(30) adaptive fine-grained checkpointing [3]
(decides every 30 minutes whether to take or skip)

all rising edges does not guarantee checkpointing at hourly

boundaries, and in some cases, rising edges may not occur

during an availability period. Consequently, the rising edge-

driven checkpointing might fail to reduce the execution time

if a sudden increase of the spot price occurs.

3) Checkpointing with Adaptive Decision: Figure 4 com-

pares effects of taking or skipping a checkpoint at the current

time. This decision significantly affects the recovery time if a

failure occurs, and thus the execution time of the running task.

By using the formulas derived in Section II-C we can compare

whether it is more useful to take or to skip a checkpoint. In

more detail, our policy takes a checkpoint at an hour boundary

if Hskip(t) > Htake(t) and skips it otherwise. Analogously,

by comparing Etake(t) against Eskip(t), we learn whether to

take (Eskip(t) > Etake(t)) or to skip (Eskip(t) < Etake(t)) a

checkpoint at a rising edge. In those notations, t is a relative

time since the last checkpoint (or, when the task does not

have checkpoint, it is the time since the starting time of its

execution.)

4) Checkpointing Combinations: The above checkpointing

schemes are orthogonal to each other. We obtain 12 different

types of checkpointing policies by combining them. The

detailed information is given in Table II.

E. Partial Improvement based on the Delayed Termination

Amazon EC2’s pricing rules allow the following method

to reduce the computation costs. As shown in Fig. 1, Amazon

does not charge the last partial-hour when EC2 terminates the

running instance (the last partial hour is charged if termination

is due to the user). Based on that fact, each user can delay

termination of the running instance up to the hour-boundary,

and Amazon may terminate the running task with probability

pt, then the users may have pt×price_per_hour reduction

from the total price.

III. EVALUATION OF THE CHECKPOINTING POLICIES

In this section, we analyze the impact of checkpointing

policies on all 42 spot instance types in Amazon EC2. We



Table III
VALUES OF PARAMETERS USED IN THIS PAPER

Parameter Value

Starting date of past traces Jan. 11th, 2010

Ending date of past traces Feb. 5th, 2010

Past traces (for calculating pdf) 14,400 mins

Minimum bidding granularity 0.001 USD

Parameter tr tc ta r

Value 500 mins 5 mins 3 secs 10 mins

Figure 7. Total execution price on eu-west-1.linux.m1.large instance type

simulated the checkpointing schemes based on the real price

traces in terms of the task completion time, total price, and

the price×time product.

A. Simulation Setup

Table III shows our simulation setup in detail. We assume

that the checkpointing cost of running programs is known.

We used the constant value for the tc, but using a variable

checkpointing cost is also possible in our system model. We

assume that the total work of each program is 500 minutes,

and we used the latest 10-days (14, 400 minutes) of price

history to get the probability density function of the availability

durations.

We implemented a simulator which reads the past history

of spot price, calculates the probability density function of

availability durations and rising edges, and simulates the 12
types of checkpointing policies (see Table II) on the 42 types

of spot instances. For each data point, we simulated 100

experiments to ensure confidence of our results.

B. Simulation Results and Evaluation

In the following, the policy OPT serves as a comparison

baseline and is optimal in the sense that checkpoints are taken

immediately before failures known in advance.

Figure 8. Task completion time on eu-west-1.linux.m1.large instance type

1) eu-west-1.linux.m1.large instance type: We have picked

the eu-west-1.linux.m1.large as a representative instance type

to evaluate the total price of a task, its completion time, and

a product of both as a combined metric.

Total price. Figure 7 shows the total price for the investi-

gated instance type. Obviously the edge-driven checkpoint-

ing policies perform poorly. Policy AF(30) has lower cost

compared with the other combinations of hour-boundary and

edge-driven checkpointing policies. This result shows that the

edge-driven checkpointing is not effective in reducing price

compared with other checkpointing policies. Furthermore, we

have a 10 ∼ 30 percent difference between OPT and the other

policies.

Task completion time. Figure 8 shows the task completion

time for the eu-west-1.linux.m1.large instance type. The adap-

tive fine-grained checkpointing performs more poorly than the

other combinations. The adaptive hour-boundary checkpoint-

ing shows slightly lower task completion times than the normal

hour-boundary policy. The difference between OPT and the

other policies is about 10 ∼ 15 percent.

Combined metrics. Figure 9 shows the performance metrics

combined, i.e., the product of total price and task completion

time on our instance type. Policy AF(30) is better (lower

product) than the others when the user’s bid is less than 0.159,

but this metric is slightly higher for other bid ranges. We also

observe that the performance gap between OPT and the other

policies is about 20 ∼ 30 percent.

2) Evaluation on two us-east-1.windows instance types: We

have investigated two us-east-1.windows instance types as an

alternative to the above eu-west-1.linux.m1.large study. Figures

10 and 11 show the corresponding results. The rising edge-

driven checkpointing shows better performance than others

while AF(10) and AF(30) show worse results in most of the

range of user’s bids. This can happen when the movement of



Figure 9. Product of total price and task completion time on eu-west-

1.linux.m1.large instance type

spot price has a weaker relationship with the previous price

changes. In other words, the adaptive decision mechanism may

not perform well when the probability density function of

failures significantly (and, unexpectedly) changes over time.

3) Mean price bidding: Table IV shows the normalized

product of the total price and the task completion time when

a user bids the mean price based on the past price history. In

this result, we observe that checkpointing policies affect the

real price significantly. In particular, using the hour-boundary

checkpointing can reduce significantly the cost compared with

the edge-driven policies or without checkpointing policies on

this instance type. Also, the cost of the adaptive fine-grained

checkpointing depends on its sampling (decision) rate. Using

a higher rate provides more available places to checkpoint, but

it may not be efficient because the decision is not the optimal,

and the decision requires overhead. This result shows that the

checkpointing policies give results 30 ∼ 45 percent higher

than the optimal case. This means that finding a better strategy

to take a checkpoint is still required to save more monetary

costs. The detailed explanation of possible future approaches

are discussed in Section V.

4) Delayed termination: Table V shows the price reduction

when using delayed termination introduced in Section II-E.

This technique does not affect the task completion time but

may reduce cost of the last partial-hour. For the long-term

tasks the savings may be trivial; however shorter tasks (of a

few hours or less) might benefit from it. The results shows

that we can save almost 0.01 ∼ 0.20 USD, depending on the

size of the instance types.

5) Policy comparison and result summary: Table VI shows

the best checkpointing policies for all 42 types of spot

instances. We observe that the hour-boundary checkpointing

performs best for most cases, while AF(30) and the rising-

Figure 10. Total execution price on us-east-1.windows instance types

edge driven checkpointing perform well in a small fraction of

the spot instance types. The policy combinations using rising

edge-driven checkpointing (E, AE, and AH+AE) perform well

only on Microsoft Windows-based spot instances while not

performing so well on the Linux-based spot instances.

Summarizing, we observe that checkpointing can signif-

icantly affect both the task completion time and the total

price. We found that using hour-boundary checkpointing can

reduce costs significantly in the presence of failures. But, we

also found that the rising edge-driven checkpointing is better

for some set of instance types. The results also show that

delayed termination can reduce a small amount of monetary

costs given our task’s size (which is 500 minutes), but this

scheme may reduce significantly costs when running relatively

short-term tasks. We also found that finding better placements

of checkpoints is required to minimize the performance gap

between the optimal and the other checkpointing policies.

IV. RELATED WORK

We start with work related to Cloud Computing, including

economics, management services, and fault-tolerant middle-

ware. Several previous works focus on the economics of

Cloud Computing [5], [6], [7], [8], [9]. However, these works

assume a static pricing model for EC2’s dedicated on-demand



Table IV
NORMALIZED PRICE×TIME PRODUCT FOR EXECUTION ON THE MEAN PRICE BIDDING (NORMALIZED BY OPT)

eu-west-1.linux type NONE H E AH AE H+E H+AE AH+E AH+AE AF(10) AF(30)

c1.medium 2.659 1.298 3.841 1.296 2.660 1.307 1.300 1.307 1.300 2.865 1.405

c1.xlarge 19.34 1.454 18.11 1.450 32.77 1.460 1.456 1.460 1.456 3.444 1.558

m1.large 6.826 1.408 4.261 1.405 5.147 1.420 1.417 1.420 1.417 3.275 1.428

m1.small 16.18 1.505 15.11 1.508 16.18 1.543 1.543 1.543 1.543 2.848 1.496

m1.xlarge 13.75 1.445 11.50 1.449 16.86 1.448 1.447 1.448 1.447 2.655 1.456

m2.2xlarge 2.894 1.462 2.900 1.462 2.897 1.465 1.464 1.459 1.464 2.690 1.428

m2.4xlarge 3.458 1.354 2.758 1.355 2.972 1.360 1.358 1.360 1.358 2.843 1.411

Table V
THE AMOUNT OF PRICE REDUCTION (IN USD) WHEN USING DELAYED TERMINATION (ON THE MEAN PRICE BIDDING)

eu-west-1.linux type OPT H E AH AE H+E H+AE AH+E AH+AE AF(10) AF(30)

c1.medium 0.021 0.006 0.001 0.006 0.014 0.007 0.006 0.007 0.006 0.003 0.002

c1.xlarge 0.101 0.109 0.067 0.109 0.067 0.105 0.109 0.105 0.109 0.074 0.015

m1.large 0.019 0.029 0.032 0.029 0.043 0.025 0.025 0.025 0.025 0.028 0.008

m1.small 0.004 0.015 0.000 0.015 0.000 0.012 0.012 0.012 0.012 0.008 0.004

m1.xlarge 0.034 0.065 0.275 0.065 0.000 0.065 0.065 0.065 0.065 0.039 0.015

m2.2xlarge 0.033 0.093 0.006 0.093 0.006 0.093 0.093 0.093 0.093 0.049 0.049

m2.4xlarge 0.110 0.257 0.175 0.257 0.175 0.257 0.257 0.268 0.257 0.130 0.022

Table VI
BEST CHECKPOINTING POLICY FOR EACH SPOT INSTANCE TYPE IN AMAZON EC2 (ON THE MEAN PRICE BIDDING, IN TERMS OF PRICE×TIME PRODUCT,

EXCEPT FOR OPT)

Instance types c1.medium type c1.xlarge type m1.large type m1.small type m1.xlarge type m2.2xlarge type m2.4xlarge type

eu-west-1.linux AH AH AH AF(30) H AF(30) H

eu-west-1.windows AF(30) AF(30) AH AH H, AH H, AH AH+AE

us-east-1.linux H, AH H, AH AF(30) H H, AH H, AH AH

us-east-1.windows AE H, AH H, AH AF(30) H AE E, AE

us-west-1.linux H, AH H, AH AF(30) AH H, AH H, AH AH

us-west-1.windows H, AH AF(30) AH H, AH E E AH

instances. They evaluate the cost-benefit of Cloud Computing

compared to self-built, dedicated infrastructures such as tra-

ditional Grids or ISP’s. The authors focus on different types

of applications including task parallel, message passing, and

data-intensive applications.

Several services for monitoring and managing cloud ap-

plications exist [10], [11], [12], but these services currently

do not consider cloud costs that vary dynamically over time.

For instance, RightScale [12] is a third party cloud computing

broker that provides management services for clouds, such

as EC2. They provide several software tools that reduce the

complexity of managing and monitoring cloud computing

resources. However, they still do not have any service for

efficiently utilizing the spot instances on the Amazon EC2.

Instead, the users of spot instances have to manage spot

instance costs and reliability manually and individually.

Several middleware currently deployed over Clouds have

fault-tolerance mechanisms [13], [14], [15], but these mecha-

nisms currently are not cost-aware. For instance, Map-Reduce

[13] and Condor [14] are intrinsically fault-tolerant, but how

to conduct fault-tolerance in a cost-effective way has not been

addressed. In particular, checkpointing has been well-studied,

but previous studies have not taken into account variable

resource costs. In [16], A. Duda studied the optimal placement

of a checkpoint if the performance overhead is constant. In [3],

Yi et al. proposed an adaptive checkpointing scheme which

provides adaptive taking point decision function when the cost

of checkpointing changes over time. Their results apply under

the assumption that failures occur according to the Poisson

process. In contrast, we use the probability density function

which is calculated from the previous traces of spot instances.

There are several challenges related to checkpointing in

context of unreliable resources such as spot instances. The

first one is finding the relationship between past and future

failures or availability for proactive checkpointing. Much work

exists on finding correlations and dependence between failure

events [17], [18], [19], [20]. Another challenge is using an

efficient checkpointing method for minimizing the expected

execution time in the presence of failures. This also has

been the subject of previous work described in [16], [3],

[21], [4], [22]. A new aspect is understanding the impact of

checkpointing methods on the spot instances for reducing both

the monetary costs and the task’s total execution time. This is

the focus of this work.

V. CONCLUSIONS AND FUTURE WORK

We proposed an approach to reduce monetary costs of

computations using Amazon EC2’s spot instances for resource

provisioning. Based on the price history given by Amazon,

we simulated and compared several checkpointing schemes in

terms of both price and task completion time. Our simulation



Figure 11. Task completion time on us-east-1.windows instance types

results show that using an appropriate checkpointing scheme

can reduce significantly both the price and task completion

time.

Our future work will include identifying correlation between

past and current prices, between instance types, and between

rising edges. We are also interested in developing robust pre-

diction methods to minimize monetary costs and completion

times under this schema. We will also investigate how to gather

"hidden information" such as the amount of bids, the number

of available resources, and the number of bidders in order to

improve predictions.

ACKNOWLEDGMENTS

This work is carried out in part under the EC project eX-

treemOS (FP6-033576) and the ANR project Clouds@home

(ANR-09-JCJC-0056-01).

REPRODUCIBILITY OF RESULTS

All data used in this study, the full source code of the sim-

ulator and additional results are available under the following

URL:

http://spotckpt.sourceforge.net

REFERENCES

[1] Amazon EC2 Spot Instances, http://aws.amaz-

on.com/ec2/spot-instances/, 2010.
[2] Amazon Simple Storage Service FAQs, http://a-

ws.amazon.com/s3/faqs/, 2010.
[3] S. Yi, J. Heo, Y. Cho, and J. Hong, “Taking point decision mechanism

for page-level incremental checkpointing based on cost analysis of pro-
cess execution time,” Journal of Information Science and Engineering,
vol. 23, no. 5, pp. 1325–1337, September 2007.

[4] ——, “Adaptive page-level incremental checkpointing based on expected
recovery time,” in 2006 ACM Symposium on Applied Computing (ACM

SAC’06), April 2006, pp. 1472–1476.
[5] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson,

“Cost-benefit analysis of cloud computing versus desktop grids,” in
18th International Heterogeneity in Computing Workshop, Rome, Italy,
May 2009. [Online]. Available: http://mescal.imag.fr/membres/derrick.
kondo/pubs/kondo_hcw09.pdf

[6] A. Andrzejak, D. Kondo, and D. P. Anderson, “Exploiting non-dedicated
resources for cloud computing,” in 12th IEEE/IFIP Network Operations

& Management Symposium (NOMS 2010), Osaka, Japan, Apr 19–23
2010.

[7] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for Science Grids: a Viable Solution?” in Data-Aware Distributed

Computing Workshop (DADC), 2008.
[8] S. Garfinkel, “Commodity grid computing with amazons s3 and ec2,”

in login, 2007.
[9] E. Deelman, S. Gurmeet, M. Livny, J. Good, and B. Berriman, “The

Cost of Doing Science in the Cloud: The Montage Example,” in Proc.

of Supercomputing’08, Austin, 2008.
[10] CloudStatus, http://www.cloudstatus.com/, 2010.
[11] CloudKick: Simple, powerful tools to manage and monitor cloud servers,

https://www.cloudkick.com/, 2010.
[12] RightScale: Cloud Computing Management Platform,

http://www.rightscale.com/, 2010.
[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” in OSDI, 2004, pp. 137–150.
[14] M. Litzkow, M. Livny, and M. Mutka, “Condor - A Hunter of Idle

Workstations,” in Proceedings of the 8th International Conference of

Distributed Computing Systems (ICDCS), 1988.
[15] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,

T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov, “MPICH-V: Toward a Scalable Fault Tolerant MPI for
Volatile Nodes,” in Proceedings of SC’02, 2002.

[16] A. Duda, “The effects of checkpointing on program execution time,”
Information Processing Letters, vol. 16, no. 1, pp. 221–229, Jul. 1983.

[17] S. Fu and C.-Z. Xu, “Exploring event correlation for failure prediction
in coalitions of clusters,” in SC’07: Proceedings of the 2007 ACM/IEEE

conference on Supercomputing. New York, NY, USA: ACM, 2007, pp.
1–12.

[18] B. Javadi, D. Kondo, J. Vincent, and D. Anderson, “Mining for
availability models in large-scale distributed systems: A case study of
seti@home,” in 17th IEEE/ACM International Symposium on Modelling,

Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS), September 2009.
[19] D. Kondo, A. Andrzejak, and D. P. Anderson, “On correlated availability

in internet distributed systems,” in IEEE/ACM International Conference

on Grid Computing (Grid), Tsukuba, Japan, 2008.
[20] A. Andrzejak, P. Domingues, and L. M. Silva, “Predicting machine

availabilities in desktop pools,” in 10th IEEE/IFIP Network Operations

& Management Symposium (NOMS 2006), Vancouver, Canada, April
3–7 2006, pp. 1–4.

[21] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE

Transactions on Parallel and Distributed Systems, vol. 9, no. 10, pp.
972–986, October 1998.

[22] P. Domingues, A. Andrzejak, and L. M. Silva, “Using checkpointing to
enhance turnaround time on institutional desktop grids,” in 2nd IEEE

International Conference on e-Science and Grid Computing (eScience

2006), Amsterdam, Netherlands, December 2006.


