
CE Lab

Computer

Computer
Engineer ing

Laboratory

D
el
ft
U
n
iv
er
si
ty

o
f
T
ec
h
n
o
lo
g
y

Reducing Design Time to

Develop Portable Image Processing

Applications Using SDAccel

Uttam kumar Elango CE-MS-2017-11

Abstract

Interventional X-Ray (iXR) systems require specialized accelerators and advanced image pro-
cessing techniques to reduce noise levels in the output image produced by machine compo-
nents and low radiation doses. Currently, the image processing chains are implemented on
PCs which have an average life cycle of 3 to 5 years whereas, the life cycle of X-Ray systems
is expected to be up to 20 or 25 years. This mismatch introduces the need to change the
PC architecture during the lifetime of the medical system, for which the image processing
chain has to be redeveloped and retested increasing the maintenance costs. A solution to the
life cycle management challenge is to use Field Programmable Gate Arrays (FPGAs) since
certain FPGAs are considered to have longer life cycles than PCs. However, the process
of programming and integrating the FPGA hardware into existing systems is challenging for
software developers. Moreover, portability needs to be ensured to reduce the development
time when moving to different compute devices for improved functionality or performance.
This thesis investigates the possibility to reduce the design time for FPGAs while maintain-
ing portability. To achieve this, the SDAccel framework and a workflow combining Halide
(a Domain Specific Language) and SDAccel were proposed and analyzed. The results indi-
cate that high-performance image processing solutions can be implemented on FPGAs in a
fraction of the time it takes to create manual RTL designs, while maintaining functional and
performance portability.

Reducing Design Time to Develop Portable Image

Processing Implementations on FPGAs

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Uttam kumar Elango

born in Akividu, India

Embedded Systems
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Reducing Design Time to Develop Portable Image

Processing Implementations on FPGAs

by Uttam kumar Elango

Abstract

Interventional X-Ray (iXR) systems require specialized accelerators and advanced image
processing techniques to reduce noise levels in the output image produced by machine components
and low radiation doses. Currently, the image processing chains are implemented on PCs which
have an average life cycle of 3 to 5 years whereas, the life cycle of X-Ray systems are expected to
be up to 20 or 25 years. This mismatch introduces the need to change the PC architecture during
the lifetime of the medical system, for which the image processing chain has to be redeveloped
and retested increasing the maintenance costs.

A solution to the life cycle management challenge is to use FPGAs since certain FPGAs
are considered to have longer life cycles than PCs. However, the process of programming and
integrating the FPGA hardware into existing systems is challenging for software developers.
Moreover, portability needs to be ensured to reduce the development time when moving to
different compute devices for improved functionality or performance. This thesis investigates
the possibility to reduce the design time for FPGAs while maintaining portability. To achieve
this, the SDAccel framework and a workflow combining Halide (a Domain Specific Language)
and SDAccel were proposed and analyzed. The results indicate that high-performance image
processing solutions can be implemented on FPGAs in a fraction of the time it takes to create
manual RTL designs, while maintaining functional and performance portability.

Laboratory : Computer Engineering
Codenumber : CE-MS-2017-11

Committee Members :

Advisor: Dr. ir. Zaid Al-Ars, CE, TU Delft

Member: Dr. ir. Rene van Leuken, CAS, TU Delft

Member: ir. Steven van der Vlugt, Philips Healthcare

Member: ing. Rob de Jong, Philips Healthcare

i

ii

Dedicated to:

My parents for their motivation and support

My brother-in-law and sister for their helpful advice

My friends in Netherlands and India for their help and support

iii

iv

Contents

List of Figures ix

List of Tables xi

List of Acronyms xiv

Acknowledgements xv

1 Introduction 1

1.1 Context . 2

1.1.1 Philips healthcare . 2

1.1.2 ALMARVI . 2

1.2 Imaging system . 2

1.3 Problem discussion . 4

2 Background 7

2.1 Hardware architectures . 7

2.1.1 CPU . 7

2.1.2 GPU . 7

2.1.3 FPGA . 8

2.1.4 Memory architecture . 8

2.1.5 Discussion . 12

2.2 Image processing . 13

2.2.1 Imaging operations . 13

2.2.2 Processing requirements . 14

2.2.3 Algorithm selection . 14

3 Software to Hardware 19

3.1 Challenges . 19

3.2 High level synthesis . 20

3.3 RTL generation . 20

3.3.1 Scheduling . 21

3.3.2 Allocation and binding . 21

3.3.3 Controller synthesis . 21

3.3.4 Optimizations . 22

3.4 Tools and techniques . 22

3.5 OpenCL . 24

3.5.1 Platform model . 26

3.5.2 Memory model . 26

3.5.3 Execution model . 28

v

3.5.4 Discussion . 28

3.6 Domain Specific Languages . 29

3.6.1 Halide . 29

3.6.2 Halide design philosophy . 30

3.7 Related study . 30

4 Solution workflow 33

4.1 SDAccel . 33

4.1.1 Memory mapping . 33

4.1.2 OCL region . 34

4.1.3 SDAccel design . 34

4.2 Halide on FPGA . 35

4.3 Workflows . 36

4.4 Limitations and solutions . 38

4.4.1 SDAccel . 38

4.4.2 Halide . 39

5 Implementation 41

5.1 Design choices . 41

5.1.1 GPU . 41

5.1.2 Halide . 43

5.1.3 SDAccel . 43

5.2 Portability . 44

5.2.1 Sobel kernel . 44

5.2.2 Gaussian kernel . 45

5.3 Halide . 47

5.4 MRA . 48

5.4.1 Buffers . 48

5.4.2 Work group sizes . 49

5.4.3 Memory partitioning . 50

5.4.4 Optimizing arithmetic computations 50

5.4.5 Implementation . 51

6 Results 55

6.1 Evaluation methodology . 55

6.2 Portability . 55

6.2.1 Parallelism . 56

6.2.2 Branching . 58

6.2.3 Gaussian . 58

6.3 Halide-HLS . 59

6.4 MRA . 62

vi

7 Discussion 67
7.1 Summary . 67
7.2 Research question re-visited . 67

7.2.1 Requirement 1 . 68
7.2.2 Requirement 2 . 68
7.2.3 Requirement 3 . 68

8 Conclusion 71

Bibliography 76

vii

viii

List of Figures

1.1 Azurion Interventional X-ray system [1] 3
1.2 iXR – processing chain . 3

2.1 Memory architecture on Central Processing Unit (CPU) (Intel Nehalem
Quad-Core CPU) [4] . 9

2.2 Memory Architecture of Graphic Processing Units (GPUs) [5] 10
2.3 Memory architecture on FPGAs [6] . 11
2.4 Comparison chart CPUs, GPUs, and FPGAs 12
2.5 (a) Point Operation (b) Window Operation (c) Global Operation 13
2.6 Image Pyramids [12] . 15
2.7 Gaussian and Laplacian pyramids [13] 16

3.1 Front-end of HLS . 22
3.2 Hardware generation from RTL [12] . 23
3.3 SDKs and DSLs used for High Level Synthesis 25
3.4 OpenCL platform model[23] . 26
3.5 OpenCL memory model [23] . 28
3.6 Halide Framework . 29

4.1 SDAccel environment [20] . 33
4.2 Xilinx-OpenCL memory mapping [31] 34
4.3 Xilinx-OpenCL region [31] . 35
4.4 Halide compilation flow [25] . 37
4.5 Solution Workflow . 37
4.6 Streaming process in the device side . 39

5.1 OpenCL Data Transfer (1) Read/Write buffers (2) Map/Unmap 42
5.2 Dataflow model [37] . 44
5.3 Sobel multiple compute units . 45
5.4 MRA model . 48
5.5 Dataflow view generated by SDAccel . 53

6.1 Mapping of OpenCL on GPU and FPGA 57
6.2 Sobel-SDAccel . 58
6.3 Sobel on FPGA . 61
6.4 Gaussian on FPGA . 62
6.5 Timeline trace results . 64

ix

x

List of Tables

2.1 Features overview . 8
2.2 Classes of image processing algorithms 14

4.1 SDAccel Optimization Techniques . 36

5.1 Workgroup sizes effect on resource usage 50

6.1 Device details . 55
6.2 Sobel Filter - Latency Estimates . 56
6.3 Sobel Filter - Resource utilization . 56
6.4 Gaussian Filter - Latency Estimates . 59
6.5 Resource utilization on FPGA - Sobel 60
6.6 Resource utilization on FPGA - Gaussian 61
6.7 MRA C version - Resource utilization and Latency 63
6.8 MRA OpenCL version - Resource utilization and Latency 65

7.1 Frameworks summary . 69

xi

xii

List of Acronyms

ALAP As Late As Possible

ALMARVI Algorithms, Design methods, and Many-Core Execution Platform for Low-
Power Massive Data-Rate Video and Image Processing

API Application Programming interface

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

AST Abstract Syntax Tree

BRAM Block Random Access Memory

CDFG Control/Data Flow Graph

CFG Control Flow Graph

CLB Configurable logic block

CPU Central Processing Unit

CT Computed Tomography

CUDA Compute Unified Device Architecture

DFG Data Flow Graph

DRAM Dynamic Random Access Memory

DSL Domain Specific Language

DSP Digital Signal Processor

EU Execution unit

FIFO First in First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GP General Purpose

GPU Graphic Processing Unit

HDL Hardware Description Language

HIPAcc Heterogeneous Image Processing Acceleration

xiii

HLL Higher Level Language

HLS High Level Synthesis

IGT Image Guided Therapy

ILP Instruction Level Parallelism

IP Intellectual Property

IR Intermediate Representation

iXR Interventional X-ray Systems

LCM Life Cycle Management

LUT Look-up Table

MRA Multi Resolution Analysis

MRI Magnetic Resonance Imaging

NDRange N-dimensional range

OpenCL Open Computing Language

OS Operating System

PC Personal Computer

PCIe Peripheral Component Interconnect Express

QoR Quality of Results

RTL Register Transfer Level

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

SP Streaming Processor

SRAM Static Random Access Memory

VHDL Very High Speed Integrated Circuit Hardware Description Language

xiv

Acknowledgements

This thesis marks the end of my master study programme at TU Delft. These past two
years have been instrumental in my academic and personal growth. I would like to reflect
on the people who have helped and supported me during this period.

First and foremost, I would like to thank my supervisor at the university, Zaid Al-
Ars, for his guidance and support throughout my work. His door was always open for
questions, and his advice helped me in making the right choices during my study.

This thesis was performed at Philips healthcare in Netherlands. My experience at
Philips has been nothing short of amazing. I have been incredibly fortunate to have
Steven van der Vlugt and Rob de Jong from Philips as my supervisors during my thesis
work. I thank them for making me feel welcome and steering me in the right direction
during my research. Their enthusiasm towards their work was inspiring. Rob’s amazing
insights and Steven’s general advice helped me grow both personally and academically.

I would like to extend my gratitude to my colleagues Aries Thio Gunawan, Ruben
Guerra Marin, Rachana Arun Kumar for their helpful advice and support. I thank my
friends at TU Delft, for providing me the much-needed distraction during my thesis to
blow off some steam.

Finally, I must express my profound gratitude to my family for providing me support
and encouragement throughout my life without whom this accomplishment would not
be possible.

Uttam kumar Elango
Delft, The Netherlands

xv

xvi

Introduction 1
Image processing, mainly digital image processing is finding numerous applications in
several industrial and research domains. Processing an image requires performing com-
plex operations that are expensive both in time and resource usage. Images represent
a large data set, and many tasks require several operations to be performed on each
pixel in the image. Furthermore, when real-time constraints are specified, they must be
performed at live video rates. Such requirements demand careful selection of hardware
architectures and programming techniques.

In the computing world, there exists a plethora of different devices such as Central
Processing Units (CPUs), Graphic Processing Units (GPUs), Field Programmable Gate
Arrays (FPGAs), Digital Signal Processors (DSPs) etc. Each device has its own set of
advantages and disadvantages that the programmer has to leverage to obtain maximum
performance. This brings a need to create a unifying specification that enables the
programmer to write the code once, and use it everywhere. This is called functional
portability and has seen decades of research. One key issue here is that even though
programs run functionally correct on different architectures, it doesn’t necessarily mean
that they obtain the maximum achievable performance. User intervention is still required
to ensure that the program is leveraging the device capabilities to the maximum extent
possible. A dream scenario would be to develop the application once and execute it on
different platforms at the maximum achievable performance, automatically.

In this work, the focus will be on reconfigurable architectures, particularly FPGAs.
FPGAs are reconfigurable devices that contain several programmable logic blocks that
can be customized to generate the required hardware. However, hardware generation
on the FPGA fabric is quite difficult, in the sense that, the effort it takes to imple-
ment the design, verify and validate is quite complex when compared to its software
counterpart. The skill set required for a hardware programmer is vastly different than
a software programmer. This results in a steep learning curve for a general-purpose
software programmer to move to hardware programming. To address this issue, an ab-
straction layer is required that ensures that the programmer requires minimal (or ideally
none) knowledge of the hardware, but is still able to perform hardware synthesis. As we
achieve higher abstraction levels, we can also manage to unify CPU, GPU, and FPGA
programming.

The focus of this thesis is to investigate the current state of tools that are available
to abstract the low-level hardware details from the programmer, thereby facilitating ease
of development on FPGAs. The rest of the report will describe the context within which
the research will take place, provide background on the subject, and finally outline the
implementation and results.

1

2 CHAPTER 1. INTRODUCTION

1.1 Context

This section will describe the context within which this thesis was written.

1.1.1 Philips healthcare

Koninklijke Philips N.V. (Royal Philips Electronics of the Netherlands, com-
monly known as Philips) is a Dutch technology company headquartered in Amster-
dam. It was founded in Eindhoven in 1891 by Gerald Philips and Frederik Philips [1].
Philips is organized into two divisions: Philips Consumer Lifestyle and Philips Health-
care. As the main division in the enterprise, Philips Healthcare focuses on improving
people’s lives through meaningful innovation in the healthcare industry. Some of the
popular health care products are Interventional X-Ray Systems, Computed Tomogra-
phy (CT)-scan, Ultrasound, Magnetic Resonance Imaging (MRI), and Clinical Manage-
ment Systems. Philips brand line is “innovation and you” which highlights its mission
to innovate while understanding people’s needs. Philips Healthcare, in particular, saves
millions of lives through its exceptional innovation and state of the art healthcare sys-
tems.

This work was performed in the Image Guided Therapy (IGT) department of Philips
Healthcare at Best, the Netherlands, where the focus is on development of real-time
applications for minimally invasive medical procedures.

1.1.2 ALMARVI

Almarvi stands for: Algorithms, Design Methods, and Many-core Execution
Platforms for Low-Power Massive Data-Rate Video and Image Processing.
Almarvi is a European project with many different parties contributing deliverables
worldwide. Philips Healthcare and TU Delft are also part of this project.

To reduce the overall system design cost, time-to-market, and to enable low-cost
solutions for high volume markets, the Almarvi project was conceived [2]. Almarvi
project focuses on: enabling cross domain re-use and interoperability for different product
categories and application domains, facilitate predictable system and product properties,
develop joint hardware-software techniques for resource and power management. The
main goal of this thesis is to ease the programming effort for FPGAs and to ensure
portability among different architectures which combines perfectly with the Almarvi
mission statement: “to ease the programming of new technologies and cut production
costs by reducing design time”.

1.2 Imaging system

Fig. 1.1 shows an Interventional X-ray Systems (iXR) system designed at Philips. It
generates high quality images at a fast rate with the help of advanced image processing
techniques.

X-radiation, which is composed of X-rays, is a form of electromagnetic radiation.
X-rays with high energies (> 10 keV) are called hard X-rays. These hard X-rays can

1.2. IMAGING SYSTEM 3

Figure 1.1: Azurion Interventional X-ray system [1]

penetrate the skin and are often used in medical radiography, like in the iXR medical
X-ray systems.

Figure 1.2: iXR – processing chain

Fig. 1.2 shows the iXR image processing chain. First, the X-ray tube generates
the X-rays which fall on the patient lying on a detector plate. Based on the subjects
X-ray absorption properties, a “shadow image” is formed on the detector plate. Some
imperfections may exist during the capture of a raw X-ray image, but they can be re-
moved by imaging algorithms. The detector processing block provides a dose control
feedback loop for regulating the X-ray dose [3] and performs a minimal clean up of the
raw images. Next, more advanced image processing algorithms are applied to improve
the image quality, examples include noise reduction and contrast enhancement. After
the image has been processed, it is streamed to the output to be viewed directly by the
physician treating the patient. This video stream is either sent directly to an external

4 CHAPTER 1. INTRODUCTION

monitor or to another PC which distributes the signal to different monitors. Both func-
tional correctness and latency are crucial requirements for such an X-ray system. The
physician needs to have timely feedback of the patient under study to avoid making
potentially disastrous mistakes.

1.3 Problem discussion

Interventional X-Ray systems currently use PCs to implement the image processing
pipelines. PCs are expected to have shorter life cycles (3 to 5 years) due to regular
advancements in hardware architectures whereas X-Ray systems have an average life
cycle of up to 20 or 25 years. Hence there is a need to redevelop and retest the imaging
algorithms to target the next generation PCs during the life cycle of the medical system
which increases the time to market and maintenance costs.

FPGAs are considered to be an attractive choice to address the Life Cycle Manage-
ment (LCM) challenge since certain FPGAs have a much longer life cycle (15 years or
more) than PC based platforms. They also offer deterministic performance benefits to
satisfy real-time constraints. But to effectively use FPGAs, the designer has to be aware
of low-level hardware details, which are unfamiliar to many application programmers.
To ease the development process on FPGAs, research has focused on High Level Syn-
thesis (HLS) tools, and several industries have come up with their own set of tools to
bridge the gap between software and hardware synthesis. A common goal of these tools
is to hide the low-level details from the developer. However, if software programs are
directly mapped to hardware, then the generated design might not be the best model
on FPGAs. Thus an efficient tool flow is required that could generate hardware with
minimal knowledge of low-level implementation details.

Moreover, portability must be ensured among different platforms (CPU, GPU and
FPGA) so that the same application can be used on other platforms, ideally without
modifications. Providing separation between application and hardware will reduce re-
development time and costs when using different computing platforms for improved
functionality or performance.

From the above discussion, the following research question can be formulated,

Is it possible to generate hardware structures on FPGAs from higher
level programming languages for image-processing algorithms, resulting in
ease of development for programmers and ensuring portability among CPUs
and GPUs?

To answer the above question the following sub-questions must be explored:

• What are the architectural differences between CPUs, GPUs, and FPGAs?

• What are the characteristics of image processing algorithms and what challenges
are involved in porting these algorithms to FPGAs?

• What are the challenges involved in generating hardware from Higher Level Lan-
guages (HLLs)?

1.3. PROBLEM DISCUSSION 5

• What are the current tools available to achieve hardware generation on FPGAs
from HLLs and do these tools result in an easier development cycle?

• What are the current research trends in obtaining portability across CPUs, GPUs
and FPGAs?

Based on the above problems, we can formulate a set of global requirements for the
project.

• A workflow in terms of tools and strategies needs to be developed. The output
must be similar to the original working solution.

• The algorithm must be implemented once, and ideally be able to execute correctly
on different accelerators with acceptable latency and throughput requirements.
Since the domain is medical image processing, any changes to the algorithm itself
might lead to undesirable outcomes.

• The workflow needs to ensure that complex hardware challenges are abstracted
from the programmer and result in an easier development cycle.

6 CHAPTER 1. INTRODUCTION

Background 2
This project aims to investigate tools and techniques available to quickly obtain hardware
designs on Field Programmable Gate Arrays (FPGAs) for image processing algorithms
while maintaining portability. Ideally, the work flow should be adaptable to general-
purpose tasks and should meet the requirements of the Philips use-case. To do this, it
is necessary to look into the different computational platforms to understand the archi-
tectural requirements. This chapter starts with the analysis of different computational
platforms namely Central Processing Units (CPUs), Graphic Processing Units (GPUs),
and FPGAs. This is followed by analyzing the general characteristics of image-processing
algorithms and selecting a suitable representation that emulates the Philips use-case.

2.1 Hardware architectures

We discussed that FPGAs might be a suitable platform to address the Life Cycle Man-
agement (LCM) challenge, but we also want the flexibility to move to other computa-
tional platforms like CPUs and GPUs with minimal development efforts. FPGAs are
preferred since a custom-built hardware design will often have a higher throughput than
its software counterpart which is a major factor in real-time applications. Secondly, sev-
eral commonly used functions are available as Intellectual property (IP) cores which are
highly optimized and can be readily integrated into existing designs alleviating design
costs.

There is, of course, no “one platform fits all” solution available since all of them have
very different capabilities and limitations. We will perform a short study to understand
and compare these differences.

2.1.1 CPU

CPUs are the most well-known and widely used devices. The fundamental operation of
CPUs is to execute a sequence of stored instructions. CPUs have grown from single-core
to multi-core processors capable of exploiting parallelism both in data and instructions.
They are capable of executing enormous amounts of different operations and tasks. A
large unit is dedicated for managing and scheduling tasks which effectively optimizes
performance bottlenecks such as branch prediction and instruction ordering. The de-
velopment time on CPUs is relatively low. They can be targeted with a large range of
programming languages making it easier to program.

2.1.2 GPU

GPUs are gaining popularity due to their ability to exploit massive parallelism in certain
tasks. The capability of GPUs to be used as accelerators are being widely exploited in all

7

8 CHAPTER 2. BACKGROUND

compute intensive applications.The advantages of using GPUs are attributed to its high
memory bandwidth and a large number of programmable cores. Graphics processors
are either integrated with CPU or placed separately with the ability to communicate
via a Peripheral Component Interconnect Express (PCIe) bus. The development time
on GPUs is also low, thanks to the introduction of Compute Unified Device Archi-
tecture (CUDA) and Open Computing Language (OpenCL) which provides a C-based
programming environment for programming GPUs.

2.1.3 FPGA

CPUs and GPUs are off-the-shelf products whose architectures cannot be changed,
whereas FPGAs are reconfigurable devices. FPGAs are based around a matrix of
Configurable logic blocks (CLBs) connected via programmable interconnects. FPGAs
can be programmed (and reprogrammed) to the desired application for functionality re-
quirements after manufacturing. FPGAs are programmed using Hardware Description
Languages (HDLs) like Very High Speed Integrated Circuit Hardware Description Lan-
guage (VHDL) or Verilog which mandates knowledge of low-level hardware details. A
synthesis, implementation and routing tool can translate a hardware design to digital
logic that can be implemented in this array. Table 2.1 provides a comparative overview
of the three hardware platforms.

CPU GPU FPGA

Computation
Fixed Arithmetic Units

2 - 8 cores
Fixed Arithmetic Units

600 - 4000 cores
User-configurable Logic

Parallelization
MultiThreading (Pthreads/OpenMP)

Vector Instructions
Highly Parallel

Single Instruction Multiple Data (SIMD)
Pipeline Execution

Multiple hardware units

Arithmetic
Versatile

Floating-point and Integers
Faster than CPUs in certain operations

single-precision FP > double-precision FP
Integer and fixed-point work well

floating-point not advisable

Programmability
Easy to program
C,C++,Java etc.

Relatively easier to program
CUDA, OpenCL

Complicated
HDLs-low-level details required

I/O Fixed I/O Fixed I/O user-configurable I/O

Debugging
Many tools available
Gdb, Valgrind etc.

Relatively easier to debug than FPGAs
Intel Vtune amplifier, NVVP etc.

Complicated

Upgrades Easy Moderate Complicated

Table 2.1: Features overview

2.1.4 Memory architecture

In this part, we explore the memory subsystem of the different computational devices
discussed above. In almost all platforms, at the top of the memory hierarchy, there
are on-chip storage elements called registers which have the lowest read/write latency.
Registers are usually used to store intermediate results of operations for fast access.
The second layer is formed by cache memories which also provide low latency accesses.
Caches are split into multiple hierarchies named as L1, L2, and L3 caches. Each level
in the cache is progressively slower. Thus L2 cache has a higher access time than L1

2.1. HARDWARE ARCHITECTURES 9

cache. This is followed by the Dynamic Random Access Memory (DRAM) (also called
main memory) which are optimized for capacity but have relatively slower access times.
Finally, the last layer in the hierarchy is referred to as the secondary memory (also
named hard disks) that can be used to store huge amounts of data but has high access
latency. All the different memories except secondary memory are volatile memories (data
is remove once the device powers off).

In CPUs, registers are located within the processing units. There are general-purpose
registers that the programmer can use and special-purpose registers (program counter,
status register etc.) that are internal to the CPU. Fig. 2.1 shows the typical memory
organization of modern CPUs.

Figure 2.1: Memory architecture on CPU (Intel Nehalem Quad-Core CPU) [4]

Fig. 2.2 shows the memory organization on GPUs. The global memory is shared by
the entire GPU. It is used for communication among cores and also for communication
with the host (typically CPUs). Transferring data to and from the global memory is
the most time-consuming operation on the GPUs. The global memory is implemented
on off-chip DRAM. The shared memory is local to each Streaming Multiprocessor (SM)
and can be shared by all the Streaming Processor (SP) in that SM. The access latency
for this memory is quite low, and they are usually implemented in Static Random Access
Memories (SRAMs). The next level is the local or private memory, which is specific to a
single SP core. They are part of the global memory and are used when the registers are
not capable of holding the thread data (a phenomenon called as register spilling). To
achieve better access latency, modern GPUs cache portions of the local memory on-chip.

10 CHAPTER 2. BACKGROUND

There are also two read-only memories (read-only for threads, CPU can read/write on
these memories) named “constant memory” and “texture memory”. Constant memory
is usually used to fill data during compile time to reduce the amount of data transfer
between the host and GPUs during program execution. On the other hand, texture
memories exhibit two-dimensional locality (spatial locality) thereby aiding in transferring
blocks of data for fast access. Both constant and texture memory can be cached on-chip.

Figure 2.2: Memory Architecture of GPUs [5]

FPGAs are reconfigurable devices which the user can program to fit his application
needs. On FPGAs, configurable logic blocks typically consists of Look-up Tables (LUTs)
and Flip Flops (FFs). LUTs are made out of logic gates and can be used to store all
possible outcomes of a particular function, thereby allowing fast access times. Memory
modules on FPGAs are typically Block Random Access Memories (BRAMs) which are
on-chip memory resources that can be configured for read or write accesses. Finally,
there is the DRAM which is off-chip and can store relatively large amounts of data but
has higher access latency.

2.1. HARDWARE ARCHITECTURES 11

Figure 2.3: Memory architecture on FPGAs [6]

To make things clear, we will draw comparisons between the different platforms for
some of the important metrics that will be considered throughout this work.

• Performance portability : This metric indicates the “performance maintainability”
when the design is ported to a different device of the same kind.

• Ease of development : This metric indicates the development effort required to run
applications on the platform.

• Life cycle: This metric indicates the average life cycle of the hardware platforms
(average time before the product become obsolete).

• Scalability : This metric indicates whether adding more resources will increase the
performance.

• Energy efficiency : This metric indicates the number of operations (GFLOPs) per-
formed for one watt of power consumption (Operations/Watt). [7].

• Timing latency : This metric indicates the capability of achieving deterministic
timing requirements [8].

12 CHAPTER 2. BACKGROUND

Performance Portability

Ease of development

Scalability

lifecycle

Operation/watt

Timing Latency

Qualitative Comparison

CPU GPU FPGA

Figure 2.4: Comparison chart CPUs, GPUs, and FPGAs

Fig. 2.4 shows the comparison between the parameters discussed above for CPUs,
GPUs and FPGAs. All comparisons are made with devices in the same price range.
Please note that the farther the line is from the center, the better the device performs
on that metric (e.g. FPGAs provide better timing latency followed by GPUs and then
CPUs).

2.1.5 Discussion

The study performed in the previous sections shows that memory architecture is dif-
ferent for all the three platforms. E.g. GPUs provide shared memory (also known as
scratchpad memory) local to an SM, which is unavailable on CPUs. Thus in CPUs,
local variables (in registers) spill to caches which have higher access latency than shared
memory in GPUs [9]. FPGAs, on the other hand, are user configurable. This means that
the programmer can generate hardware structures and decide on the memory hierarchy.
Multiple hardware structures can be created with memory elements between them, and
data can be directly transferred without the need for off-chip memory. Understanding
memory access patterns to effectively leverage temporal (once a memory word has been
accessed, it is likely to be re accessed) or spatial locality (once a memory word has been
accessed, nearby words are likely to be accessed) will lead to achieving good perfor-
mances. Therefore either the programmer or the tool must be capable of identifying
such patterns.

2.2. IMAGE PROCESSING 13

2.2 Image processing

In order to generate a good representation of an algorithm that is suitable for medical
imaging and one that is representative for the Philips use-case, we need to understand
the characteristics of image processing algorithms. In this section we will look at some
of the characteristics, and classes of image processing algorithms.

2.2.1 Imaging operations

Medical image processing, and image processing in general, is mostly performed by
applying a number of processing steps to an image, altering the contents of the image
to the needs of the user. Image processing operations can be classified into three types:
point, window and global operations. Fig. 2.5 shows how these operations are performed
on an image.

• Point operations: In these type of operations, the output pixel value depends
only on the value of the corresponding input pixel (e.g. Threshold operations).

• Window operations: In global operations, each pixel in the output image is pro-
duced by sliding an N × M window over the input image and computing an op-
eration according to the input pixels under the window and the chosen window
operator (e.g. Convolution filters).

• Global operations: In these operations, the output value of a pixel is dependent
on the entire input image (e.g. Fast Fourier Transform (FFT) operations).

Figure 2.5: (a) Point Operation (b) Window Operation (c) Global Operation

There are also two types of image processing characterizations: spatial and temporal.
Spatial characterization involves analyzing a single image (e.g. edge detection), whereas
temporal characterization involves analyzing a series of images taken at different time
instances (e.g. motion detection). The above discussed operations (point, window and
global) are commonly used in these characterizations.

14 CHAPTER 2. BACKGROUND

Table 2.2 summarizes the common classes of image processing algorithms that will
be used to represent our use-case.

Classes Processing Example

Image Scaling
Algorithms are capable of resizing the image either by adding new pixels
(upsample) between existing pixels or by removing pixels (downsample).

Bi-linear interpolation

Colour conversion
These algorithms alter the colour information in the image or
enhance the colour information.
Point based operations

Grayscale conversion

Filters
These algorithms are used to remove unwanted artifacts from the image
resulting in smoothed, brightened image
Window based operations.

Gaussian blur

Feature extraction
These algorithms are used to detect and isolate various desired
portions of an image.
Window based operations.

Canny edge detection

Table 2.2: Classes of image processing algorithms

2.2.2 Processing requirements

Since images are made out of pixels, it naturally lends itself to massive parallelism since
each pixel can be processed independently. But when part or entire image (window and
global) is used to compute an output pixel, we need to analyze the algorithm to exploit
parallelism efficiently.

To adhere to real-time processing constraints, image data must be processed at high
data rates. On CPUs and GPUs due to large memory sizes, data can be processed in
frames at very high speeds. On FPGAs, due to resource constraints, data is usually
processed as streams. This means that data is processed as soon as it is received,
rather than waiting for the entire input image to be buffered before processing starts.
Computations on a stream of data are performed by kernels, which are functions that
operate on all elements of the input stream. Since stream elements are independent,
kernels can operate in parallel exploiting data-level parallelism [10]. Moreover, in medical
imaging, multiple algorithms are used to form the image processing chain. These can be
implemented as multiple kernels running in parallel exploiting task level parallelism. A
kernel can potentially take an arbitrary number of inputs and produce one or more output
streams. Thus, generating the hardware in a streaming fashion would be beneficial to
achieve a high throughput. Making the algorithm to work in a streaming fashion is a
challenge since data needs to be buffered (memory considerations), and data order must
be maintained.

2.2.3 Algorithm selection

To obtain a good representation of the image processing domain, we chose to implement
Sobel and Gaussian filters. These filters are selected owing to their widespread use in
the imaging domain. The operations performed by these filters can be extrapolated to
other commonly used imaging filters thereby giving us a heuristic representation.

Sobel filter is a convolution filter that uses two kernels to calculate intensity changes
in the horizontal and vertical direction. This information can be used to detect edges
in the input image. The Gaussian filter is a low-pass filter that uses a single kernel to

2.2. IMAGE PROCESSING 15

blur an image which reduces the noise in the input image. These two filters will serve
as a good base case for our analysis of the tools and will help us understand portability
challenges.

To obtain a good representation of a medical imaging algorithm, we looked at some
of the commercial grade algorithms. First, most of the operations used in the algorithms
are frame-based or pixel based. Since there are no global operations performed, the
parallelization requirements on the workload are reduced because the entire image need
not be buffered for the processing to start. Second, the image processing pipelines are
often implemented in a pyramid fashion. A gray-scale image is used as an input to the
imaging system. This image is then scaled down in multiple stages. In each stage, the
image size is reduced by a factor of 2, thereby enabling working with a smaller dataset.
The lowest resolution is then used to reconstruct the image in a pyramid fashion.

This is similar to the Multi Resolution Analysis (MRA) used in popular literature
[11]. MRA is a mathematical method that is based on working on a problem at different
levels of resolution. This method is currently being used in signal detection applications,
PDEs solving, computer vision and image processing.

Figure 2.6: Image Pyramids [12]

Fig. 2.6 illustrates the MRA concept. As shown in the figure, the method starts
at the full resolution (called the base) and continues to create a more coarse-grained
representation of the data set. In each level, the same computational operations can
be applied, affecting a different relative region size. Since they have the structure of a
pyramid, they are also called image pyramids when used in image processing applications.
Some advantages of using image pyramids are: First, they reduce computational costs
of various image operations because the operations can be applied to a smaller dataset
rather than the complete image. Second, pyramids enable image features to interact
locally at higher levels of the pyramid, even though the features are far apart in the
original image. Third, this algorithm can generate sets of low pass and band-pass filtered
images at a fraction of the cost of performing Fast Fourier Transforms [11].

In MRA, at the input stage, downsampling is performed to scale down the image.
Since downsampling introduces aliasing effects, the image is sent through a low-pass
filter. This operation can be represented by the formula shown in Eqn. 2.1 for (2-D

16 CHAPTER 2. BACKGROUND

image). G0 is the original image and GN is the image at the top level of the pyramid.

Gl(i, j) =
∑

m

∑

n

w(m,n)Gl−1(2i+m, 2j + n) (0 < l <= N) (2.1)

The weighing function w(m,n) is called the “generating kernel”. The above formula can
be simply represented as a “reduce” equation since each stage is scaled down by a factor
of two. Reduce is a function that performs filtering and correspondingly downsamples
the image.

G(l) =

{

I0 if l = 0

Reduce[Gl−1] if l > 0

Since the weighing function resembles the gaussian density function, the decomposition
phase is simply referred to as “Gaussian pyramid” in common literature.

A second operation “expand”, is defined to be the inverse of reduce. It expands an
image by interpolating sample values between the given values. Let Gl,k be the image
obtained by applying “expand” to Gl, k times

Gl,k = Expand[Gl,k−1] given that Gl,0 = Gl (2.2)

Note that the gaussian filter is a low-pass filter that removes the high frequency compo-
nents at each successive level.

Bandpass images can be quite useful for image analysis. They can be obtained by
subtracting each gaussian pyramid level from the next lower level in the pyramid. Be-
cause the resolutions are different, it is necessary to interpolate to expand the image
(Expand operation can be used here). Since these operations resemble laplacian oper-
ators, they are named as “laplacian pyramid”. The image pyramid is then constructed
by repeated application of reduce and expand operations as shown in Fig. 2.7.

Figure 2.7: Gaussian and Laplacian pyramids [13]

Once we have the bandpass images from Laplacian pyramids, we can then use any
filter to remove noise or extract information at different resolutions.

2.2. IMAGE PROCESSING 17

Analysis

The first insight we develop as mentioned above is that all algorithms used in the im-
age processing pipeline use window based operations. This makes “parallel capability”
analysis relatively easier since the entire image need not be stored and operated on (like
global operations). Second, we see that the different stages can operate in a streaming
fashion. This would allow concurrent execution and improve the arithmetic intensity
of the kernel, thereby increasing the throughput. FPGAs offer massively parallel hard-
ware architectures which can achieve best results with data streaming and pipelining.
Each computational kernel in the MRA algorithm can be converted to hardware modules
and laid out in parallel on FPGAs. The modules can then be interconnected by data
streams to form a pipeline, through which data is streamed form one module to another.
This structure can then effectively supply a continuous flow of output from a continuous
delivery of input data achieving high throughout and low latency.

18 CHAPTER 2. BACKGROUND

Software to Hardware 3
As discussed previously, designing hardware is time consuming and resource intensive.
Moreover a completely different approach than traditional software programming is re-
quired, which introduces a steep learning curve for software programmers. This chapter
deals with the challenges of moving to higher level languages [14] followed by a study in
the current state of tools to help with our research.

3.1 Challenges

Today computing systems are designed as a mix of hardware and software. Compute-
intensive and real-time problems are offloaded to hardware (Field Programmable Gate
Arrays (FPGAs) or Application Specific Integrated Circuits (ASICs)) for speed and
“timing predictability” advantages. Using Higher Level Languages (HLLs) for both ar-
chitectures simplifies the work, but there are several challenges in moving to higher layers
of abstraction for hardware programming. The following lists some of the challenges.

• Concurrency

– Algorithms developed using HLLs are traditionally sequential. Concurrency
can be exposed in higher-level languages through the use of so called “prag-
mas” that help the compiler in optimizing the code effectively. Even with
these features, the programmer has to analyze the code carefully to under-
stand where to place the pragmas.

• Datatypes

– The base types in HLLs allow a minimum of one or more bytes (integer is
usually 4 bytes) to be stored in memory. This is in contrast to hardware
where single bit manipulations are performed frequently.

• Timing

– The ability to specify detailed timing (clock cycles) is another fundamental
requirement in hardware. Applications that should work real-time are usu-
ally implemented directly in hardware, and can lead to unwanted effects if
timing requirements are not met. This is something that cannot be explicitly
manipulated in HLLs.

• Communication

– As discussed in Section 2.1, memory architectures of various platforms are
quite different. When it comes to hardware design, the programmer can use

19

20 CHAPTER 3. SOFTWARE TO HARDWARE

various techniques to build effective communication channels. In software
programming, the programmer is faced with a limited set of interfaces.

• Multiple design choices

– Every operation on hardware can be implemented in a variety of ways. E.g.
multiplication on hardware can be implemented using DSP blocks (or) LUT
and FF pairs. It all depends on trade-offs between area, cost and performance.
Therefore, the translation process for hardware is more complicated than
software.

3.2 High level synthesis

Elaborate research has led to the development of several tools that abstract the hardware
and ease the development process on FPGAs [15][16][17]. The process of generating
hardware from HLLs is termed as high-level synthesis in common literature.

High-level synthesis has been under research for many decades, and major vendors
have come up with their own set of tools to achieve High Level Synthesis (HLS). This
is an important direction of research since HLS will improve designed productivity and
will make the use of FPGA technology viable for software programmers [12]. Since these
tools predominately target FPGAs, let us look at some important requirements that
must be satisfied for hardware generation on FPGAs [18].

• The implemented algorithm must use the resources properly. If the pipelined op-
erations are not “speed matched”, then the slowest operation will dominate the
execution time. This is analogous to the problem of load balancing in a parallel
computing model where, if a single thread operates on a large amount of data,
then the other threads (in many applications) have to wait for its completion.

• Using appropriate precision for representing data allows a proportional increase
in parallelism and hence performance. Moreover alternatives to perform floating
point operations must be developed since these operations are costly in terms of
area, time, and power.

• Timing is very important in FPGA designs (real-time processing) and timing con-
straints are to be considered as hard requirements.

3.3 RTL generation

This section briefly explains the HLS process for hardware generation.

The first step is identical to the traditional software flow model. It involves the
compilation stage that performs common lexical and syntactic analysis that generates
an Intermediate Representation (IR) which is an Abstract Syntax Tree (AST) that rep-
resents the source code. Several optimizations are applied to the IR for optimal FPGA
mapping. IR is usually a Control/Data Flow Graph (CDFG) which is formed by com-
bining a Control Flow Graph (CFG) and Data Flow Graph (DFG). CFG indicates the

3.3. RTL GENERATION 21

flow of control between basic blocks which are defined as a sequence of instructions which
have a single entry point and which are executed until the end with a single exit point.
If data dependencies exist between basic blocks then such dependencies are represented
in a data flow graph.

The next step is the synthesis stage. The Register Transfer Level (RTL) design
specifies the exact timing, and moreover data and operations are mapped to concrete
hardware units. To implement the final digital system, HLS has to solve the following
tasks:

3.3.1 Scheduling

In this step, all operations of the input CDFG are mapped to control steps. A sched-
ule will be generated such that all the data and control dependencies are not violated
and performance constraints are satisfied. Since scheduling determines the operation
sequence, it affects the degree of concurrency of the resulting design. All operations
that map to the same control step are executed in parallel thereby exploiting Instruction
Level Parallelism (ILP). Different types of scheduling algorithms (As Soon As Possi-
ble (ASAP), As Late As Possible (ALAP), list scheduling) are used based on different
requirements such as high performance or low resource usage.

3.3.2 Allocation and binding

After scheduling, hardware resources are bound to operations. Allocation determines
the type and number of hardware resources for a given design. In the binding stage, the
different operations in the application are mapped to individual cores from technology
libraries. Optimizations on the number of hardware resources and registers required to
execute the functions are performed. E.g., arithmetic units (Adder, multiplier) can be
shared if two operations are not executed in the same clock cycle. One trade-off to note
here is that even though resource sharing may reduce area usage, it may introduce delays
(due to the usage of multiplexers) and increase the number of interconnects. HLS tools
can be guided by programmer to customize resource allocation and binding to fit the
user needs.

3.3.3 Controller synthesis

This step involves the derivation of the controller that sequences the design and controls
the functional and storage units in the datapath. Finite State Machines (FSMs) are
used as a basis to implement controllers for the design. First, the controller selection
(single or hierarchical controllers) and the number of FSMs required is selected. Next,
the controller generation stage decides whether to implement the FSM as a Moore or
Mealy machine. Finally, the controller is implemented with registers holding the current
state and combinational logic to generate the next state based on the machine model.

22 CHAPTER 3. SOFTWARE TO HARDWARE

3.3.4 Optimizations

To obtain an optimal design, the programmer needs to expose high-levels of fine-grained
as well as coarse-grained parallelism. The programmer can expose parallelism by under-
standing the underlying architecture and carefully exposing concurrent execution pos-
sibilities, but the idea is to allow the compiler to automatically find optimizations and
apply them to generate effective hardware. Some of them are constant propagation,
constant folding, loop transformations like unrolling, tiling, fusion, distribution, and
strip-mining. Fig. 3.1 illustrates the process for RTL generation.

Figure 3.1: Front-end of HLS

After the RTL has been generated, the next phase is obtaining the bitstream to be
uploaded on the FPGA. Fig. 3.2 shows the backend process. The first step performs
lower-level synthesis. This results in a graph representation of hardware components
such as gates and connecting signals called the netlist. The next step maps the netlist
to hardware resources on FPGAs. Finally the hardware units are connected using the
configurable routing resources in the “placement and routing stage”. All the component
and connection information is stored in a bitstream file which can be used to configure
the FPGAs.

The separation of the synthesis process into frontend and backend can be attributed
to easy generalization of frontend synthesis, whereas backend synthesis is bound to the
technology. Frontend can be easily adapted to a different design environment, but back-
end has a short life cycle, because technologies change frequently.

3.4 Tools and techniques

We already discussed the various challenges involved in going from software to hardware.
Extensive research has been done to address these challenges and many tools and frame-

3.4. TOOLS AND TECHNIQUES 23

Figure 3.2: Hardware generation from RTL [12]

works have emerged in the market. In this section we will discuss and compare some of
these tools to select suitable frameworks for our study.

The Altera OpenCL Software Development Kits (SDKs) [19] delivers a complete
development to deployment solution for software programmers to design FPGA hardware
using OpenCL language. To enable easy integration, the subsystem design is packaged
into an OpenCL Board Support Package (BSP) and distributed along with the hardware.
The SDK enables software emulation to verify the functionality of the design and also
contains profiling tools for analyzing and debugging the design.

SDAccel [20] is a Xilinx framework that can accept OpenCL/C/C++ as input lan-
guages. This is also a complete development to deployment environment for hardware
designs. We will discuss the framework in detail in Chapter 4.

Vivado HLS [21] is a Xilinx tool that accepts C/C++/System C as input languages
to obtain hardware designs. It supports arbitrary-precision and fixed-point data-types
using Xilinx libraries which is an advantage since the bit-width of compute variables can
be customized resulting in reduced resource usages.

LegUP [16] is an open source tool developed at the university of toronto. LegUP
accepts C programs as inputs, with constraints specified in a Tcl file. The tool can
operate in two modes: pure hardware and hybrid. In hardware mode the input program
is synthesized to a hardware circuit. In the hybrid mode, the program is synthesized, to
target heterogeneous systems with a processor and an accelerator.

HIPAcc [12] provides a C++ based embedded DSL for the image processing domain.
Several primitives are provided to implement imaging operations. The framework uses
the clang/LLVM compiler infrastructure to generate an Abstract Syntax Tree (AST)
that is operated on to produce a host code for managing kernels and device code for
specific architectures (e.g CUDA, OpenCL). Recently, support for FPGAs was extended

24 CHAPTER 3. SOFTWARE TO HARDWARE

using the Vivado-HLS framework.
Halide [22] is also an image-processing DSL. It adopts a functional style description

of image processing algorithms. The main feature of Halide is its separation between
algorithm and schedule which will be discussed in detail in Section 3.6. They can target
several architectures and recently, Halide was extended to support FPGA using the
Vivado-HLS tool.

Table 3.3 summarizes the main features of the SDKs and Domain Specific Languages
(DSLs) discussed above. Since exposing concurrency in the program is a fundamental
requirement of HLS, these frameworks approach the problem in two ways. They either
add parallel constructs to the programming language thereby forcing the programmer
to expose concurrency or contain sophisticated compilers that automatically identify
parallelizable functions in the source code. To enable working with fixed-point data
these HLS tools provide features to specify the bit-width of variables. Design space
exploration is also automatically performed based on tradeoffs specified by the user.

Although design tools start from a High-level language, they are rather a hardware
description language than a high level tool. This is because of the additional features
that are added to the language, that require hardware knowledge for effective utilization.
Such HLS tools are given a low rating (-) for the level of abstraction they provide.

HLS tools that can automatically identify ILP and loop-level parallelism (loop un-
rolling, software pipelining) are marked with a high rating (++). A “+” rating is given
for tools that cannot efficiently express parallelism in the user code.

Advanced coding transformations for efficient data-reuse can increase the degree of
parallelism. Tools which are created for specific domains with highly optimized instruc-
tions are given a very high level of abstraction rating (+++).

On studying the state of the art tools, we see that using Open Computing Lan-
guage (OpenCL) as the base specification would be a good starting point because of its
platform-independent model and active support by both industries and academia. Since
OpenCL is a generic HLL, we also discussed about DSLs that can possibly perform better
on our requirements. Halide and HIPAcc are two popular image processing DSLs. We
chose to use Halide for this study because of its unique algorithm and schedule separation
philosophy which will be discussed in the forthcoming sections.

3.5 OpenCL

The OpenCL standard is being developed by the Khronos Group industry consortium to
address the challenges of programming multi-core and heterogeneous compute platforms.
In 2013, Khronos released the OpenCL 2.0 specification in which a number of additional
features such as nested parallelism, shared virtual spaces were added which simplify
parallel application development and improves performance portability of applications.
The OpenCL specification defines a single programming model that is supported by all
hardware platforms conforming to the standard. The OpenCL specification is defined in
three parts namely:

• Platform model

• Memory model

3.5. OPENCL 25

SDK Open-

Source (O) /

Commercial

(C)

Input

Language

Features Portable Abstraction

level

Altera SDK
C OpenCL

 Support on SoC

Altera FPGA

 Streaming input

to FPGA

 CPU emulation

 Targets data

centers

Yes ++

SDAccel C C/C++/OpenCL

 CPU emulation

 Fixed Point

support (C

workflow)

 Provided by

Xilinx; Goals

aligned with

Philips

Yes ++

Vivado HLS C C/C++/SystemC

 CPU emulation

 Fixed point

support

 IP blocks have to

be connected

separately

No +

LegUP O C/C++

 Constraints

specified in Tcl

file

 Supports

Pthreads/OpenMP

 No streaming

support among

kernels

Yes -

DSL

HIPAcc O Embedded C++

 Subset of C++

constructs

 Code variants for

CPU, GPU,

FPGA

Yes +++

Halide O Embedded C++

 Algorithm and

Schedule

Separation

 Active support

and development

Yes +++

Figure 3.3: SDKs and DSLs used for High Level Synthesis

• Execution model

26 CHAPTER 3. SOFTWARE TO HARDWARE

3.5.1 Platform model

The platform model is defined by a combination of a host processor and one or more
OpenCL compute devices. An OpenCL program always starts with a host processor.
The host is responsible for managing the Operating System (OS), enabling drivers for
all devices, setting up the global memory buffers, manage data transfers between host and
device, and monitor the status of all the compute units in the system. The device is the
hardware element on which the compute kernels of an OpenCL application are executed.
An OpenCL kernel is often a compute-intensive function that the programmer wants to
execute on an accelerator (OpenCL device). Each device is further divided into a set
of compute units which are further subdivided into processing elements. A processing
element is the fundamental computing engine in the compute unit, which is responsible
for executing the operations of one work item. Fig. 3.4 illustrates the OpenCL platform
model.

Figure 3.4: OpenCL platform model[23]

3.5.2 Memory model

As discussed previously, memory architecture varies widely between computing plat-
forms. To overcome this challenge, OpenCL defines an abstract memory model that
programmers can target when writing code, and that vendors can map to their actual
memory.

3.5.2.1 Memory objects

OpenCL defines three types of memory objects namely: buffers, images and pipes. The
memory for these objects are allocated using the host Application Programming interface
(API). Buffers and images act as data storage that can be accessed by the host, whereas
pipes serve as First in First Out (FIFO) objects between kernels and cannot be accessed
by host.

3.5. OPENCL 27

• Buffers

– With buffers, data elements are stored contiguously in memory. The OpenCL
clCreateBuffer() API allocates space for a buffer and returns a memory object.

• Images

– Images are multidimensional structures that are limited to a range of types.
Image objects exist in OpenCL to offer access to “special function hardwares”
on graphics processor that support highly efficient access to image data. Image
objects are created using the clCreateImage() API.

• Pipes

– Pipes allow transfer of data between kernels. It organizes data in a FIFO
structure. Pipes are created using the clCreatePipe() API.

3.5.2.2 Memory regions

OpenCL divides device memory into four regions namely: Global memory, constant
memory, Local memory and private memory.

• Global memory

– Data in Global memory is accessible by both the host and device units. Trans-
fer of data between the host and device takes place from the global memory.
Global memory usually has the longest access time.

• Constant Memory

– Constant memory is part of the global memory space that the host can read-
write whereas the device can only read. It is typically used to store values
that are used by all work-items (constant values).

• Local Memory

– Local memory is a memory that is shared between work-items in a work
group. Accesses to local memory has much shorter latency and much higher
bandwidth than global memory. Operations on local memory are unordered
between work-items but synchronization can be achieved using barriers.

• Private memory

– Private memory is unique to a work-item. This memory is usually mapped
to registers.

Fig. 3.5 illustrates the memory model

28 CHAPTER 3. SOFTWARE TO HARDWARE

Figure 3.5: OpenCL memory model [23]

3.5.3 Execution model

The OpenCL execution model defines how kernels execute. A work-item is a unit of
concurrent execution in OpenCL. Work-items map to processing elements and each work-
item executes the kernel. When an OpenCL device begins executing a kernel, it provides
intrinsic functions that allow the work-item to identify itself. OpenCL kernels execute
within a predefined index space called N-dimensional range (NDRange) which can be
one, two or three dimensional index space of work-items. The work-items are further
divided into work groups. Work-items in a work group have access to a shared memory
space as mentioned before.

Some key concepts in the OpenCL execution model are contexts, command queues
and events. Contexts are used for managing all the objects specified for an accelerator
device. Command-queues are the communication mechanism that the host uses to re-
quest action by a device. The host creates a command-queue for each device and submits
commands to the proper command-queue. Events are used to specify dependencies be-
tween commands. Events also enable querying the execution status (Queued, submitted,
ready, running, ended and complete) at any time.

3.5.4 Discussion

Since OpenCL is actively supported by many vendors and used commercially, it was
chosen to accelerate the imaging algorithms on CPU, GPU, and FPGA. To achieve

3.6. DOMAIN SPECIFIC LANGUAGES 29

hardware generation from FPGA using OpenCL we have commercial tools from Altera
and Xilinx. Since Philips and Xilinx have aligned goals and agreed to provide support,
SDAccel was chosen as the development environment for this study.

3.6 Domain Specific Languages

In the previous section, we discussed HLS which is usually approached from generic
programming languages (C/C++). Even though they provide a good abstraction over
Hardware Description Languages (HDLs), the programmer still has to be aware of the
lower-level details.

To address the programming and portability challenges DSLs provide higher levels
of abstraction by utilizing domain knowledge and platform specific knowledge. The
optimizations performed by DSLs are more involved than the optimizations performed
by generic HLLs because of their targeting specific domains. Thus DSLs could be an
attractive solution to mitigate portability and programmability challenges.

3.6.1 Halide

Halide [24] is an image-processing DSL designed to write high-performance image pro-
cessing code on modern machines. Its front-end is coded in embedded C++ and targets
a variety of hardware devices. Fig. 3.6 illustrates the compilation process for Halide
language. Listing 3.1 shows a minimal example of a halide program. The algorithm

Figure 3.6: Halide Framework

description is coded in a functional style where images are pure functions that define
the value at each point in terms of arithmetic operations. Different schedules can be
explored to obtain optimal performance on target platforms.

30 CHAPTER 3. SOFTWARE TO HARDWARE

1 Halide Algorithm:

2 blurx(x,y) = (in(x-1, y) +in(x, y) + in(x+1, y))/3;

3 blury(x,y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;

4
5 Halide Schedule:

6 blury.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y);

7 blurx.comput_at(blury , x).store_at(blury ,x).vectorize(x, 8);

Listing 3.1: Halide Description

3.6.2 Halide design philosophy

Writing efficient image processing implementation involves performing several platform
specific optimizations on the algorithm which makes it complicated, unreadable and
difficult to maintain.

Halide deals with this problem by separating the algorithm (what is computed) from
the concerns of efficiently mapping to machine execution (decisions about storage and the
ordering of computation) [22]. The choices of how to map an algorithm onto resources
for a specific target platform is called the schedule.

This feature of separating the algorithm and schedule is interesting to our study
because once the programmer has specified the algorithm, implemented it and tested
the solution, a separate architecture expert can define the schedule without making
modifications to the algorithm. In the medical domain, this will reduce the development
cycle time thereby reducing development effort and costs. Design space exploration
with different schedules can be performed quickly and easily with the assurance that the
functional correctness of the program is not affected. Moreover, the Halide compiler can
target different architectures ensuring performance portability. The above mentioned
arguments provide compelling reasons to use Halide in our research.

A parallel research was conducted at Philips healthcare focusing on generating hard-
ware structures on FPGAs from Halide. They analyzed a study [25] which proposed
and implemented a Halide-HLS framework for generating image processing pipelines for
heterogeneous systems (CPU-FPGA).

The research conducted at Philips looked at the limitations of the Halide-HLS frame-
work and addressed some limitations. They used Vivado-HLS tool to synthesize the
design on FPGA. In this study, we will look at adopting the framework for the SDAccel
tool. The advantage of using SDAccel is the flexibility offered by the model to swap
kernels dynamically on the OCL region allowing dynamic partial reconfiguration. More-
over, we will have a single entry point to design hardware, where as the Vivado generated
Intellectual Property (IP) blocks have to be connected outside the tool.

3.7 Related study

HLS has been under research for several decades now. Elaborate studies [15][26][27] have
been performed to generate hardware designs from HLLs. But as discussed previously,
they mandate some knowledge of the underlying hardware architecture.

3.7. RELATED STUDY 31

OpenCL is being actively developed by both academia and industries and recently
it has been adopted to generate hardware structures on FPGA. Both Altera and Xil-
inx have developed their own set of tools to target FPGAs using OpenCL. One study
with the help of Altera’s SDK tools [28] shows that FPGA implementation offers about
5.5x speedup compared to Central Processing Units (CPUs) and Graphic Processing
Units (GPUs) implementations for an information filtering algorithm. This takes into
consideration that the algorithm itself can be deeply pipelined allowing multiple ker-
nels to run in parallel which is an efficient fit for FPGAs. The programmer needs good
knowledge of the underlying hardware to optimize such designs,

Streaming architectures can be implemented on FPGAs with elements of varying
granularity. Different functions in a dataflow specification can be implemented on FPGAs
to obtain high performances. OpenCL allows kernels to stream data without host in-
tervention using the pipe semantic. In one study, the efficiency of pipe semantic was
evaluated with Altera’s SDK tools [13] for an image processing use case. The study
proposes some methods to achieve better optimizations. One method is to use the global
memory for data transfer while using OpenCL pipes for synchronization, and the second
method is to build an OpenCL wrapper to efficiently overlap streaming data transfer
and vision processing.

A previous study [29] conducted at Philips analyzed the Vivado-HLS tool to reduce
the development time as compared to creating a manual RTL design. They estimated
around 10 times decrease in the development time as compared to creating a manual
RTL design. We will also compare their study with the SDAccel tool in Chapter 7.

DSLs combine domain-specific and platform-specific knowledge to obtain high-
performance solutions. They offer higher levels of abstraction and studies have been
performed to target FPGAs. HipAcc [30] and Halide are image processing DSLs that
have compiler frameworks to generate RTLs designs that can be synthesized using com-
mercial synthesizers. Active research is being pursued to use DSLs since they ease the
FPGA development process.

To the best of our knowledge, the scope of related studies is limited to understanding
the optimizations and performance benefits of using High-level languages to generate
hardware structure on FPGAs. Even though these aspects are important for the Philips
use-case, our motivation for using FPGAs are different. In this study, we mainly focus
on the ease of development on FPGAs while maintaining portability to CPUs and GPUs
with the help of Xilinx SDAccel tool and Halide programming frameworks.

In this chapter we discussed the challenges involved in developing code for FPGAs.
We compared several tools and slected SDAccel and Halide programming framework to
generate portable image processing implementations, and study the applicability of these
tools to the Multi Resolution Analysis (MRA) algorithm. In the forthcoming chapters,
we will propose a workflow using these tools, analyze them and provide conclusions.

32 CHAPTER 3. SOFTWARE TO HARDWARE

Solution workflow 4
This chapter discusses the SDAccel environment in detail and also proposes a work-
flow to combine the halide framework and SDAccel tool to generate hardware on Field
Programmable Gate Arrays (FPGAs).

4.1 SDAccel

The SDAccel Environment is a complete software development environment for creating,
compiling, and optimizing OpenCL applications to be accelerated on Xilinx FPGAs
[31]. SDAccel provides an environment for emulation on x86 based devices as well as
deployment mechanisms for Xilinx FPGAs. It is a complete development environment
from software development to deployment which is an advantage over other tools like
Vivado HLS which only generates separate accelerators. All the concepts discussed in the
previous section about OpenCL applies to Xilinx’s OpenCL API. Some exceptions exist
which will be documented later in this thesis. One notable difference from compilation
on Central Processing Units (CPUs) and Graphic Processing Units (GPUs) is that the
kernel code is always compiled offline in SDAccel. Just in time compilation of kernels is
not supported in SDAccel due to long compilation process of generating bitfiles.

Fig. 4.1 shows the SDAccel environment. The x86-based server acts as the host and
transfers data to the accelerators (FPGAs) through the PCI-e bus.

Figure 4.1: SDAccel environment [20]

4.1.1 Memory mapping

OpenCL memory specifications are mapped to FPGA as follows,

33

34 CHAPTER 4. SOLUTION WORKFLOW

• Host memory is part of the host processor. In our case, it is x86 based CPUs.

• Global memories are usually SDRAM (outside the FPGA fabric) or BlockRAMs
(within FPGA fabric). The host processor has access to these memories.

• Local and private memories are within the FPGA fabric and are typically imple-
mented in BlockRAMs or registers.

Fig. 4.2 shows Xilinx’s OpenCL memory mapping.

Figure 4.2: Xilinx-OpenCL memory mapping [31]

4.1.2 OCL region

SDAccel devices contain a dynamic reconfigurable area called the OCL region (Fig. 4.3).
A reconfigurable area is a designated and physically constrained area on the FPGA.
These areas are dynamic in an otherwise static FPGA implementation, meaning that
bitstreams (functionality) for these areas can be swapped out without affecting the static
part. For SDAccel devices the infrastructure is static, and kernels / compute units are dy-
namic. Both task-level parallelism (placing different kernels to operate on different tasks
concurrently) and data-level parallelism (multiple identical kernels working on different
data concurrently) can be exploited using this region. Thus hardware customization
is possible, which allows the developer to leverage many opportunities which are not
possible in fixed architectures like CPUs and GPUs.

4.1.3 SDAccel design

We mentioned that SDAccel supports only offline compilation. The reason for this
decision stems from the fact that generation of optimized hardware architectures takes a
longer time due to multiple design space explorations. While GPUs and CPUs support

4.2. HALIDE ON FPGA 35

Figure 4.3: Xilinx-OpenCL region [31]

just-in-time compilation due to their fixed architectures, SDAccel tool exploits the offline
compilation flow provided by the OpenCL standard. Thus binaries are pre-computed and
loaded on to the OCL region. Xilinx has defined the Xilinx OpenCL compute unit binary
format .xclbin that contains all the binaries of compute units (kernels) and decriptive
metadata for compute units (Automatically generated by the tool).

Three compilation flows are supported by the SDAccel tool:

• CPU emulation: Test functionality

• Hardware emulation: Emulate hardware design; check performance

• System: Generate bitstream to implement custom hardware.

Xilinx has recommended certain optimization strategies [32] that will be followed when
we design our kernels. The optimizations are summarized in Table 4.1. The fourth
column indicates whether OpenCL standard officially supports the optimization.

SDAccel supports on-chip global cache and pipes which have been introduced in
OpenCL 2.0 specification. The host does not have control of over these memories and
they can be used to transfer data between kernels without host intervention.

4.2 Halide on FPGA

A parallel study was conducted at Philips healthcare to ease the development process
on FPGA using the Halide DSL. They analyzed a study [25] which proposed and imple-
mented a Halide-HLS framework for generating image processing pipelines for hetero-
geneous systems (CPU-FPGA). They found two limitations in the current Halide-HLS
framework (1) The current framework does not support arbitrary dataypes (2) The

36 CHAPTER 4. SOLUTION WORKFLOW

Optimiza-
tions

OpenCL
attributes

Description
OpenCL
support

Loop unroll opencl unroll hint()

- Exposes concurrency
to the compiler

- Increases resource
usage

yes

Pipeline xcl pipeline loop

- Enables concurrent
execution of different

operations
- Automatically added
if loop trip count <= 64

for the main loop

No

Pipeline
work-items xcl pipeline workitems

Pipelines kernel work
items

No

Dataflow xcl dataflow similar effect as
pipelining but the

function
level(coarse-grain)

No

Table 4.1: SDAccel Optimization Techniques

framework performs off-chip boundary handling which is not suitable for generating
streaming architectures. They proposed solutions for these challenges, implemented and
tested them using the Vivado-HLS tool. In this study, we will try to combine their so-
lutions to generate a workflow using the SDAccel tool. The advantage in using SDAccel
is that we will have a single entry point to design, test and generate hardware.

Fig. 4.4 shows the Halide-HLS compilation flow which was added to the tool by a
study conducted at Stanford university [25]. The blue blocks are the the new additions
to the framework to generate HLS-C code. Since several image processing algorithms
are convolution based, all of the data required for computing a single result pixel can fit
within a small memory block. The Halide HLS framework generate streaming pipelines
with line buffers inserted between different stages.

4.3 Workflows

As discussed previously, SDAccel and Halide programming frameworks will be used in
this study. Based on the analysis of our literature study, we propose the workflow shown
in Fig. 4.5 The first workflow uses OpenCL as the base language and generates code to be

4.3. WORKFLOWS 37

Figure 4.4: Halide compilation flow [25]

Figure 4.5: Solution Workflow

executed on CPU, GPU, FPGA. To execute the OpenCL binary on FPGAs we propose
to use the SDAccel tool for reasons stated in Section 3.4. The second workflow uses the
Halide-HLS framework to provide higher level of abstraction and uses the SDAccel tool
to generate the final implementation on FPGA.

In order to generate efficient designs using SDAccel, Chapter 5 discusses the design
choices that will be adopted while implementing our algorithms. Our main focus of using
the SDAccel tool is to evaluate it for the Multi Resolution Analysis (MRA) algorithm
and study the portability challenges.

Halide on the other hand has been already shown to be performance portable [24]
on CPUs and GPUs. So in our second workflow we only evaluate the workflow for the
FPGA platform.

38 CHAPTER 4. SOLUTION WORKFLOW

4.4 Limitations and solutions

In this section, we identify the limitations of our workflows and suggest possible solutions.

4.4.1 SDAccel

SDAccel accepts C/C++/OpenCL as input languages and generates the RTL design.
But, as discussed in previous chapters traditional software programming methodologies
cannot be used to generate optimal hardware designs. Certain limitations in the current
version of the SDAccel tool are detailed below.

4.4.1.1 Datatypes

OpenCL supports standard data types of 8, 16, 32 and 64 bits. Standard integer and
floating point data types can be readily used in our design. Floating point designs
provide the maximum accuracy, but consumes lots of resources and power.A solution to
this challenge is use fixed point data types. Fixed point data types consume less power
and resources, and can potentially produce same accuracy results as floating point for
certain applications. However, in OpenCL we only use standard data-types. This means
that the maximum bit-width we can use is 64 for the combination of integer and fractional
part. This also means that, we cannot use arbitrary precision data types in our design.
One possible way to handle this is to provide information to the compiler about the size
of the variable.

1 int arbit_point = 0x3FFFF & ((in[i] & 0x1FFFF) + (in[i+1] &

0x1FFFF))

2 output = arbit_point & 0x3FFFF;

Listing 4.1: Data types precision

Listing 4.1 show addition of two integers [33]. If we already know the bit-width (in this
case 17 bits) then we can mask the upper 15 bits. Since addition of two 17-bit numbers
cannot exceed 18-bits we do a final mask with the result variable. This should produce
17-bit addition hardware instead of the full 32-bit addition. This solution works only
for unsigned numbers and produces a lot of clutter. Hence, this method was not further
pursed in this study.

Since this study focuses less on resource usage, the OpenCL designs were implemented
with standard integer datatype. It is trivial to convert them to floating-point, but designs
might exceed the maximum resource limit.

In this study, the MRA algorithm was developed in two separate versions. The first
version uses C/C++ code and the second version uses OpenCL code. For the C/C++
version, optimized IP blocks using fixed-point datatypes was designed as part of the
Almarvi project [29]. We will incorporate the fixed-point point version in SDAccel by
using the Xilinx fixed point library. For the OpenCL version, standard integer datatypes
are used.

4.4. LIMITATIONS AND SOLUTIONS 39

4.4.1.2 Streaming architecture

Most of the image processing operations are convolution based. This means that the
outputs can be calculated in a streaming fashion as soon as enough data is available
(need not wait for the entire image). However, SDAccel does not support streaming
inputs. To emulate streaming behavior we decided to load the image into Dynamic
Random Access Memory (DRAM), split the design into multiple kernels and use pipes
to stream data among them. Fig. 4.6 illustrates this process.

Figure 4.6: Streaming process in the device side

4.4.2 Halide

In our study, we use the Halide-HLS framework to generate synthesizable code and use
SDAccel to obtain RTL designs. However, we have to ensure that the synthesized code
is SDAccel compatible.

The generated HLS coded consists of an input stage, compute stage and an output
stage. The input stage accepts data in a custom template function. To ease the data
transfer from the host, we use standard data-types and convert them to the custom
template at the input stage of the Halide-HLS code. To this end, a HLS synthesizable
C++ template function is introduced in the generated code. The details will be discussed
in Chapter 5.

40 CHAPTER 4. SOLUTION WORKFLOW

Implementation 5
In this chapter, we first discuss the design choices made during the implementation
phase. Second, the implementation of the Imaging filters to evaluate the portability
challenges is discussed. Finally, the implementation of the Multi Resolution Analysis
(MRA) algorithm using the SDAccel framework is detailed.

5.1 Design choices

In this section we will detail some of the design choices made in the implementations
and explain the reasons for choosing them.

5.1.1 GPU

To ease the development of host code a helper library with OpenCL functions was written
and documented.

A direct conversion from algorithm to OpenCL code is performed for the Sobel filter
without considering any platform specific optimizations and executed on CPU, GPU, and
FPGA. Different versions of the naive Sobel implementation are implemented on SDAccel
using the optimizations discussed in Chapter 4. Xilinx has provided an optimized Sobel
filter implementation for SDAccel which will be used in our research. This application
will be modified to execute on CPUs and GPUs.

Next, the optimization of Gaussian filter on Graphic Processing Unit (GPU) using
OpenCL will be performed based on the following checklist,

• Data transfer optimization.

• Datatypes optimization.

• Vector Operations.

• Hardware computation support.

5.1.1.1 Data Transfer

Inefficient memory transfers between the host and the device can become a major bottle-
neck to the whole design. GPU vendors (Nvidia, Intel, AMD) recommend using pinned
memory (non-pageable memory) to achieve high data transfer rates. OpenCL does not
guarantee pinned memory allocation, but Intel and Nvidia have provided guidelines to
possibly achieve pinned memory allocation.

In Open Computing Language (OpenCL) the Application Programming interfaces
(APIs) available for data transfer are detailed below:

41

42 CHAPTER 5. IMPLEMENTATION

• ClEnqueueReadBuffer(**)

• ClEnqueueWriteBuffer(**)

• ClEnqueueMapBuffer(**)

• ClEnqueueUnmapMemObject(**)

Figure 5.1: OpenCL Data Transfer (1) Read/Write buffers (2) Map/Unmap

Fig.5.3 shows the way data transfer is handled by OpenCL APIs. In (1), buffers
are created on the device and data is transferred explicitly from the host to the device
which is an inefficient way to transfer data. In (2) OpenCL allows the programmer
to specify that a memory object should be allocated in “Host-accessible memory” us-
ing map/unmap buffers. This can be done by specifying CL MEM ALLOC HOST PTR or
CL MEM USE HOST PTR flags while creating buffers. CL MEM ALLOC HOST PTR will auto-
matically align buffers to achieve high data transfer rates. CL MEM USE HOST PTR flag
requires the user to specify the boundary alignment. Intel recommends buffers allocated
at a 4096 byte boundary and a total size that is a multiple of 64 bytes (cache line size).
Xilinx also recommends using CL MEM USE HOST PTR to achieve high data transfer rates.
The second scenario is efficient when system-on-chip devices (Integrated GPUs) are used,
since they have a common shared memory between them. This could potentially lead to
achieving zero costs on data transfers since data can be directly mapped and unmapped
from the shared memory.

5.1.1.2 Datatypes

Choosing the right datatype for applications is important to attain the required precision
and performance. Using the double data-type would provide the highest precision, but
the application would become computationally intensive and consume more power and
resources.

5.1. DESIGN CHOICES 43

GPUs generally provide better single precision floating-point performance than in-
teger or double performance because of dedicated floating point hardware units. Sin-
gle precision performance is 441.6 GFLOPs whereas double precision stands at 110.4
GFLOPs [34]. Thus, using floating point computations on GPUs would provide better
performances.

5.1.1.3 Vector operations

OpenCL supports vector data-types. Vector data-types are defined with the type name
(int, char etc.) followed by a value which determines the number of elements. Since SSE
and AVX instructions use vector registers, the programmer can effectively parallelize
(SIMD) computations to achieve high speed-ups. Moreover, the Intel HD graphics has
SIMD units that can execute up to four 32-bit floating-point operations per cycle or eight
16-bit integer operations [35]. Thus, using vector data-types would give us a natural
advantage over using scalar data-types.

Xilinx also recommends using 32-bit 16 elements vectors for achieving high data
transfer rates.

5.1.1.4 Built-in hardware computation support

Intel recommends using built-in functions like mad (multiply and add) instruction be-
cause of hardware support which would increase the performance. Xilinx also provides
the optimized HLS math library [36] to be used in SDAccel designs.

5.1.2 Halide

The Halide-HLS framework generates streaming pipeline designs. In SDAccel, the inte-
gration is performed using the Dataflow model. The data transfer stage between the host
and device is separated from the computation stage and the three stages are combined
using the dataflow model.

5.1.3 SDAccel

To evaluate the tool comprehensively for the MRA algorithm, we make two structural
design choices.

5.1.3.1 Dataflow model

Dataflow models are used to express parallelism at a coarse-grain level (function level).
Fig. 5.3 illustrates the advantage of using a dataflow model as opposed to a sequential
model. We see that designing the algorithm in a dataflow model can help us achieve
better latency estimates. SDAccel allows us to specify such a model at the higher level
by using the pragma "pragma hls dataflow".

In this model, the generated HLS functions are connected with First in First Out
(FIFO) memory circuits providing data-level synchronization. In such a scenario the
wait time of the consumer functions to obtain new data for processing is called Initiation

44 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Dataflow model [37]

Interval (II). In our C design we will merge all the different stages in the MRA application
into a dataflow model to achieve a low II.

5.1.3.2 Pipe objects

In Section 3.5 we discussed memory objects called pipes which can be used to transfer
data between kernels (no host intervention). Pipes can be used in SDAccel using the stan-
dard OpenCL functions: read pipe() and write pipe() in non-blocking mode. Xilinx
also provides read pipe block() and write pipe block() functions for blocking mode
operations allowing automatic data synchronization between producer and consumer. In
the OpenCL version the filters will be designed as seperate kernels and pipes are used
to transfer data between them allowing concurrent kernel execution.

5.2 Portability

In this section, we discuss the implementation of Sobel and Gaussian filters to understand
the portability challenges of SDAccel framework.

5.2.1 Sobel kernel

Listing 5.1 shows the Sobel kernel implementation using OpenCL. The code was executed
with as many threads as the size of the input image. Boundary conditions were handled
within the kernel code by repeating the edges of the image on all sides. Each thread
computes the output of a single input pixel allowing parallel execution. A 960 × 960
image is taken as an input to the Sobel kernel and executed on CPU, GPU and FPGA
(using SDAccel). To analyze the performance on SDAccel, two versions detailed below
with some code modifications were developed on the SDAccel framework.

5.2. PORTABILITY 45

1 int Gx = input[xx + yy * width]

2 + 2 * input[x + yy * width]

3 + input[xx1 + yy * width]

4 - input[xx + yy1 * width]

5 - 2 * input[x + yy1 * width]

6 - input[xx1 + yy1 * width];

7
8 int Gy = -input[xx + yy * width]

9 + input[xx1 + yy * width]

10 - 2 * input[xx + y * width]

11 + 2 * input[xx1 + y * width]

12 - input[xx + yy1 * width]

13 + input[xx1 + yy1 * width];

Listing 5.1: Sobel kernel OpenCL

5.2.1.1 Design space exploration on SDAccel

The input image size is 960 × 960. Therefore the image can be split into multiple
workgroups and all the work items in each workgroup can be pipelined. A local size of
64 × 64 is chosen which means that we have a total of 960

64
× 960

64
= 225 workgroups.

Listing 5.2 shows the modified Sobel filter implementation. The global index is mapped
to the local index and the computations are pipelined using the “xcl pipeline workitems”
attribute.

SDAccel implements the kernel as one single compute unit which does not make
use of task or data-level parallelism since the computations are performed sequentially.
Therefore multiple compute units are instantiated on the FPGA by modifying the com-
pilation parameters. The code shown in Listing 5.2 is reused, but five compute units
are started instead of a single compute unit. Fig. 5.3 shows the workgroup split that
SDAccel performed for the Sobel filter. Each compute unit now works on forty five
workgroups.

Figure 5.3: Sobel multiple compute units

5.2.2 Gaussian kernel

A naive 3× 3 Gaussian filter was implemented in OpenCL and iteratively optimized for
GPU using the Intel optimization guide [38] and the steps detailed in Section 5.1. The

46 CHAPTER 5. IMPLEMENTATION

1 __kernel __attribute__ ((reqd_work_group_size (64 ,64 ,1))) void

SobelDetector(__global int* input , __global int* output){

2 // local memory

3 __local int local_workset [64*64];

4
5 //Get the global index

6 int x1 = get_global_id (0);

7 int y1 = get_global_id (1);

8 //Get the local index

9 int x = get_local_id (0);

10 int y = get_local_id (1);

11
12 int index1 = x1 + y1 * 960;

13 int index2 = x + y * 64;

14
15 // Handle boundaries

16 int xx = max(0, x - 1);

17 int yy = max(0, y - 1);

18 int xx1 = min(width - 1, x + 1);

19 int yy1 = min(height - 1, y + 1);

20
21 //Get the input and pipeline workitems

22 __attribute__ ((xcl_pipeline_workitems)){

23 local_workset[index2] = input[index1];

24 }

25 __attribute__ ((xcl_pipeline_workitems)){

26 // kernel computation

27 }

28 }

Listing 5.2: Sobel pipelined

optimization steps are discussed below,

5.2.2.1 Data transfer

In section 5.1 we explained the benefits of using map/unmap functions to achieve high
data transfer rates in integrated GPUs. Listing 5.3 shows the usage of map and unmap
functions. Once the data is mapped on the host, it is immediately unmapped to enable
the device to use the memory region.

5.2.2.2 Vector datatypes

Vector-datatypes can be used to perform parallel computations with SIMD registers.
Moreover, the data-transfer is optimized since multiple elements are transferred packed
in one vector variable.

Listing 5.4 shows the range on which the kernel is started along with the kernel
arguments.

5.3. HALIDE 47

1 void* data = clEnqueueMapBuffer(Setall.command_queue , buf ,

CL_FALSE , CL_MAP_WRITE , 0, size , 0, NULL , NULL , &err);

2 clFinish(Setall.command_queue);

3
4 int err = clEnqueueUnmapMemObject(Setall.command_queue , buf ,

(unsigned char*)map_obj , 0, NULL , NULL);

5 clFinish(Setall.command_queue);

Listing 5.3: Data transfer

1 cl_ulong duration = PCL_Run(Setall , krnl , (input_image.cols /16),

(input_image.rows /16), 1);

2 __kernel void gaus(__global uchar16* input , __global uchar16*

output)

Listing 5.4: Vector data types

5.2.2.3 Floating point operations

Floating point computations are accelerated on Intel GPUs. Therefore the computations
are performed by converting to floating point data-types. Modern Intel CPUs supporting
advanced vector extensions are also capable of accelerating floating point computations.
Moreover, the kernel computations are performed in a loop with 16 iterations, increasing
the workload of each thread. Finally, The restric qualifier is applied to the kernel argu-
ments which helps the compiler minimize pointer aliasing. The optimized Gaussian filter
was then run on CPU, GPU and FPGA without further platform specific optimizations.
The comparisons are performed in Chapter 6.

5.3 Halide

The Sobel and Gaussian filters were written in Halide and compiled with the Halide-HLS
framework to generate the HLS-C code. The generated code used custom templates in
its computation. Since the data is transferred using standard data-types (int, floats),
we need to convert them to the custom templates. The conversion should not affect
the streaming flow of input data maintaining an initiation interval of 1. To this end,
an HLS C++ synthesizable template function shown in Listing 5.5 is introduced at the
input stage of the generated HLS-C output . In the SDAccel environment, the data is
transferred to a separate stage and streamed to the Halide generated HLS-C output. The
data is collected in a separate output stage and sent back to host. To achieve streaming
computation all the stages are connected in a dataflow model. The results are compared
with the original implementation executed with Vivado-HLS tool.

48 CHAPTER 5. IMPLEMENTATION

1 template < typename T, typename T_out , size_t IMG_EXTENT_0 ,

size_t IMG_EXTENT_1 ,size_t EXTENT_0 , size_t EXTENT_1 , size_t

EXTENT_2 , size_t EXTENT_3 ,>

2 void inToStencil(hls::stream <T> &in_stream ,

3 hls::stream <PackedStencil <T_out , EXTENT_0 , EXTENT_1 , EXTENT_2 ,

EXTENT_3 > > &out_stream){

4 //

5 }

Listing 5.5: Type conversion

5.4 MRA

We discussed the structural design choices for the MRA application in Section 5.1 for
the C/C++ and the OpenCL version. Here, we will discuss the optimizations performed
in the individual design blocks. Fig. 5.4 illustrates the MRA design implemented in this
study.

Figure 5.4: MRA model

5.4.1 Buffers

All the kernels in the MRA algorithm are implemented as streaming models. Therefore,
FIFO buffers are placed at the interfaces as shown in Fig. 5.4. When these buffers are

5.4. MRA 49

full, they block and data stops propagating in the network. This phenomenon is called
back pressure. Insufficient buffer sizes can lead to deadlocks resulting in subpar hardware
designs. In our MRA design, we experimented with different buffer sizes and obtained
a deadlock free design. Please note that this may not be the most optimal design. To
obtain optimal FIFO buffer sizes for a deadlock free design, a study is being conducted
in the Almarvi project to automatically obtain the buffer sizes. Therefore this process
can be automated in the near future.

5.4.2 Work group sizes

Providing workgroup sizes is an important requirement in OpenCL based designs. In
our MRA design, we chose workgroup sizes of (1,1,1). The reason for choosing this size
is detailed below.

In Listing 5.6, the programmer has more control over design choices like pipelining,
loop unrolling, and can help the compiler optimize designs effectively. In Listing 5.7, the
overhead of creating multiple workgroups adds to the resource usage and latency. In List-
ing 5.8, since the work-group sizes are not specified, the tool creates a generic hardware
design leading to increased resource usage. Table 5.1 shows the resource usage and la-
tency differences in choosing different workgroup sizes. In the third implementation, the
tool is not able to determine the expected latency due to unspecified work-group sizes.
This experiment shows that optimizing the design with work-group size of 1 provides
the best results in SDAccel.

1 __kernel void __attribute__ ((reqd_work_group_size (1,1,1))

2 swg(__global int* in , __global int* in1 , __global int* out){

3 for(int i = 0; i < 4096; i++)

4 out[i] = in[i] + in1[i];

5 }

Listing 5.6: Implementation one

1 __kernel void __attribute__ ((reqd_work_group_size (4096 ,1 ,1))

2 swg(__global int* in , __global int* in1 , __global int* out){

3 out[get_global_id (0)] = in[get_global_id (0)] +

4 in1[get_global_id (0)];

5 }

Listing 5.7: Implementation two

1 __kernel

2 swg(__global int* in , __global int* in1 , __global int* out){

3 out[get_global_id (0)] = in[get_global_id (0)] +

4 in1[get_global_id (0)];

5 }

Listing 5.8: Implementation three

50 CHAPTER 5. IMPLEMENTATION

Resources and
Performance

Implementation
1

Implementation
2

Implementation
3

BRAM 2 2 2

DSP 0 0 14

FF 1566 1974 2600

LUT 1713 2219 2800

Latency 0.07 ms 0.127 ms Latency
undefined

Table 5.1: Workgroup sizes effect on resource usage

1 int lineBuffer [3][480]

__attribute__ ((xcl_array_partition(block ,3,1)));

Listing 5.9: Memory partition in SDAccel

5.4.3 Memory partitioning

To increase the memory bandwidth, the physical layout of memories is partitioned using
certain pragmas and attributes. There are three types of memory partitioning in the
tool chain (1) block (2) cyclic and (3)complete.

Arrays are usually implemented as BRAMs. If the entire array is implemented as one
BRAM, then there might be stalls in reading the data which can increase the initiation
interval. Therefore at the cost of extra resources we can partition the array to be
implemented in multiple BRAMs.

In our design, we use a 2D arrays to capture three rows of the image data in the
downsampler. Listing 5.9 shows the process. We partition the rows of the array to obtain
access to all three rows simultaneously.

5.4.4 Optimizing arithmetic computations

Multiplication and division operations can be implemented as simple shift operations to
save resources. Listing 5.10 shows how the multiplication and division operations are
transformed.

A left shift represents multiplication by 2 whereas a right shift represents division
by 2. So to multiply by 3, we just left shift once and add the same pixel again. Such

1 // Normal Convolution kernel 1/8 [1 3 3 1]

2 output = (pixel1 * 1 + (pixel2 + pixel3) * 3 + pixel4 * 1)/8;

3
4 // Optimized

5 output = (pixel1 + ((pixel2 + pixel3) << 1) + pixel2 + pixel3 +

pixel4) >> 3;

Listing 5.10: Arithmetic optimizations

5.4. MRA 51

operations are transformed to signal connections, costing no additional clock cycles.

5.4.5 Implementation

In Section 5.1, the design model of the MRA implementation was elaborated. SDAccel
currently does not support streaming inputs, therefore the data transfer stage was sepa-
rated from the computation stages. The image was transferred to an input stage which
streams it to the compute stage, and the output stage collects the results and transfers
them back to the host.

In the MRA algorithm the data required to compute an output pixel can be captured
in a small memory blocks called linebuffers. Using linebuffers also enables re-use of shared
data resulting in minimal data fetching.

5.4.5.1 Filters

In the downsampler, a 1 × 4 and a 4 × 1 kernel is used for the horizontal and vertical
convolutions respectively. Therefore to start the horizontal convolution, we only need 4
input pixels. To start the first vertical convolution the first “3 rows output pixels” from
the horizontal convolution are needed. Thus a 2D line buffer of 3 rows and 960 columns
is required. Once the first vertical convolution is completed, the output is streamed to
the next stages in the algorithm. One can already see the advantage of using such a small
memory block, rather than buffering the entire image which will increase the latency and
consume more resources.

The upsampler also works in the same pattern capturing the required workset in a
line buffer. Here, only 2 pixels are needed to calculate the required output pixels for
horizontal and vertical convolution. Thus, a linebuffer of 2 rows is sufficient to start
the computations. The filter stages just emulate a convolution process, and perform no
modifications to the input data.

5.4.5.2 C/C++

As part of the Almarvi project [29], fixed-point implementations of the downsampler
and upsampler were developed in C/C++. As discussed previously, since SDAccel also
supports C/C++ kernels, these implementations can be directly used by including the
Xilinx fixed-point library.

The kernels are modelled in a streaming fashion using the dataflow model. It is
important to note that each stream can only have a single producer and consumer. Fig.
5.5 shows the dataflow model generated by SDAccel.

5.4.5.3 OpenCL

Initially the horizontal and vertical convolutions in each filter were designed as separate
OpenCL kernels. On examining the design reports of the generated hardware, it was
found that each OpenCL kernel was connected to the master AXI bus even though
no host intervention was required to transfer data between kernels. Since the number
of OpenCL kernels on a virtex 7 FPGA was limited to 10, this design did not fit the

52 CHAPTER 5. IMPLEMENTATION

hardware. Therefore a different FPGA was chosen, and the filter stages in the middle
were removed to fit the design to hardware. The horizontal and vertical convolutions
were combined in a single kernel.

The reason for performing this experiment is to study the the effort needed to gen-
erate such algorithms using OpenCL as the base language. The C/C++ version breaks
portability when moving to different platforms, but if the design is programmed using
OpenCL, then we can ensure functional portability across different platforms. Since the
algorithm is programmed as separate kernels, the tool allows to add or swap kernels
using the dynamic reconfiguration flow.

Host code modifications

To enable concurrent execution of different kernels, out of order command queues are
started from the host side. Listing 5.11 shows the method to enable out of order command
queue and launch the kernels.

1 // Creating out of order command queue

2 Setall.command_queue = clCreateCommandQueue(Setall.context ,

Setall.device_id , CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE |

CL_QUEUE_PROFILING_ENABLE , &err);

3
4 // Enqueue the kernels in the command queue and launch

5 clEnqueueTask(Setall.command_queue , in, 0, NULL , NULL);

6 clEnqueueTask(Setall.command_queue , out , 0, NULL , NULL);

7 clEnqueueTask(Setall.command_queue , krnl , 0, NULL , NULL);

8 clEnqueueTask(Setall.command_queue , krnl2 , 0, NULL , NULL);

9 clEnqueueTask(Setall.command_queue , krnl3 , 0, NULL , NULL);

10 clEnqueueTask(Setall.command_queue , krnl4 , 0, NULL , NULL);

11 clFinish(Setall.command_queue);

Listing 5.11: Command queues

5.4. MRA 53

Figure 5.5: Dataflow view generated by SDAccel

54 CHAPTER 5. IMPLEMENTATION

Results 6
This chapter presents the results of the implementations described in Chapter 5. The
evaluation methodology is described first, followed by comparisons and analysis of results.

6.1 Evaluation methodology

The CPU, GPU and FPGA devices used in this research are listed in Table 6.1. The
final MRA OpenCL implementation is emulated on a different FPGA device for reasons
stated in Section 5.4. For the latency estimates, the OpenCL kernels were pre-compiled
and the offline compilation flow was used for CPU and GPU.

CPU GPU FPGA FPGA (OpenCL)

Name Intel Core
i7-6820HQ

Intel HD
Graphics 530

Virtex 7
XC7VX690T

Kintex
KU060

Features
2.70 GHz
4 cores

8 Threads

1150 MHz
24 EU

7 threads per EU

200MHz
2940 BRAMs

3600 DSP slices
866400 FF
433200 LUT

200MHz
2160 BRAMs

2760 DSP slices
663360 FF
331680 LUT

Table 6.1: Device details

To analyze the portability challenges, a naive Sobel filter is run on all three target
platforms (CPU, GPU, and FPGA) and a Sobel filter optimized for FPGA is executed
on CPU and GPU. To test the functional portability of the SDAccel tool, a Gaussian
filter is optimized on GPU and run on FPGA using the SDAccel tool.

The Halide-SDAccel Sobel and Gaussian implementations are compared with Vivado-
HLS OpenCV implementations. The results of the MRA implementation with SDAccel
tool are detailed and analyzed.

6.2 Portability

The first comparison analyzes the portability of the SDAccel tool. Table 6.2 shows the
performance obtained on different platforms for the naive and optimized Sobel imple-
mentations. In Section 5.2, we discussed the implementation of two versions of the Sobel
filter on the SDAccel framework. Table 6.3 shows the resource utilizations on FPGA for
the different Sobel implementations.

55

56 CHAPTER 6. RESULTS

Sobel Filter - 960× 960

Application CPU GPU FPGA
(Virtex 7)

Naive 0.65 ms 0.68 ms 319 ms

Optimized for FPGA 4.8 ms 300 ms 1.4 ms

Table 6.2: Sobel Filter - Latency Estimates

Image
Size

960 x 960

Target
Frequency

200 MHz

Application
Resource Utilization Performance

BRAM DSP FF LUT Latency
Val % Val % Val % Val %

Sobel
Filter
Naive

2 0.06 0 0 3183 0.36 3897 0.89 319 ms

Sobel
Filter
pipeline

35 1.1 0 0 2425 0.27 2914 0.6 190 ms

Sobel
Filter
Multiple
CU (5)

93 3.1 0 0 7014 0.8 20364 4.7 300 ms

Sobel
Filter
Opti-
mized

10 0.34 0 0 1772 0.20 2339 0.53 1.4 ms

Table 6.3: Sobel Filter - Resource utilization

Table 6.2 shows that the naive Sobel implementation performs sub-optimal on FPGA
whereas the optimized version on FPGA performs sub-optimal on CPU and GPU. The
reasons for obtaining those numbers are detailed below.

6.2.1 Parallelism

GPUs contain multiple processing elements that perform the same operation on different
data (SIMD model). FPGAs on the other hand use pipelines to perform concurrent
processing (different instructions execute different work-items concurrently). Fig. 6.1
illustrates this process for the Sobel implementation. On GPUs, the individual work-
items of the Sobel filter are mapped to compute-units (cores) for parallel processing. On
FPGA, the naive Sobel kernel is transformed into for loops based on the work-group
size and implemented as one single compute unit. To calculate each output pixel, the

6.2. PORTABILITY 57

kernel sequentially accesses the off-chip global memory which becomes a bottleneck to
the entire design. Also, several redundant computations are performed since every pixel
is computed from the source. This leads to subpar latency estimates on FPGA.

Figure 6.1: Mapping of OpenCL on GPU and FPGA

Fig. 6.2 illustrates the resource usage and latencies of the different Sobel implemen-
tations on FPGA. In the Sobel pipelined implementation, the input and computation
stages are explicitly pipelined using OpenCL attributes. A 1.7x speedup is obtained over
the naive implementation due to concurrent processing of work-items, but the BRAM
usage has increased due to caching the image data in the local memory.

Next, five compute units were instantiated on the FPGA to process workgroups
concurrently. The resource usage is considerably increased due to additional hardware
required to process multiple workgroups. The latency estimates are higher compared to
the pipelined version, due to the overhead of creating multiple workgroups, and sequential
accesses from the global memory (due to limited I/O ports) for all the compute units.
Also, SDAccel only allows a maximum of 16 kernels on a FPGA, including memory ports.
Hence arbitrarily instantiating multiple compute units on the device is not advisable.

The optimized Sobel version on FPGA uses workgroup size of (1,1,1). Line buffers
(implemented in BRAMs) are used to capture the working set (pixels are shifted every
clock cycle and old values are reused) exploiting pipeline parallelism on FPGA. However,
on CPUs and GPUs, this means that all the computations are serialized resulting in low
arithmetic intensity (Number of FLOPs/byte). The optimized Sobel implementation on
FPGA is particularly bad for GPUs, since only a single thread is started resulting in
sub-optimal usage of the multiple cores on GPUs.

58 CHAPTER 6. RESULTS

Sobel
Naive
L 319 ms

Sobel
Pipeline
L 190 ms

Sobel
5 CU
L 300 ms

Sobel
Optimized
L 1.4 ms

0

1

2

3

4

5

6

0
.
1

1
.
1

3
.
1

0.
3
4

0 0 0 0

0.
3
6

0.
2
7 0.

8

0
.
2

0.
8
9

0
.
6

4.
7

0.
5
3

R
es
o
u
rc
e
u
ti
li
za
ti
o
n
[%

]
BRAM DSP FF LUT

Figure 6.2: Sobel-SDAccel

6.2.2 Branching

On GPUs branching becomes a costly operation. Since all the work-items on the GPU
must correctly execute the data path, masking operations are used to enable or disable
each work-item based on the evaluated condition. In case of Sobel implementation, if
the border cases were handled using conditional statements, then for a 960 × 960 the
entire input image has to assessed in these statements. However, only 4000 pixels (on the
border) needs to be evaluated. To overcome this challenge, the min and max functions
are used to duplicate the edge pixels. But, complex applications with more branches
become a bottleneck on GPUs. On FPGAs, since dedicated hardware units are available
on the code-path all the branch conditions can be executed concurrently.

6.2.3 Gaussian

Table 6.4 shows the latency estimates for the Gaussian filter. The optimized Gaussian
filter for GPU, achieved a 6x speedup compared to the naive implementation. The
arguments presented for the Sobel filter is applicable for the performance differences in
the naive implementation of the Gaussian filter.

The SDAccel tool was not able to generate the hardware design for the optimized
Gaussian filter. The optimized version used convert T() OpenCL functions to convert the
datatypes to float. It turned out that these functions are not implemented in the current
version of the SDAccel framework. The convert functions could have been manually
implemented on SDAccel, but a fundamental difference needs to be noted here. On
FPGAs, floating point operations are not advisable since they are expensive in terms of
area and power. An alternative is to use fixed-point datatypes which are not a good fit for

6.3. HALIDE-HLS 59

GPUs. Therefore, performance portability cannot be guaranteed even if these functions
are implemented for SDAccel. Moreover, multiple accesses to the global memory are
detrimental to FPGA designs.

Implementing an optimized Gaussian filter on FPGA will suffer from the same lim-
itations as the optimized Sobel implementation discussed previously. Therefore, these
designs were not explored further.

A couple of observations based on the Gaussian implementation are summarized
below.

• Floating point operations

– On GPUs, floating point computations are accelerated. It was observed that
there were some differences in the floating point outputs of CPUs and GPUs.
The reason for such minute differences could be the way floating point calcu-
lations are implemented on a particular architecture. E.g. a multiply and add
operation “((A×B)+C)” can be calculated in two ways (1) round((A×B)+C)
or (2) round(round(A×B) +C) leading to small difference in output values
[39].

On the other hand, it is preferred to use fixed-point arithmetic on FPGAs.
Thus there is a fundamental difference in optimizing for these architecures.

• Data transfers

– The common characteristic we can deduce for the three platforms is the data
transfer optimization. Using map/unmap functions (on SoC platforms) can
potentially achieve zero-copy data transfer. Moreover, for the SDAccel en-
vironment using vector datatypes for data transfer can potentially saturate
the AXI-bus alleviating data transfer bottlenecks (char16 can receive 128 bits
packed in one variable).

Gaussian Filter - 960× 960

Application CPU GPU FPGA
(Virtex 7)

Naive 0.52 ms 0.63 ms 327 ms

Optimized for GPU 0.57 ms 0.10 ms N/A

Table 6.4: Gaussian Filter - Latency Estimates

6.3 Halide-HLS

The Halide-HLS to SDAccel implementation is compared with the original implemen-
tation on Vivado HLS tool. Table 6.5 shows the latency and resource utilization on
FPGA for the Sobel filter. The increase in BRAM utilization for the SDAccel version
is due to the addition of data-transfer stages to provide isolation from the computation

60 CHAPTER 6. RESULTS

stages. Moreover, FIFO channels are implemented in the SDAccel version to stream data
from the data-transfer stages to the computation stage resulting in additional resource
usage compared to the Vivado implementation. To provide an estimate with the Xilinx
optimized libraries, the OpenCV HLS optimized Sobel implementation is utilized. It is
to be noted that the standard OpenCV HLS implementation uses fixed-point datatypes
whereas the other implementations use integers. Xilinx OpenCV implementations might
internally use optimized math functions resulting in DSP usage. Fig. 6.3 illustrates the
resource utilization and latency estimates for the Sobel filter.

Table 6.6 shows the latency and resource utilization on FPGA for the Gaussian filter.
The same trend as Sobel filter for the resource utilization and latency can be seen here
as well. The reason for the increase in BRAM usage for the OpenCV implementation is
because these libraries do not use the optimum sizes for line buffers. Fig. 6.4 illustrates
the resource utilization and latency estimates for the Gaussian filter.

Based on these comparisons we can conclude that the Halide-SDAccel filter imple-
mentations are comparable to standard designs in terms of performance and resource
utilization.

Image
Size

960 x 960

Target
Frequency

200 MHz

Application
Resource Utilization Performance

BRAM DSP FF LUT Latency [clks]
Val % Val % Val % Val %

Sobel
Halide
Vivado

4 0.14 0 0 1240 0.13 2395 0.55 928331

Sobel
HLS
OpenCV

3 0.1 17 0.47 2103 0.24 3164 0.73 932173

Sobel
Halide
SDAccel

6 0.2 0 0 2476 0.28 3686 0.85 929302

Table 6.5: Resource utilization on FPGA - Sobel

6.3. HALIDE-HLS 61

Image
Size

960 x 960

Target
Frequency

200 MHz

Application
Resource Utilization Performance

BRAM DSP FF LUT Latency [clks]
Val % Val % Val % Val %

Gaussian
Halide
Vivado

4 0.14 0 0 1240 0.1 2395 0.32 928331

Gaussian
HLS
OpenCV

6 0.2 8 0.22 1150 0.13 1480 0.34 932184

Gaussian
Halide
SDAccel

6 0.2 0 0 2042 0.23 2836 0.65 929302

Table 6.6: Resource utilization on FPGA - Gaussian

Sobel Halide
Vivado
L 928331
II 1

Sobel
HLS OpenCV
L 932173
II 1

Sobel Halide
SDAccel
L 929302
II 1

0

0.5

1

1.5

2

0.
1
4

0.
1 0.
2

0

0.
47

0

0
.
13 0.

2
4

0.
2
8

0
.
55

0
.
73 0.

85

R
es
ou

rc
e
u
ti
li
za
ti
on

[%
]

BRAM DSP FF LUT

Figure 6.3: Sobel on FPGA

62 CHAPTER 6. RESULTS

Gaussian Halide
Vivado
L 928331
II 1

Gaussian
HLS OpenCV
L 932173
II 1

Gaussian Halide
SDAccel
L 929302
II 1

0

0.5

1

1.5

2

0.
1
4

0.
2

0.
2

0

0.
2
2

0

0
.
1

0.
13 0.
2
30
.
3
2

0
.
3
4

0.
6
5

R
es
o
u
rc
e
u
ti
li
za
ti
o
n
[%

]
BRAM DSP FF LUT

Figure 6.4: Gaussian on FPGA

6.4 MRA

This section details the results obtained for the C/C++ and OpenCL version of the
MRA algorithm.

SDAccel was able to successfully synthesize the multi-resolution algorithm. Table 6.7
shows the resource utilization and latency values obtained for individual functions.

The downsampler, upsampler and filter stages use linebuffers that are implemented
in BRAMs. The subtract and adder blocks directly process the pixels (no buffers) and
achieve an II of 1 which means that they can process a pixel every clock cycle. Therefore,
if the time taken to calculate the address and get an input pixel is 2 cycles, then for a
pipelined block, the latency is ((960×960)+2) which is 921603 as obtained in the Table
6.7. The II achieved for each internal loop in a block is indicated in Fig. 5.5 (previous
chapter). Even though individual blocks achieve an II of one, the II of the whole design
is determined by the highest II which in this case is two. Therefore this design can
produce an output pixel every two clock cycles.

The operating frequency of our FPGA is 200 MHz. If the design can output a pixel
every two cycles, then we can process 100 million pixels every second resulting in a
throughput of 108 frames/second. The design reports in SDAccel show that the total
kernel computation time is 9.434 ms which is approximately 106 frames/second. It has
to be noted that the computation time only includes the kernel computation time and
does not detail the data transfer times. For streaming applications (data is received
pixel by pixel), the data transfer rates become a bottleneck for the entire design in the
current version of SDAccel. A recommendation to allow streaming inputs (without host
intervention) has been requested to Xilinx to include in future releases of SDAccel. Note

6.4. MRA 63

that for the whole design the resource utilization has increased considerably due to the
implementation of FIFO buffers for streaming data from one block to the next.

Image
Size

960 x 960

Target
Frequency

200 MHz

Application
Resource Utilization Performance

BRAM DSP FF LUT Latency [clks]
Val % Val % Val % Val %

Down
sampler
960× 960

4 0.13 0 0 2664 0.3 4075 0.9 927364

Down
sampler
480× 480

4 0.13 0 0 2687 0.3 4161 0.9 233284

Upsampler
480× 480

6 0.2 0 0 1383 0.15 2721 0.6 928314

Upsampler
240× 240

6 0.2 0 0 1360 0.15 2692 0.6 233754

Subtract
960× 960

0 0 0 0 65 0.007 191 0.04 921603

Subtract
480× 480

0 0 0 0 63 0.007 187 0.04 230403

Reconstruction

Upsampler
240× 240

6 0.2 0 0 1360 0.15 2692 0.6 233754

Upsampler
480× 480

6 0.2 0 0 1383 0.15 2721 0.6 928314

Adder
480× 480

0 0 0 0 63 0.007 218 0.05 230403

Adder
960× 960

0 0 0 0 62 0.007 220 0.05 921603

Filters

Filter
960× 960

8 0.2 0 0 308 0.03 485 0.1 1843207

Filter
480× 480

4 0.13 0 0 302 0.03 475 0.1 460807

Filter
240× 240

2 0.06 0 0 296 0.03 463 0.1 115207

Complete (including input and output stages)

MRA 1168 39.7 0 0 21936 2.5 63024 14.5 4605199

Table 6.7: MRA C version - Resource utilization and Latency

64 CHAPTER 6. RESULTS

OpenCL

Table 6.8 shows the results for the OpenCL version. The latency estimates are similar
to the C/C++ version. The same arguments put forth in the previous section can be
extended for the OpenCL version. Since hardware emulation is a detailed simulation, the
input dataset was reduced to a 32× 32 image. The results obtained can be extrapolated
to bigger images as it has been proven using the C version of the MRA algorithm. A
few insights can be gained with the obtained results.

In the OpenCL implementation, pipe objects are used to stream data from one kernel
to another. On FPGAs, pipes can be used to generate on-chip buffers for fast data
accesses. However on GPUs, buffers are implemented in the global memory which can
become a bottleneck to the design. But, modern GPUs are being designed to exploit
concurrent kernel execution using pipes which may ensure portability among different
platforms.

Fig. 6.5 shows the timeline trace for the OpenCL and C versions. In the OpenCL
implementation, multiple kernels are started and execute concurrently. Each kernel
requires some time to setup and start execution, hence we can see some delay in the
start times. In the C implementation, only one kernel is executed since the design in
modelled as multiple functions in a dataflow structure.

In the OpenCL implementations, there is also an additional overhead of creating AXI
interfaces for all the kernels. Therefore, using pipes in the current version of SDAccel is
not advisable for such an algorithm.

(a) OpenCL

(b) C

Figure 6.5: Timeline trace results

6.4. MRA 65

Image
Size

32 x 32

Target
Frequency

200 MHz

Application
Resource Utilization Performance

BRAM DSP FF LUT Latency [clks]
Val % Val % Val % Val %

Down
sampler
32× 32

4 0.1 0 0 3240 0.4 3942 1.1 1202

Down
sampler
16× 16

4 0.1 0 0 3149 0.4 3720 1.1 364

Upsampler
16× 16

6 0.2 0 0 1273 0.1 2077 0.6 1181

Upsampler
8× 8

6 0.2 0 0 1256 0.1 2054 0.6 333

Subtract
32× 32

0 0 0 0 336 0.05 564 0.1 1026

Subtract
16× 16

0 0 0 0 334 0.05 559 0.1 258

Reconstruction

Upsampler
8× 8

6 0.2 0 0 1256 0.1 2054 0.6 333

Upsampler
16× 16

6 0.2 0 0 1273 0.1 2077 0.6 1181

Adder
32× 32

0 0 0 0 336 0.05 564 0.1 1026

Adder
16× 16

0 0 0 0 334 0.05 559 0.1 258

Table 6.8: MRA OpenCL version - Resource utilization and Latency

66 CHAPTER 6. RESULTS

Discussion 7
In Chapter 1 the problem statement and goals for this project were defined. The extent
to which these goals have been addressed and a summary of the performed work is
detailed in this chapter.

7.1 Summary

In Chapter 6, different comparisons were made to evaluate the proposed workflows. First,
the portability challenges of the SDAccel workflow were assessed. Second, the method
to generate hardware using Halide and SDAccel was evaluated. Third, the applicability
of the SDAccel tool for the multi-resolution algorithms was analyzed. In Section 3.7
we mentioned a previous study conducted in Philips that evaluated the Vivado-HLS
tool for reducing the development time of FPGAs. The comparison between the various
approches is summarized in Table 7.1. The feature to enable streaming inputs has been
proposed to Xilinx for the future releases of SDAccel.

One important challenge in SDAccel is optimizing the data transfers between the
host and the device. In all our designs, we isolated the computation stage from the data
transfer stages to emulate streaming designs. The reason for performing this isolation
is to allow easy integration for future releases of SDAccel (maybe allowing streaming
inputs), by just modifying the data transfer stages.

7.2 Research question re-visited

In Chapter 1 we had introduced the following research question:
“Is it possible to generate hardware structures on FPGAs for image-
processing algorithms, resulting in ease of development for programmers and
ensuring portability among CPUs and GPUs?”

We will discuss this research question based on the requirements we had identified
for the solution workflows, which are reproduced below:

• Requirement 1 : A workflow in terms of tools and strategies needs to be developed.
The output must be similar to the original working solution

• Requirement 2 : The algorithm must be implemented once, and ideally be able to
execute correctly on different accelerators with acceptable latency and throughput
requirements. Since the domain is medical image processing, any changes to the
algorithm itself might lead to undesirable outcomes.

• Requirement 3 : The workflow needs to ensure that complex hardware challenges
are abstracted from the programmer and result in an easier development cycle.

67

68 CHAPTER 7. DISCUSSION

7.2.1 Requirement 1

A workflow using existing tools and strategies was proposed and evaluated in this study.
Open Computing Language (OpenCL) and Halide languages were used to obtain portable
image processing implementations. The outputs were compared with existing solutions
to verify the correctness of the implementations.

7.2.2 Requirement 2

Imaging filters were implemented once and executed on all three platforms. Even though
functional portability was ensured, the performance decayed when moving to other plat-
forms while using SDAccel. The reasons for the performance degradation were analyzed
and explained.

In the Halide-SDAccel workflow, both functional and performance portability were
ensured with minimal code changes because of the combination of architectural knowl-
edge and domain specific knowledge in the Halide-HLS framework.

Concerning the Philips use-case, the Multi Resolution Analysis (MRA) algorithm
was successfully implemented in SDAccel.

In the Halide-SDAccel workflow, the current version of the Halide-HLS framework
does not support generation of HLS-C code for the MRA algorithm, since the compiler
cannot generate buffers with proper configuration at each level of the MRA algorithm.
Therefore, we have partially addressed requirement 2 with certain limitations in both
the workflows.

7.2.3 Requirement 3

In SDAccel to obtain optimal performance, the programmer has to have knowledge
of the underlying architecture, but with Halide-SDAccel workflow these challenges were
completely abstracted from the application programmer. Concerning the MRA algorithm
the integration to the final hardware was performed at a faster pace than using the Vivado
workflow.

Hence, portable image processing implementations can be implemented using the
proposed workflows. These workflows are extendable to other compute platforms since
we use OpenCL and Halide as the base language. These implementations are also easy
to maintain due to fast debug and testing process.

7.2. RESEARCH QUESTION RE-VISITED 69

Parame-
ters

Vivado-
HLS

SDAccel Halide-SDAccel

Functional
portability

No

• Partial

• Several OpenCL func-
tions not supported in
the current framework

Yes

Performance
portability

No No

• Yes

• Change the schedule

• Algorithm untouched

Applicability
(MRA

implementa-
tion)

Yes Yes

• No

• Cannot generate differ-
ent configurations for
memory blocks on dif-
ferent levels

Streaming
inputs

Yes

• No

• Use pipes on device or
dataflow model within
kernels

• No

• Feature not available
in the current SDAccel
version

Ease of
development

Hardware
knowledge
required • Hardware knowledge

required

• Optimized code is sim-
ilar for OpenCL and
C/C++ versions

• Vector operations sim-
plified in OpenCL

• No hardware knowl-
edge required

• Scheduling can be done
by architecture expert

Development
and support

+++ +++ +++

Table 7.1: Frameworks summary

70 CHAPTER 7. DISCUSSION

Conclusion 8
In the computing world, there exist a plethora of different devices like CPUs, GPUs and
FPGAs. Each computing platform poses its own set of challenges that the programmer
has to identify to obtain optimal performances. This results in a need to redevelop and
retest the same algorithm, increasing the development time and maintenance costs.

In this work, Field Programmable Gate Arrays (FPGAs) are identified as a potential
platform to address the Life Cycle Management (LCM) challenge. Due to differences in
the programming models, the development process on FPGAs is more challenging than
other platforms. To ease the development process and maintain portability OpenCL and
Halide were chosen as the base programming languages. To synthesize the designs on
FPGA, the SDAccel framework was chosen.

This thesis shows that the SDAccel tool does not guarantee performance portability
but the design time for FPGAs can be considerably reduced compared to creating a
manual RTL design. SDAccel framework can be used to generate streaming designs
to adhere to real-time constraints. A proof of concept was shown by implementing a
multi-resolution algorithm that is functionally correct, easily maintainable and offers
comparable performances to manually created RTL models. FPGAs are a good fit for
streaming models compared to CPUs or GPUs due to the capability to generate on-
chip memory buffers allowing fast accesses to data, and enabling concurrent execution of
kernels. They are also extendable in the sense that, as long as resources are available on
FPGA, new designs can be added for better functionality. We also produced a workflow
using Halide and SDAccel which was shown to produce comparable performances to
the standard Xilinx HLS OpenCV library. Using Halide as the base specification offers
higher levels of abstraction while maintaining performance portability since the schedule
can be tuned to specific target platforms. Moreover, since the SDAccel programming
flow uses partial reconfiguration capabilities, kernels can be swapped during run-time
providing additional advantages to the programmer.

Hence, this study proposes the SDAccel and Halide-HLS framework to ease the de-
velopment process on FPGAs while maintaining portability to other compute platforms.
Several limitations were identified in both the workflows, but since the frameworks are
extendable, they can be addressed in future versions.

During this research, several improvement areas were identified that can be addressed
in future research work:

Halide-OpenCL-SDAccel

The current work uses the Halide-HLS C framework to generate hardware designs.
A workflow that automatically generates Halide-HLS OpenCL code can be explored
to further reduce the design time. Such a workflow could allow a larger design space
exploration by allowing the user to vary work-group sizes.

71

72 CHAPTER 8. CONCLUSION

The current version of Halide generates OpenCL code for GPUs. This code can be
analyzed to check the applicability to the SDAccel tool. Thereafter, a model similar to
the Halide-HLS C framework can be explored to generate optimized OpenCL code.

Halide-HLS MRA
The current Halide-HLS framework does not support the generation of multi-

resolution algorithms. These algorithms require a different configuration of memory
blocks for each level. Extending the framework to support such use-cases can improve
the applicability of the framework.

SDAccel-streaming inputs
FPGAs are capable of generating streaming models to obtain high-performance solu-

tions. In the current work, pipes are used to stream data between kernels, but SDAccel
does not allow streaming data directly from the I/O interfaces. Therefore, data transfer
between the host and the device becomes a bottleneck to the entire design. Providing ca-
pabilities to stream input directly from I/O interfaces results in performance and power
efficiency gains.

SDAccel-pipes
SDAccel allows only 16 kernels to be generated on the FPGA. In streaming designs,

the computing kernels are not required to interact with the host. Hence, the tool can be
modified to identify such use-cases resulting in improved functionality.

The SDAccel tool is still in its early stages. The above recommendations for SDAccel
were provided to Xilinx to implement in future releases

Bibliography

[1] Philips, “Our heritage - Company - About — Philips.” [Online]. Available:
http://www.philips.com/a-w/about/company/our-heritage.html

[2] Almarvi, “Almarvi.” [Online]. Available: http://www.almarvi.eu/

[3] “D3 . 2 Automatic Generation of Hardware Accelerators and Configurations [con-
fidential],” pp. 1–32, 2016.

[4] H. Fu, “Accelerating Scientific Computing Through GPUs and FPGAs.” [Online].
Available: http://cees.stanford.edu/docs/CEESWorkshop8-HFu.pdf

[5] J. L. Hennessy, D. A. Patterson, and A. C. Arpaci-Dusseau, Computer
architecture : a quantitative approach. Elsevier/Morgan Kaufmann Publishers,
2007. [Online]. Available: https://books.google.co.uk/books/about/Computer{ }
Architecture.html?id=pqYl3SWkA64C{&}redir{ }esc=y

[6] “Understanding FPGA Architecture.” [Online]. Available: https:
//www.xilinx.com/html{ }docs/xilinx2017{ }1/sdaccel{ }doc/topics/devices/
con-fpga-architecture.html

[7] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A Performance and Energy
Comparison of FPGAs, GPUs, and Multicores for Sliding-Window Applications.”
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
407.5162{&}rep=rep1{&}type=pdf

[8] “WHITE PAPER GPU vs FPGA Performance Comparison,” 2016. [Online].
Available: http://www.bertendsp.com/pdf/whitepaper/BWP001{ }GPU{ }vs{ }
FPGA{ }Performance{ }Comparison{ }v1.0.pdf

[9] J. Hestness, S. W. Keckler, and D. A. Wood, “A Comparative Analysis
of Microarchitecture Effects on CPU and GPU Memory System Behavior.”
[Online]. Available: https://www.cs.utexas.edu/users/skeckler/pubs/IISWC{ }
2014{ }Characterization.pdf

[10] F. Plavec, Z. Vranesic, and S. Brown, “Towards compilation of streaming
programs into FPGA hardware,” in 2008 Forum on Specification, Verification
and Design Languages. IEEE, sep 2008, pp. 67–72. [Online]. Available:
http://ieeexplore.ieee.org/document/4641423/

[11] A. Rosenfeld, Ed., Multiresolution Image Processing and Analysis, ser.
Springer Series in Information Sciences. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1984, vol. 12. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-51590-3

73

http://www.philips.com/a-w/about/company/our-heritage.html
http://www.almarvi.eu/
http://cees.stanford.edu/docs/CEESWorkshop8-HFu.pdf
https://books.google.co.uk/books/about/Computer{_}Architecture.html?id=pqYl3SWkA64C{&}redir{_}esc=y
https://books.google.co.uk/books/about/Computer{_}Architecture.html?id=pqYl3SWkA64C{&}redir{_}esc=y
https://www.xilinx.com/html{_}docs/xilinx2017{_}1/sdaccel{_}doc/topics/devices/con-fpga-architecture.html
https://www.xilinx.com/html{_}docs/xilinx2017{_}1/sdaccel{_}doc/topics/devices/con-fpga-architecture.html
https://www.xilinx.com/html{_}docs/xilinx2017{_}1/sdaccel{_}doc/topics/devices/con-fpga-architecture.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.5162{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.5162{&}rep=rep1{&}type=pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001{_}GPU{_}vs{_}FPGA{_}Performance{_}Comparison{_}v1.0.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001{_}GPU{_}vs{_}FPGA{_}Performance{_}Comparison{_}v1.0.pdf
https://www.cs.utexas.edu/users/skeckler/pubs/IISWC{_}2014{_}Characterization.pdf
https://www.cs.utexas.edu/users/skeckler/pubs/IISWC{_}2014{_}Characterization.pdf
http://ieeexplore.ieee.org/document/4641423/
http://link.springer.com/10.1007/978-3-642-51590-3
http://link.springer.com/10.1007/978-3-642-51590-3

74 BIBLIOGRAPHY

[12] D. Koch, F. Hannig, and D. Ziener, FPGAs for Soft-
ware Programmers, 2016. [Online]. Available: http://www.amazon.com/
FPGAs-Software-Programmers-Dirk-Koch/dp/3319264060/

[13] A. Momeni, H. Tabkhi, Y. Ukidave, G. Schirner, and D. Kaeli, “Exploring the
Efficiency of the OpenCL Pipe Semantic on an FPGA,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 4, pp. 52–57, apr 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2927964.2927974

[14] S. Edwards, “The Challenges of Hardware Synthesis from C-Like Languages,” in
Design, Automation and Test in Europe. IEEE, pp. 66–67. [Online]. Available:
http://ieeexplore.ieee.org/document/1395531/

[15] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: a high-level
synthesis framework for applying parallelizing compiler transformations,” in 16th
International Conference on VLSI Design, 2003. Proceedings. IEEE Comput. Soc,
pp. 461–466. [Online]. Available: http://ieeexplore.ieee.org/document/1183177/

[16] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp,” in Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays - FPGA ’11.
New York, New York, USA: ACM Press, 2011, p. 33. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1950413.1950423

[17] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and Future,” IEEE
Design & Test of Computers, vol. 26, no. 4, pp. 18–25, jul 2009. [Online]. Available:
http://ieeexplore.ieee.org/document/5209959/

[18] T. V. Court and M. C. Herbordt, “Requirements for any HPC/FPGA Application
Development Tool Flow (that gets more than a small fraction of potential perfor-
mance) *.”

[19] “Intel R© FPGA SDK for OpenCL Programming Guide Last updated
for Intel R© Quartus R© Prime Design Suite: 17.0,” 2017. [Online].
Available: https://www.altera.com/en{ }US/pdfs/literature/hb/opencl-sdk/aocl{
}programming{ }guide.pdf

[20] “With SDAccel, Xilinx Embraces OpenCL — Berkeley Design Technology, Inc.”
[Online]. Available: https://www.bdti.com/InsideDSP/2015/01/22/Xilinx

[21] Xilinx and Inc, “Xilinx Introduction to FPGA Design with Vivado High-
Level Synthesis (UG998).” [Online]. Available: https://www.xilinx.com/support/
documentation/sw{ }manuals/ug998-vivado-intro-fpga-design-hls.pdf

[22] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and F. Durand,
“Decoupling Algorithms from Schedules for Easy Optimization of Image Processing
Pipelines.” [Online]. Available: http://people.csail.mit.edu/jrk/halide12/halide12.
pdf

http://www.amazon.com/FPGAs-Software-Programmers-Dirk-Koch/dp/3319264060/
http://www.amazon.com/FPGAs-Software-Programmers-Dirk-Koch/dp/3319264060/
http://dl.acm.org/citation.cfm?doid=2927964.2927974
http://ieeexplore.ieee.org/document/1395531/
http://ieeexplore.ieee.org/document/1183177/
http://portal.acm.org/citation.cfm?doid=1950413.1950423
http://ieeexplore.ieee.org/document/5209959/
https://www.altera.com/en{_}US/pdfs/literature/hb/opencl-sdk/aocl{_}programming{_}guide.pdf
https://www.altera.com/en{_}US/pdfs/literature/hb/opencl-sdk/aocl{_}programming{_}guide.pdf
https://www.bdti.com/InsideDSP/2015/01/22/Xilinx
https://www.xilinx.com/support/documentation/sw{_}manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw{_}manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://people.csail.mit.edu/jrk/halide12/halide12.pdf
http://people.csail.mit.edu/jrk/halide12/halide12.pdf

BIBLIOGRAPHY 75

[23] D. R. Kaeli, Heterogeneous computing with OpenCL 2.0. [Online]. Available:
http://www.sciencedirect.com.tudelft.idm.oclc.org/science/book/9780128014141

[24] “Halide.” [Online]. Available: http://halide-lang.org/

[25] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz,
“Programming Heterogeneous Systems from an Image Processing DSL,” oct 2016.
[Online]. Available: http://arxiv.org/abs/1610.09405

[26] F. Plavec and Franjo, Stream computing on FPGAs. University of Toronto, 2010.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2231435

[27] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru
Zhang, “High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, apr 2011. [Online]. Available:
http://ieeexplore.ieee.org/document/5737854/

[28] D. Chen and D. Singh, “Using OpenCL to evaluate the efficiency of CPUS, GPUS
and FPGAS for information filtering,” in 22nd International Conference on Field
Programmable Logic and Applications (FPL). IEEE, aug 2012, pp. 5–12. [Online].
Available: http://ieeexplore.ieee.org/document/6339171/

[29] S. P. Metman, “MSc THESIS Software To Hardware : Alternatives For Reducing
Design Time Of Optimized FPGA Implementations In Medical Devices [Confiden-
tial],” Tech. Rep., 2016.

[30] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A DSL Compiler for
Accelerating Image Processing Pipelines on FPGAs,” in Proceedings of the 2016
International Conference on Parallel Architectures and Compilation - PACT ’16.
New York, New York, USA: ACM Press, 2016, pp. 327–338. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2967938.2967969

[31] “SDaccel Release Notes and Supported Hardware.” [Online]. Avail-
able: https://www.xilinx.com/html{ }docs/xilinx2017{ }1/sdaccel{ }doc/topics/
introduction/concept-supported-boards-release-notes.html

[32] Xilinx and Inc, “SDAccel Environment Optimization Guide (UG1207),”
2017. [Online]. Available: https://www.xilinx.com/support/documentation/sw{ }
manuals/xilinx2017{ }2/ug1207-sdaccel-optimization-guide.pdf

[33] A. Corporation, “Altera SDK for OpenCL Best Practices Guide.” [Online].
Available: https://www.altera.com/en{ }US/pdfs/literature/hb/opencl-sdk/aocl{
}optimization{ }guide.pdf

[34] “Gen9 - Microarchitectures - Intel - WikiChip.” [Online]. Available: https:
//en.wikichip.org/wiki/intel/microarchitectures/gen9{#}Performance

http://www.sciencedirect.com.tudelft.idm.oclc.org/science/book/9780128014141
http://halide-lang.org/
http://arxiv.org/abs/1610.09405
http://dl.acm.org/citation.cfm?id=2231435
http://ieeexplore.ieee.org/document/5737854/
http://ieeexplore.ieee.org/document/6339171/
http://dl.acm.org/citation.cfm?doid=2967938.2967969
https://www.xilinx.com/html{_}docs/xilinx2017{_}1/sdaccel{_}doc/topics/introduction/concept-supported-boards-release-notes.html
https://www.xilinx.com/html{_}docs/xilinx2017{_}1/sdaccel{_}doc/topics/introduction/concept-supported-boards-release-notes.html
https://www.xilinx.com/support/documentation/sw{_}manuals/xilinx2017{_}2/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw{_}manuals/xilinx2017{_}2/ug1207-sdaccel-optimization-guide.pdf
https://www.altera.com/en{_}US/pdfs/literature/hb/opencl-sdk/aocl{_}optimization{_}guide.pdf
https://www.altera.com/en{_}US/pdfs/literature/hb/opencl-sdk/aocl{_}optimization{_}guide.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/gen9{#}Performance
https://en.wikichip.org/wiki/intel/microarchitectures/gen9{#}Performance

76 BIBLIOGRAPHY

[35] “The Compute Architecture of Intel R© Proces-
sor Graphics Gen9 External Revision History.” [On-
line]. Available: https://software.intel.com/sites/default/files/managed/c5/9a/
The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

[36] “Using Optimized Built-in Math Functions from HLS MATH Library.” [Online].
Available: https://www.xilinx.com/html{ }docs/xilinx2017{ }1/sdaccel{ }doc/
topics/design-flows/concept-optimized-built-in-math-functions.html?hl=hls{%}
2Clibrary

[37] Xilinx and Inc, “Vivado Design Suite User Guide: High-Level Synthesis (UG902),”
2014. [Online]. Available: https://www.xilinx.com/support/documentation/sw{ }
manuals/xilinx2014{ }1/ug902-vivado-high-level-synthesis.pdf

[38] “Optimizing OpenCL Usage with Intel R© Processor Graphics — Intel R© Software.”
[Online]. Available: https://software.intel.com/en-us/node/540440

[39] N. Whitehead and A. Fit-Florea, “Precision & Performance: Floating Point and
IEEE 754 Compliance for NVIDIA GPUs.” [Online]. Available: https://developer.
download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf
https://www.xilinx.com/html{_}docs/xilinx2017{_}1/sdaccel{_}doc/topics/design-flows/concept-optimized-built-in-math-functions.html?hl=hls{%}2Clibrary
https://www.xilinx.com/html{_}docs/xilinx2017{_}1/sdaccel{_}doc/topics/design-flows/concept-optimized-built-in-math-functions.html?hl=hls{%}2Clibrary
https://www.xilinx.com/html{_}docs/xilinx2017{_}1/sdaccel{_}doc/topics/design-flows/concept-optimized-built-in-math-functions.html?hl=hls{%}2Clibrary
https://www.xilinx.com/support/documentation/sw{_}manuals/xilinx2014{_}1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw{_}manuals/xilinx2014{_}1/ug902-vivado-high-level-synthesis.pdf
https://software.intel.com/en-us/node/540440
https://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context
	Philips healthcare
	ALMARVI

	Imaging system
	Problem discussion

	Background
	Hardware architectures
	CPU
	GPU
	FPGA
	Memory architecture
	Discussion

	Image processing
	Imaging operations
	Processing requirements
	Algorithm selection

	Software to Hardware
	Challenges
	High level synthesis
	RTL generation
	Scheduling
	Allocation and binding
	Controller synthesis
	Optimizations

	Tools and techniques
	OpenCL
	Platform model
	Memory model
	Execution model
	Discussion

	Domain Specific Languages
	Halide
	Halide design philosophy

	Related study

	Solution workflow
	SDAccel
	Memory mapping
	OCL region
	SDAccel design

	Halide on FPGA
	Workflows
	Limitations and solutions
	SDAccel
	Halide

	Implementation
	Design choices
	GPU
	Halide
	SDAccel

	Portability
	Sobel kernel
	Gaussian kernel

	Halide
	MRA
	Buffers
	Work group sizes
	Memory partitioning
	Optimizing arithmetic computations
	Implementation

	Results
	Evaluation methodology
	Portability
	Parallelism
	Branching
	Gaussian

	Halide-HLS
	MRA

	Discussion
	Summary
	Research question re-visited
	Requirement 1
	Requirement 2
	Requirement 3

	Conclusion
	Bibliography

