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Abstract
In this paper, we address the severe performance gap

caused by high processor clock rates and slow DRAM
accesses. We show that even with an aggressive, next-gen-
eration memory system using four Direct Rambus chan-
nels and an integrated one-megabyte level-two cache, a
processor still spends over half of its time stalling for L2
misses. Large cache blocks can improve performance, but
only when coupled with wide memory channels. DRAM
address mappings also affect performance significantly.

We evaluate an aggressive prefetch unit integrated with
the L2 cache and memory controllers. By issuing
prefetches only when the Rambus channels are idle, prior-
itizing them to maximize DRAM row buffer hits, and giv-
ing them low replacement priority, we achieve a 43%
speedup across 10 of the 26 SPEC2000 benchmarks, with-
out degrading performance on the others. With eight Ram-
bus channels, these ten benchmarks improve to within
10% of the performance of a perfect L2 cache.

1.  Introduction

Continued improvements in processor performance,
and in particular sharp increases in clock frequencies, are
placing increasing pressure on the memory hierarchy.
Modern system designers employ a wide range of tech-
niques to reduce or tolerate memory-system delays,
including dynamic scheduling, speculation, and multi-
threading in the processing core; multiple levels of caches,
non-blocking accesses, and prefetching in the cache hier-
archy; and banking, interleaving, access scheduling, and
high-speed interconnects in main memory.

In spite of these optimizations, the time spent in the
memory system remains substantial. In Figure 1, we
depict the performance of the SPEC CPU2000 bench-
marks for a simulated 1.6GHz, 4-way issue, out-of-order
core with 64KB split level-one caches; a four-way, 1MB
on-chip level-two cache; and a straightforward Direct

Rambus memory system with four 1.6GB/s channels. (We
describe our target system in more detail in Section 3.) Let

 and be the instructions per
cycle of each benchmark assuming the described memory
system, the described L1 caches with a perfect L2 cache,
and a perfect memory system (perfect L1 cache), respec-
tively. The three sections of each bar, from bottom to top,
represent , , and . By taking
the harmonic mean of these values across our benchmarks,
and computing , we
obtain the fraction of performance lost due to an imperfect
memory system.1 Similarly, the fraction of performance
lost due to an imperfect L2 cache—the fraction of time
spent waiting for L2 cache misses—is given by

. (In Figure 1, the bench-
marks are ordered according to this metric.) The differ-
ence between these values is the fraction of time spent
waiting for data to be fetched into the L1 caches from the
L2. For the SPEC CPU2000 benchmarks, our system
spends 57% of its time servicing L2 misses, 12% of its
time servicing L1 misses, and only 31% of its time per-
forming useful computation.

Since over half of our system’s execution time is
spent servicing L2 cache misses, the interface between the
L2 cache and DRAM is a prime candidate for optimiza-
tion. Unfortunately, diverse applications have highly vari-
able memory system behaviors. For example, mcf has the
highest L2 stall fraction (80%) because it suffers 23 mil-
lion L2 misses during the 200-million-instruction sample
we ran, saturating the memory controller request band-
width. At the other extreme, a 200M-instruction sample of
facerec spends 60% of its time waiting for only 1.2 million
DRAM accesses.

These varying behaviors imply that memory-system
optimizations that improve performance for some applica-
tions may penalize others. For example, prefetching may
improve the performance of a latency-bound application,

1. This equation is equivalent to ,
where  is the cycles per instruction for system .
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but will decrease the performance of a bandwidth-bound
application by consuming scarce bandwidth and increas-
ing queueing delays [4]. Conversely, reordering memory
references to increase DRAM bandwidth [5,11,15,16,19]
may not help latency-bound applications, which rarely
issue concurrent memory accesses—and may even hurt
performance by increasing latency.

In this paper, we describe techniques to reduce level-
two miss latencies for memory-intensive applications that
are not bandwidth bound. These techniques complement
the current trend in newer DRAM architectures, which
provide increased bandwidth without corresponding
reductions in latency [7]. The techniques that we evaluate,
in addition to improving the performance of latency-bound
applications, avoid significant performance degradation
for bandwidth-intensive applications.

Our primary contribution is a proposed prefetching
engine specifically designed for level-two cache prefetch-
ing on a Direct Rambus memory system. The prefetch
engine utilizes scheduled region prefetching, in which
blocks spatially near the addresses of recent demand
misses are prefetched into the L2 cache only when the
memory channel would otherwise be idle. We show that
the prefetch engine improves memory system performance
substantially (10% to 119%) for 10 of the 26 benchmarks
we study. We see smaller improvements for the remaining
benchmarks, limited by lower prefetch accuracies, a lack
of available memory bandwidth, or few L2 misses. Our
prefetch engine is unintrusive, however, reducing perfor-
mance for only one benchmark. Three mechanisms mini-
mize the potential negative aspects of aggressive
prefetching: prefetching data only on idle Rambus channel
cycles; scheduling prefetches to maximize hit rates in both
the L2 cache and the DRAM row buffers; and placing the
prefetches in a low-priority position in the cache sets,
reducing the impact of cache pollution.

The remainder of the paper begins with a brief

description of near-future memory systems in Section 2. In
Section 3, we study the impact of block size, memory
bandwidth, and address mapping on performance. In
Section 4, we describe and evaluate our scheduled region
prefetching engine. We discuss related work in Section 5
and draw our conclusions in Section 6.

2.  High-performance memory systems

The two most important trends affecting the design of
high-performance memory systems are integration and
direct DRAM interfaces. Imminent transistor budgets per-
mit both megabyte-plus level-two caches and DRAM
memory controllers on the same die as the processor core,
leaving only the actual DRAM devices off chip. Highly
banked DRAM systems, such as double-data-rate synchro-
nous DRAM (DDR SDRAM) and Direct Rambus DRAM
(DRDRAM), allow heavy pipelining of bank accesses and
data transmission. While the system we simulate in this
work models DRDRAM channels and devices, the tech-
niques we describe herein are applicable to other aggres-
sive memory systems, such as DDR SDRAM, as well.

2.1.  On-chip memory hierarchy

Since level-one cache sizes are constrained primarily
by cycle times, and are unlikely to exceed 64KB [1], level-
two caches are coming to dominate on-chip real estate.
These caches tend to favor capacity over access time, so
their size is constrained only by chip area. As a result, on-
chip L2 caches of over a megabyte have been announced,
and multi-megabyte caches will follow. These larger
caches, with more numerous sets, are less susceptible to
pollution, making more aggressive prefetching feasible.

The coupling of high-performance CPUs and high-
bandwidth memory devices (such as Direct Rambus)
make the system bus interconnecting the CPU and the
memory controller both a bandwidth and a latency bottle-
neck [7]. With sufficient area available, high-performance
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systems will benefit from integrating the memory control-
ler with the processor die, in addition to the L2 cache. That
integration eliminates the system-bus bottleneck and
enables high-performance systems built from an integrated
CPU and a handful of directly connected DRAM devices.
At least two high-performance chips—the Sun UltraS-
PARC-III and Compaq 21364—are following this route.1

In this study, we are exploiting that integration in two
ways. First, the higher available bandwidth again allows
more aggressive prefetching. Second, we can consider
closer communication between the L2 cache and memory
controller, so that L2 prefetching can be influenced by the
state of the memory system—such as which DRAM rows
are open and which channels are idle—contained in the
controller.

2.2.  Direct Rambus architecture

Direct Rambus (DRDRAM) [6] systems obtain high
bandwidth from a single DRAM device using aggressive
signaling technology. Data are transferred across a 16-bit
data bus on both edges of a 400-MHz clock, providing a
peak transfer rate of 1.6 Gbytes per second. DRDRAMs
employ two techniques to maximize the actual transfer
rate that can be sustained on the data bus. First, each
DRDRAM device has multiple banks, allowing pipelining
and interleaving of accesses to different banks. Second,
commands are sent to the DRAM devices over two inde-
pendent control buses (a 3-bit row bus and a 5-bit column
bus.) Splitting the control busses allows the memory con-
troller to send commands to independent banks concur-
rently, facilitating greater overlap of operations that would
be possible with a single control bus. In this paper, we
focus on the 256-Mbit Rambus device, the most recent for
which specifications are available. This device contains 32
banks of one megabyte each. Each bank contains 512 rows
of 2 kilobytes per row. The smallest addressable unit in a
row is a dualoct, which is 16 bytes.

A full Direct Rambus access involves up to three
commands on the command buses: precharge (PRER),
activate (ACT), and finally a read (RD) or write (WR).
The PRER command, sent on the row bus, precharges the
bank to be accessed, as well as releasing the bank’s sense
amplifiers and clearing their data. Once the bank is pre-
charged, an ACT command on the row bus reads the
desired row into the sense-amp array (also called the row
buffer, or open page.) Once the needed row is in the row
buffer, the bank can accept RD or WR commands on the
column bus for each dualoct that must be read or written.2

RD and WR commands can be issued immediately if

1. Intel CPUs currently maintain their memory controllers on a separate
chip. This organization allows greater product differentiation among
multiple system vendors—an issue of less concern to Sun and Compaq.

the correct row is held open in the row buffers. Open-row
policies hold the most recently accessed row in the row
buffer. If the next request falls within that row, than only
RD or WR commands need be sent on the column bus. If a
row buffer miss occurs, then the full PRER, ACT, and RD/
WR sequence must be issued. Closed-page policies, which
are better for access patterns with little spatial locality,
release the row buffer after an access, requiring only the
ACT-RD/WR sequence upon the next access.

A single, contentionless dualoct access that misses in
the row buffer will incur 77.5 ns on the 800-40 256-Mbit
DRDRAM device. PRER requires 20 ns, ACT requires
17.5 ns, RD or WR requires 30 ns, and data transfer
requires 10 ns (eight 16-bit transfers at 1.25 ns per trans-
fer.) An access to a precharged bank therefore requires
57.5 ns, and a page hit requires only 40 ns. 

A row miss occurs when the last and current requests
access different rows within a bank. The DRDRAM archi-
tecture incurs additional misses due to sense-amp sharing
among banks. As shown in Figure 2, row buffers are split
in two, and each half-row buffer is shared by two banks;
the upper half of bank n’s row buffer is the same as the
lower half of bank n+1’s row buffer. This organization
permits twice the banks for the same number of sense-
amps, but imposes the restriction that only one of a pair of
adjacent banks may be active at any time. An access to
bank 1 will thus flush the row buffers of banks 0 and 2 if
they are active, even if the previous access to bank 1
involved the same row.

3.  Basic memory system parameters

In this section, we measure the effect of varying block
sizes, channel widths, and DRAM bank mappings on the
memory system and overall performance. Our results
motivate our prefetching strategy, described in Section 4,
and provide an optimized baseline for comparison.

3.1.  Experimental methodology

We simulated our target systems with an Alpha-ISA
derivative of the SimpleScalar tools [3]. We extended the
tools with a memory system simulator that models conten-
tion at all buses, finite numbers of MSHRs, and Direct
Rambus memory channels and devices in detail [6].

Although the SimpleScalar microarchitecture is based
on the Register Update Unit [22], we chose the rest of the
parameters to match the Compaq Alpha 21364 [10] as
closely as possible. These parameters include an aggres-

2. Most DRAM device protocols transfer write data along with the col-
umn address, but defer the read data transfer to accommodate the access
latency. In contrast, DRDRAM data transfer timing is similar for both
reads and writes, simplifying control of the bus pipeline and leading to
higher bus utilization.



sive 1.6GHz clock,1 a 64-entry RUU (reorder buffer/issue
window,) a 64-entry load/store queue, a four-wide issue
core, 64KB 2-way associative first-level instruction and
data caches, ALUs similar to the 21364 in quantities and
delays, a 16K entry hybrid local/global branch predictor, a
2-way set associative, 256-entry BTB, a 128-bit L1/L2 on-
chip cache bus, 8 MSHRs per data cache, a 1MB, 4-way
set associative, on-chip level-two data cache accessible in
12 cycles, and a 256MB DRDRAM system transmitting
data packets at 800MHz. Our systems use multiple
DRDRAM channels in a simply interleaved fashion, i.e., n
physical channels are treated as a single logical channel of
n times the width.

We evaluated our simulated systems using the 26
SPEC CPU2000 benchmarks compiled with recent Com-
paq compilers (C V5.9-008 and Fortran V5.3-915).2 We
simulated a 200-million-instruction sample of each bench-
mark running the reference data set after 20, 40, or 60 bil-
lion instructions of execution. We verified that cold-start
misses did not impact our results significantly by simulat-
ing our baseline configuration assuming that all cold-start
accesses are hits. This assumption changed IPCs by 1% or
less on each benchmark.

3.2.  Block size, contention, and pollution

Increasing a cache’s block size—generating large,
contiguous transfers between the cache and DRAM—is a
simple way to increase memory system bandwidth. If an
application has sufficient spatial locality, larger blocks will
reduce the miss rate as well. Of course, large cache blocks
can also degrade performance. For a given memory band-
width, larger fetches can cause bandwidth contention, i.e.,
increased queuing delays. Larger blocks may also cause

1. We selected this clock rate as it is both near the maximum clock rate
announced for near-future products (1.5 GHz Pentium 4), and because it
is exactly twice the effective frequency of the DRDRAM channels.
2.  We used the “peak” compiler options from the Compaq-submitted
SPEC results, except that we omitted the profile-feedback step. Further-
more, we did not use the “-xtaso-short” option that defaults to 32-bit
(rather than 64-bit) pointers.

cache pollution, because a cache of fixed size holds fewer
unique blocks.

As L2 capacities grow, the corresponding growth in
the number of blocks will reduce the effects of cache pol-
lution. Larger L2 caches may also reduce bandwidth con-
tention, since the overall miss rate will be lower. Large L2
caches may thus benefit from larger block sizes, given suf-
ficient memory bandwidth and spatial locality.

For any cache, as the block size is increased, the
effects of bandwidth contention will eventually over-
whelm any reduction in miss rate. We define this transition
as the performance point: the block size at which perfor-
mance is highest. As the block size is increased further,
cache pollution will eventually overwhelm spatial locality.
We define this transition as the pollution point: the block
size that gives the minimum miss rate.

In Table 1, we show the pollution and performance
points for our benchmarks assuming four DRDRAM
channels, providing 6.4GB/s peak bandwidth. The pollu-
tion points are at block sizes much larger than typical L2
block sizes (e.g., 64 bytes in the 21264), averaging 2KB.
Nearly half of the benchmarks show pollution points at
8KB, which was the maximum block size we measured
(larger blocks would have exceeded the virtual page size
of our target machine). Taking the harmonic mean of the
IPCs at each block size, we find that performance is high-
est at 128-byte blocks, with a negligible difference

Table 1: Pollution and performance points
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Figure 2. Rambus shared sense-amp organization.

Bank 0 Bank 1 Bank 2

S
A

 0
b/

1a

S
A

 1
b/

2a

S
A

 2
b/

3a

S
A

 0
a

Bank 31

S
A

 3
0b

/3
1a

S
A

 3
1b. . .

Internal 128-bit Data Bus

mux/demux

External 16-bit Data Bus



between 128- and 256-byte blocks. For eight of the bench-
marks with high spatial locality, however, the performance
point is at block sizes even larger than 256 bytes.

The miss rates at the pollution points (not shown due
to space considerations) are significantly lower than at the
performance points: more than a factor of two for half of
the benchmarks, and more than ten-fold for seven of them.
The differences in performance (IPC) at the pollution and
performance points are significant, but less pronounced
than the miss rate differences: a factor of ten for ammp,
and two to three times for four others, but less than 50%
for the rest.

For benchmarks that have low L2 miss rates, the gap
between the pollution and performance points makes little
difference to overall performance, since misses are infre-
quent. For the rest of the benchmarks, however, an oppor-
tunity clearly exists to improve performance beyond the
performance point, since there is additional spatial locality
that can be exploited before reaching the pollution point.
The key to improving performance is to exploit this local-
ity without incurring the bandwidth contention induced by
larger fetch sizes. We present a prefetching scheme that
accomplishes this goal in Section 4.

3.3.  Channel width

Emerging systems contain a varied number of Ram-
bus channels. Intel’s Willamette processor will contain
between one and two RDRAM channels, depending on
whether the part is used in medium- or high-end machines.
The Alpha 21364, however, will contain up to a maximum
of eight RDRAM channels, managed by two controllers.

Higher-bandwidth systems reduce contention, allow-
ing larger blocks to be fetched with overhead similar to
smaller blocks on a narrower channel. In Table 2, we show
the effect of the number of physical channels on perfor-
mance at various block sizes. The numbers shown in the
table are the harmonic mean of IPC for all of the SPEC
benchmarks at a given block size and channel width.

For a four-channel system, the performance point
resides at 256-byte blocks. At eight channels, the best
block size is 512 bytes. In these experiments, we held the
total number of DRDRAM devices in the memory system
constant, resulting in fewer devices per channel as the
number of channels was increased. This restriction
favored larger blocks slightly, causing these results to dif-
fer from the performance point results described in
Section 3.2.

As the channels grow wider, the performance point
shifts to larger block sizes until it is eventually (for a suffi-
ciently wide logical channel) equivalent to the pollution
point. Past that point, larger blocks will pollute the cache
and degrade performance.

Our data show that the best overall performance is

obtained using a block size of 1 KB—given a 32-channel
(51.2 GB/s) memory system. Achieving this bandwidth is
prohibitively expensive; our prefetching architecture pro-
vides a preferable solution, exploiting spatial locality
while avoiding bandwidth contention on a smaller number
of channels.

3.4.  Address mapping

In all DRAM architectures, the best performance is
obtained by maximizing the number of row-buffer hits
while minimizing the number of bank conflicts. Both these
numbers are strongly influenced by the manner in which
physical processor addresses are mapped to the channel,
device, bank, and row coordinates of the Rambus memory
space. Optimizing this mapping improves performance on
our benchmarks by 16% on average, with several bench-
marks seeing speedups above 40%.

In Figure 3a, we depict the base address mapping
used to this point. The horizontal bar represents the physi-
cal address, with the high-order bits to the left. The bar is
segmented to indicate how fields of the address determine
the corresponding Rambus device, bank, and row.

Starting at the right end, the low-order four bits of the
physical address are unused, since they correspond to off-
sets within a dualoct. In our simply interleaved memory
system, the memory controller treats the physical channels
as a single wide logical channel, so an n-channel system
contains n times wider rows and fetches n dualocts per
access. Thus the next least-significant bits correspond to
the channel index. In our base system with four channels
and 64-byte blocks, these channel bits are part of the cache
block offset.

The remainder of the address mapping is designed to
leverage spatial locality across cache-block accesses. As
physical addresses increase, adjacent blocks are first
mapped contiguously into a single DRAM row (to
increase the probability of a row-buffer hit), then are
striped across devices and banks (to reduce the probability
of a bank conflict). Finally, the highest-order bits are used
as the row index.

Although this address mapping provides a reasonable
row-buffer hit rate on read accesses (51% on average), the

Table 2: Channel width vs. performance points

Block size

Channels 64 128 256 512 1024

1 0.327 0.275 0.219 0.159 0.099
2 0.435 0.422 0.369 0.286 0.186
4 0.502 0.529 0.542 0.468 0.329
8 0.478 0.545 0.638 0.651 0.525

16 0.456 0.555 0.665 0.742 0.710
32 0.424 0.521 0.656 0.730 0.755 



hit rate on writebacks is only 28%. This difference is due
to an anomalous interaction between the cache indexing
function and the address mapping scheme. For a 1MB
cache, the set index is formed from the lower 18 bits
(log2(1MB/4)) of the address. Each of the blocks that map
to a given cache set will be identical in these low-order
bits, and will vary only in the upper bits. With the mapping
shown in Figure 3a, these blocks will map to different
rows of the same bank in a system with only one device
per channel, guaranteeing a bank conflict between a miss
and its associated writeback. With two devices per chan-
nel, the blocks are interleaved across a pair of banks (as
indicated by the vertical line in the figure), giving a 50%
conflict probability.

One previously described solution is to exchange
some of the row and column index bits in the mapping
[28,26]. If the bank and row are largely determined by the
cache index, then the writeback will go from being a likely
bank conflict to a likely row-buffer hit. However, by plac-
ing discontiguous addresses in a single row, spatial local-
ity is reduced.

Our solution, shown in Figure 3b, XORs the initial
device and bank index values with the lower bits of the
row address to generate the final device and bank indices.
This mapping retains the contiguous-address striping
properties of the base mapping, but “randomizes” the bank
ordering, distributing the blocks that map to a given cache
set evenly across the banks. As a final Rambus-specific
twist, we move the low-order bank index bit to the most-
significant position. This change stripes addresses across
all the even banks successively, then across all the odd
banks, reducing the likelihood of an adjacent buffer-shar-
ing conflict (see Section 2.2).

As a result, we achieve a row-buffer hit rate of 72%
for read accesses and 55% for writebacks. This final
address mapping, which will be used for the remainder of
our studies, improves performance by 16% on average,
and helps some benchmarks significantly (63% for applu
and over 40% for swim, fma3d, and facerec). 

4.  Improving Rambus performance with 
scheduled region prefetching

The four-channel, 64-byte block baseline with the
XORed bank mapping recoups some of the performance
lost due to off-chip memory accesses. In this section, we
propose to improve memory system performance further
using scheduled region prefetching. On a demand miss,
blocks in an aligned region surrounding the miss that are
not already in the cache are prefetched [23]. For example,
a cache with 64-byte blocks and 4KB regions would fetch
the 64-byte block upon a miss, and then prefetch any of
the 63 other blocks in the surrounding 4KB region not
already resident in the cache.

We depict our prefetch controller in Figure 4. In our
simulated implementation, region prefetches are sched-
uled to be issued only when the Rambus channels are oth-
erwise idle. The prefetch queue maintains a list of n region
entries not in the L2 cache, represented as bitmaps. The
region entry spans multiple blocks over a region, with a bit
vector representing each block in the region. A bit in the
vector is set if a block is being prefetched or is in the
cache. The number of bits is equal to the prefetch region
size divided by the L2 block size.

When a demand miss occurs that does not match an
entry in the prefetch queue, the oldest entry is overwritten
with the new demand miss. The prefetch prioritizer uses
the bank state and the region ages to determine which
prefetch to issue next. The access prioritizer selects a
prefetch when no demand misses or writebacks are pend-
ing. The prefetches thus add little additional channel con-
tention, and only when a demand miss arrives while a
prefetch is in progress. For the next two subsections, we
assume that (1) prefetch regions are processed in FIFO
order, (2) that a region’s blocks are fetched in linear order
starting with the block after the demand miss (and
wrapped around), and (3) that a region is only retired when
it is either overwritten by a new miss or all of its blocks
have been processed.

Figure 3. Mapping physical addresses to Rambus coordinates.
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4.1.  Insertion policy

When prefetching directly into the L2 cache, the like-
lihood of pollution is high if the prefetch accuracy is low.
In this section, we describe how to mitigate that pollution
for low prefetch accuracies, by assigning the prefetch a
lower replacement priority than demand-miss blocks.

Our simulated 4-way set associative cache uses the
common least-recently-used (LRU) replacement policy. A
block may be loaded into the cache with one of four prior-
ities: most-recently-used (MRU), second-most-recently-
used (SMRU), second-least-recently-used (SLRU), and
LRU. Normally, blocks are loaded into the MRU position.
By loading prefetches into a lower-priority slot, we restrict
the amount of referenced data that prefetches can displace.
For example, if a prefetches are loaded with LRU priority,
they can displace at most one quarter of the referenced
data in the cache.

For this section, we divide the SPEC2000 benchmarks
into two categories: those with prefetch accuracies of
greater than 20% (applu, art, eon, equake, facerec, fma3d,
gap, gcc, gzip, mgrid, parser, sixtrack, swim, and wup-
wise) and those with accuracies below 20% (ammp, apsi,
bzip2, crafty, galgel, lucas, mcf, mesa, perlbmk, twolf,
vortex, and vpr). In Table 3, we depict the arithmetic mean
of the prefetch accuracies for the two classes of bench-
marks, shown as the region prefetches are loaded into dif-
fering points on the replacement priority chain. We also

Table 3: LRU chain prefetch priority insertion

Priority

Accuracy
class

Quantity MRU SMRU SLRU LRU

High Accuracy 63% 63% 62% 56%
IPC 1.00 1.01 1.02 1.02

Low Accuracy 4% 4% 4% 3%
IPC 1.00 1.31 1.45 1.51

show the speedups of the harmonic mean of IPC values
over MRU prefetch insertion. In these experiments, we
simulated 4KB prefetch regions, 64-byte blocks, and four
DRDRAM channels.

For the high-accuracy benchmarks, the prefetch accu-
racy decreases slightly as the prefetches are given lower
priority in the set. With lower priority, a prefetch is more
likely to be evicted before it is referenced. However, since
many of the high-accuracy benchmarks quickly reference
their prefetches, the impact on accuracy is minor. Perfor-
mance drops by 12% and 17% on equake and facerec,
respectively, as placement goes from MRU to LRU. These
losses are counterbalanced by similar gains in other
benchmarks (gcc, parser, art, and swim), where pollution
is an issue despite relatively high accuracy.

For the low accuracy benchmarks, the prefetch accu-
racy drops negligibly from MRU (3.5%) to LRU (3.3%).
The impact on IPC, however, is dramatic. Placing the
prefetches in the cache with high priority causes signifi-
cant pollution, lowering performance over that with MRU
by 33%.

While replacement prioritization does not help high-
accuracy benchmarks significantly, it mitigates the
adverse pollution impact of prefetching on the other
benchmarks, just as scheduling mitigates the bandwidth
impact. We assume LRU placement for the rest of the
experiments in this paper.

4.2.  Prefetch scheduling

Unfortunately, although the prefetch insertion policy
diminishes the effects of cache pollution, simple aggres-
sive prefetching can consume copious amounts of band-
width, interfering with the handling of latency-critical
misses. 

With 4KB region prefetching, a substantial number of
misses are avoided, as shown in column two of Table 4.
The L2 miss rate is reduced from 36.4% in the base system
(which includes the XOR bank mapping) to just 10.9%.

L2 cache
controller

MSHRs
access

prioritizer
prefetch
prioritizer

prefetch
queue

bank
state Rambus controller

Rambus channel. .

to L1 cache

Figure 4. Prefetching memory controller

Rambus channel



Despite the sharp reduction in miss rate, contention
increases the miss latencies dramatically. The arithmetic
mean L2 miss latency, across all benchmarks, rises more
than sevenfold, from 134 cycles to 980 cycles. 

This large increase in channel contention can be
avoided by scheduling prefetch accesses only when the
Rambus channel would otherwise be idle. When the Ram-
bus controller is ready for another access, it signals an
access prioritizer circuit, which forwards any pending L2
demand misses before it will forward a prefetch request
from the prefetch queue, depicted in Figure 4. Our base-
line prefetch prioritizer uses a FIFO policy for issuing
prefetches and for replacing regions. The oldest prefetch
region in the queue has the highest priority for issuing
requests to the Rambus channels, and is also the region
that is replaced when a demand miss adds another region
to the queue.

With this scheduling policy, the prefetching continues
to achieve a significant reduction in misses, but with only
a small increase in the mean L2 miss latency. While the
unscheduled prefetching achieves a lower miss rate since
every region prefetch issues, the miss penalty increase is
far too high. The prefetch scheduling greatly improves the
ten benchmarks for which region prefetching is most
effective (applu, equake, facerec, fma3d, gap, mesa,
mgrid, parser, swim, and wupwise), which show a mean
37% improvement in IPC. This prefetch scheme is also
unintrusive; five of the other benchmarks (ammp, galgel,
gcc, twolf, and vpr) show small performance drops (an
average of 2% in IPC). Across the entire SPEC suite, per-
formance shows a mean 12% increase.

We can further improve our prefetching scheme by
taking into account not only the idle/busy status of the
Rambus channel, but also the expected utility of the
prefetch request and the state of the Rambus banks. These
optimizations fall into three categories: prefetch region
prioritization, prefetch region replacement, and bank-
aware scheduling.

When large prefetch regions are used on an applica-
tion with limited available bandwidth, prefetch regions are
typically replaced before all of the associated prefetches
are completed. The FIFO policy can then cause the system
to spend most of its time prefetching from “stale” regions,
while regions associated with more recent misses languish

Table 4: Comparison of prefetch schemes

SPEC2000
average

Base 
(w/XOR)

FIFO 
prefetch

Sched. 
FIFO

Sched.
LIFO

L2 miss rate 36.4% 10.9% 18.3% 17.0%

L2 miss latency 
(cycles)

134 980 140 141

Normalized IPC 1.00 0.33 1.12 1.16

at the tail of the queue. We address this issue by changing
to a LIFO algorithm for prefetching in which the highest-
priority region is the one that was added to the queue most
recently. We couple this with an LRU prioritization algo-
rithm that moves queued regions back to the highest-prior-
ity position on a demand miss within that region, and
replaces regions from the tail of the queue when it is full.

Finally, the row-buffer hit rate of prefetches can be
improved by giving highest priority to regions that map to
open Rambus rows. Prefetch requests will generate pre-
charge or activate commands only if there are no pending
prefetches to open rows. This optimization makes the row-
buffer hit rate for prefetch requests nearly 100%, and
reduces the total number of row-buffer misses by 9%.

These optimizations, labeled “scheduled LIFO” in
column four of Table 4, help all applications, reducing the
average miss rate further to 17.0%, with only a one-cycle
increase in miss latency. The mean performance improve-
ment increases to 16%. With this scheme, only one bench-
mark (vpr) showed a performance drop (of 1.6%) due to
prefetching.

We also experimented with varying the region size,
and found that, with LIFO scheduling, 4KB provided the
best overall performance. Improvement dropped off for
regions of less than 2KB, while increasing the region size
beyond 4KB had a negligible impact. Clearly using a
region size larger than the virtual page size (8 KB in our
system) is not likely to be useful when prefetching based
on physical addresses.

4.3.  Performance summary

Though scheduled region prefetching provides a
mean performance increase over the entire SPEC suite, the
benefits are concentrated in a subset of the benchmarks.
Figure 5 provides detailed performance results for the ten
benchmarks whose performance improves by 10% or
more with scheduled region prefetching. The left-most bar
for each benchmark is stacked, showing the IPC values for
three targets: the 64-byte block, four-channel experiments
with the standard bank mapping represented by the white
bar, the XOR mapping improvement represented by the
middle, light grey bar, and LIFO, 4KB region prefetching
represented by the top, dark grey bar. The second bar in
each cluster shows the performance of 8-channel runs with
256-byte blocks in light grey, and the same system with
LIFO, 4KB region prefetching in dark grey. The right-
most bar in each cluster shows the IPC obtained by a per-
fect L2 cache.

On the four-channel system, the XOR mapping pro-
vides a mean 33% speedup for these benchmarks. Adding
prefetching results in an additional 43% speedup. Note
that for eight of the ten benchmarks, the 4-channel
prefetching experiments outperform the 8-channel system



with no prefetching. The 8-channel, 256-byte block exper-
iments with region prefetching show the highest attainable
performance, however, with a mean speedup of 118% over
the 4-channel base case for the benchmarks depicted in
Figure 5, and a 45% speedup across all the benchmarks.
The 8-channel system with 256-byte blocks and 4KB
region prefetching comes within 10% of perfect L2 cache
performance for 8 of these 10 benchmarks (and thus on
average for this set).

There are three effects that render scheduled region
prefetching ineffective for the remaining benchmarks. The
first, and most important, is low prefetch accuracies.
Ammp, bzip2, crafty, mesa, twolf, vortex, and vpr all fall
into that category, with prefetch accuracies of 10% or less.
The second effect is a lack of available bandwidth to per-
form prefetching. Art achieves a prefetch accuracy of
45%, while mcf achieves 35%. However, both are band-
width-bound, saturating the memory channel in the base
case, leaving little opportunity to prefetch. Finally, the
remaining benchmarks for which prefetching is ineffective
typically have high accuracies and adequate available
bandwidth but have too few L2 misses to matter.

4.4.  Effect on Rambus channel utilization

The region prefetching scheme produces more traffic
on the memory channel for all the benchmarks. We quan-
tify this effect by measuring utilization of both the com-
mand and data channels. We derive command-channel
utilization by calculating the number of cycles required to
issue all of the program’s memory requests in the original
order but with no intervening delays (other than required
inter-packet stalls) as a fraction of the total number of exe-
cution cycles. Data-channel utilization is simply the frac-
tion of cycles during which data are transmitted.

For the base 4-channel case without prefetching, the
mean command- and data-channel utilizations are 28%
and 17%, respectively. Utilization on the command chan-

nel is always higher than on the data channel due to row-
buffer precharge and activate commands, which count as
busy time on the command channel but result in idle time
on the data channel. Our memory controller pipelines
requests, but does not reorder or interleave commands
from multiple requests; a more aggressive design that per-
formed this reordering would reduce this disparity.

With scheduled region prefetching, command- and
data-channel utilizations are 54% and 42%, respectively—
increases of 1.9 and 2.5 times over the non-prefetching
case. The disparity between command- and data-channel
utilizations is reduced because our bank-aware prefetch
scheduling increases the fraction of accesses that do not
require precharge or row-activation commands.

The increased utilizations are due partly to the
increased number of fetched blocks and partly to
decreased execution time. For many benchmarks, one or
the other of these reasons dominates, depending on that
benchmark’s prefetch accuracy. At one extreme, swim’s
command-channel utilization increases from 58% to 96%
with prefetching, thanks to a 99% prefetch accuracy giv-
ing a 49% execution-time reduction. On the other hand,
twolf’s command-channel utilization increases from 22%
to 90% with only a 2% performance improvement due to
its 7% prefetch accuracy. However, not all benchmarks
consume bandwidth this heavily; half have command-
channel utilization under 60% and data-channel utilization
under 40%, including several that benefit significantly
from prefetching (gap, mgrid, parser, and wupwise).

Even when prefetch accuracy is low, channel schedul-
ing minimizes the adverse impact of prefetching: only one
benchmark sees any performance degradation. However,
if power consumption or other considerations require lim-
iting this useless bandwidth consumption, counters could
measure prefetch accuracy on-line and throttle the
prefetch engine if the accuracy is sufficiently low.
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4.5.  Implications of multi-megabyte caches

Thus far we have simulated only 1MB level-two
caches. On-chip L2 cache sizes will doubtless grow in
subsequent generations. We simulated our baseline XOR-
mapping organization and our best region prefetching pol-
icy with caches of two, four, eight, and sixteen megabytes.
For the baseline system, the resulting speedups over a
1MB cache were 6%, 19%, 38%, and 47%, respectively.
The performance improvement from prefetching remains
stable across these cache sizes, growing from 16% at the
1MB cache to 20% at the 2MB cache, and remaining
between 19% and 20% for all sizes up to 16MB. The
effect of larger caches varied substantially across the
benchmarks, breaking roughly into three categories:
1. Several benchmarks (perlbmk, eon, gap, gzip, vortex,

and twolf) incur few L2 misses at 1MB and thus bene-
fit neither from prefetching nor from larger caches.

2. Most of the benchmarks for which we see large
improvements from prefetching benefit significantly
less from increases in cache sizes. The 1MB cache is
sufficiently large to capture the largest temporal
working sets, and the prefetching exploits the remain-
ing spatial locality. For applu, equake, fma3d, mesa,
mgrid, parser, swim, and wupwise, the performance
of the 1MB cache with prefetching is higher than the
16MB cache without prefetching.

3. Eight of the SPEC applications have working sets
larger than 1MB, but do not have sufficient spatial
locality for the scheduled region prefetching to
exploit well. Some of these working sets reside at
2MB (bzip2, galgel), between 2MB and 4MB (ammp,
art, vpr), and near 8MB (ammp, facerec, mcf). These
eight benchmarks are the only ones for which increas-
ing the cache size provides greater improvement than
region prefetching at 1MB.

4.6.  Sensitivity to DRAM latencies

We ran experiments to measure the effects of varying
DRAM latencies on the effectiveness of region prefetch-
ing. In addition to the 40-800 DRDRAM part (40ns
latency at 800 MHz data transfer rate) that we simulated
throughout this paper, we also measured our prefetch per-
formance on published 50-800 part parameters and a
hypothetical 34-800 part (obtained using published 45-600
cycle latencies without adjusting the cycle time). If we
were to hold the DRAM latencies constant, these latencies
would correspond to processors running at 1.3 GHz and
2.0 GHz, respectively.

We find that the prefetching gains are relatively insen-
sitive to the processor clock/DRAM speed ratio. For the
slower 1.3 GHz clock (which is 18% slower than the base
1.6 GHz clock), the mean gain from prefetching, across all

benchmarks, was reduced from 15.6% to 14.2%. Interest-
ingly, the faster 2.0 GHz clock also caused a slight (less
than 1%) drop in prefetch improvements. 

Larger on-chip caches are a certainty over the next
few generations, and lower memory latencies are possible.
Although this combination would help to reduce the
impact of L2 stalls, scheduled region prefetching and
DRAM bank mappings will still reduce L2 stall time dra-
matically in future systems, without degrading the perfor-
mance of applications with poor spatial locality.

4.7.  Interaction with software prefetching

To study the interaction of our region prefetching with
compiler-driven software prefetching, we modified our
simulator to use the software prefetch instructions inserted
by the Compaq compiler. (In prior sections, we have
ignored software prefetches by having the simulator dis-
card these instructions as they are fetched.) We found that,
on our base system, only a few benchmarks benefit signif-
icantly from software prefetching: performance on mgrid,
swim, and wupwise improved by 23%, 39%, and 10%,
respectively. The overhead of issuing prefetches decreased
performance on galgel by 11%. For the other benchmarks,
performance with software prefetching was within 3% of
running without. We confirmed this behavior by running
two versions of each executable natively on a 667 MHz
Alpha 21264 system: one unmodified, and one with all
prefetches replaced by NOPs. Results were similar: mgrid,
swim, and wupwise improved (by 36%, 23%, and 14%,
respectively), and galgel declined slightly (by 1%). The
native runs also showed small benefits on apsi (5%) and
lucas (5%) but otherwise performance was within 3%
across the two versions.

We then enabled both software prefetching and our
best scheduled region prefetching together, and found that
the benefits of software prefetching are largely subsumed
by region prefetching for these benchmarks. None of the
benchmarks improved noticeably with software prefetch-
ing (2% at most). Galgel again dropped by 10%. Interest-
ingly, software prefetching decreased performance on
mgrid and swim by 8% and 3% respectively, in spite of its
benefits on the base system. Not only does region
prefetching subsume the benefits of software prefetching
on these benchmarks, but it makes them run so efficiently
that the overhead of issuing software prefetch instructions
has a detrimental impact. Of course, these results represent
only one specific compiler; in the long run, we anticipate
synergy in being able to schedule compiler-generated
prefetches along with hardware-generated region (or
other) prefetches on the memory channel.



5.  Related work

The ability of large cache blocks to decrease miss
ratios, and the associated bandwidth trade-off that causes
performance to peak at much smaller block sizes, are well
known [20,18]. Using smaller blocks but prefetching addi-
tional sequential or neighboring blocks on a miss is a com-
mon approach to circumventing this trade-off. Smith [21]
analyzes some basic sequential prefetching schemes. 

Several techniques seek to reduce both memory traffic
and cache pollution by fetching multiple blocks only when
the extra blocks are expected to be useful. This expecta-
tion may be based on profile information [9,25], hardware
detection of strided accesses [17] or spatial locality
[12,14,25], or compiler annotation of load instructions
[23]. Optimal off-line algorithms for fetching a set of non-
contiguous words [24] or a variable-sized aligned block
[25] on each miss provide bounds on these techniques.
Pollution may also be reduced by prefetching into separate
buffers [13,23].

Our work limits prefetching by prioritizing memory
channel usage, reducing bandwidth contention directly
and pollution indirectly. Driscoll et al. [8,9] similarly can-
cel ongoing prefetches on a demand miss. However, their
rationale appears to be that the miss indicates that the cur-
rent prefetch candidates are useless, and they discard them
rather than resuming prefetching after the miss is handled.
Przybylski [18] analyzed cancelling an ongoing demand
fetch (after the critical word had returned) on a subsequent
miss, but found that performance was reduced, probably
because the original block was not written into the cache.
Our scheduling technique is independent of the scheme
used to generate prefetch addresses; determining the com-
bined benefit of scheduling and more conservative
prefetching techniques [9,12,14,17,25] is an area of future
research. Our results also show that in a large secondary
cache, controlling the replacement priority of prefetched
data appears sufficient to limit the displacement of useful
referenced data.

Prefetch reordering to exploit DRAM row buffers was
previously explored by Zhang and McKee [27]. They
interleave the demand miss stream and several strided
prefetch streams (generated using a reference prediction
table [2]) dynamically in the memory controller. They
assume a non-integrated memory controller and a single
Direct Rambus channel, leading them to use a relatively
conservative prefetch scheme. We show that near-future
systems with large caches, integrated memory controllers,
and multiple Rambus channels can profitably prefetch
more aggressively. They saw little benefit from prioritiz-
ing demand misses above prefetches. With our more
aggressive prefetching, we found that allowing demand

misses to bypass prefetches is critical to avoiding band-
width contention.

Several researchers have proposed memory controllers
for vector or vector-like systems that interleave access
streams to better exploit row-buffer locality and hide pre-
charge and activation latencies [5,11,15,16,19]. Vector/
streaming memory accesses are typically bandwidth
bound, may have little spatial locality, and expose numer-
ous non-speculative accesses to schedule, making aggres-
sive reordering both possible and beneficial. In contrast, in
a general-purpose environment, latency may be more criti-
cal than bandwidth, cache-block accesses provide inherent
spatial locality, and there are fewer simultaneous non-
speculative accesses to schedule. For these reasons, our
controller issues demand misses in order, reordering only
speculative prefetch requests.

6.  Conclusions

Even the integration of megabyte caches and fast
Rambus channels on the processor die is insufficient to
compensate for the penalties associated with going off-
chip for data. Across the 26 SPEC2000 benchmarks, L2
misses account for 57% of overall performance on a sys-
tem with four Direct Rambus channels. More aggressive
processing cores will only serve to widen that gap.

We have measured several techniques for reducing
the effect of L2 miss latency. Large block sizes improve
performance on benchmarks with spatial locality, but fail
to provide an overall performance gain unless wider chan-
nels are used to provide higher DRAM bandwidth. Tuning
DRAM address mappings to reduce row-buffer misses and
bank conflicts—considering both read and writeback
accesses—provides significant benefits. We proposed and
evaluated a prefetch architecture, integrated with the on-
chip L2 cache and memory controllers, that aggressively
prefetches large regions of data on demand misses. By
scheduling these prefetches only during idle cycles on the
Rambus channel, inserting them into the cache with low
replacement priority, and prioritizing them to take advan-
tage of the DRAM organization, we improve performance
significantly on 10 of the 26 SPEC benchmarks without
negatively affecting the others.

To address the problem for the other benchmarks that
stall frequently for off-chip accesses, we must discover
other methods for driving the prefetch queue besides
region prefetching, in effect making the prefetch controller
programmable on a per-application basis. Other future
work includes reordering demand misses and writebacks
as well as prefetches, throttling region prefetches when
spatial locality is poor, aggressively scheduling the Ram-
bus channels for all accesses, and evaluating the effects of
complex interleaving of the multiple channels.
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