Error Metrics

U/V Classification

Experiments 00000000 References

Reducing F0 Frame Error of F0 Tracking Algorithms Under Noisy Conditions with an Unvoiced/Voiced Classification Frontend

Wei Chu and Abeer Alwan

Speech Processing and Auditory Perception Laboratory Department of Electrical Engineering University of California, Los Angeles Error Metrics

U/V Classification

Experiments 00000000 References

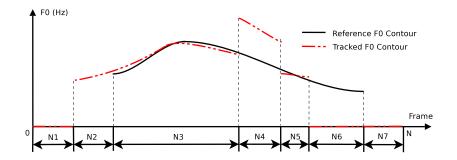
Noise Robust F0 Tracking

Motivation

- Develop an error metric that provides a good assessment for F0 tracking algorithms
- Accurately estimate and track F0 contours under noisy conditions.

Outline

- I. Error Metrics
- II. Statistically-based Unvoiced/Voiced Classifier
- III. Experimental Results and Analysis


Error Metrics	U/V Classification	Experiments	References

I. Error Metrics

Error Metrics	U/V Classification	Experiments	References
00000			

Current Error Metrics

An Example of a Tracked and Reference F0 contour

3 possible types of error in any frame i

- Unvoiced → Voiced Error;
- Voiced \rightarrow Unvoiced Error;
- F0 Value Estimation Error.

Error Metrics	U/V Classification	Experiments	References
0000			
Current Error Metrics			

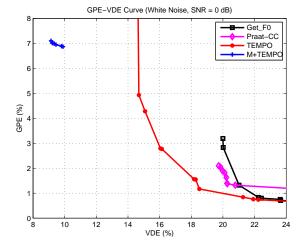
Two error metrics are currently used:

Current Error Metrics

Voicing Decision Error (VDE)) [NAI08]

$$VDE = \frac{N_{V \to U} + N_{U \to V}}{N} \times 100\%$$
(1)

Gross Pitch Error (GPE) [RCR76]


$$GPE = \frac{N_{F0E}}{N_{VV}} \times 100\%$$
 (2)

 N_{VV} : # of frames which both the F0 tracker and the ground truth consider to be voiced; N_{F0E} : # of frames for which $|\frac{F0_{i,estimated}}{F0_{i,reference}} - 1| > 20\%$

Error Metrics	U/V Classification	Experiments	Referenc
0000			

Current Error Metrics

GPE-VDE Curve (M+: using U/V classifier output as a mask) in White Noise

Error	Metrics
000	0

U/V Classification

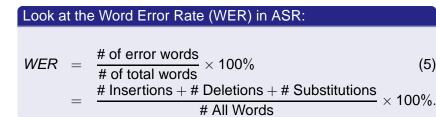
Experiments

References

F0 Frame Error Metrics

A Metric That Combines Two Different Errors

F0 Frame Error (FFE)


$$FFE = \frac{\# \text{ of error frames}}{\# \text{ of total frames}} \times 100\%$$
(3)
$$= \frac{N_{U \to V} + N_{V \to U} + N_{F0E}}{N} \times 100\%.$$

FFE is also a combination of GPE and VDE:

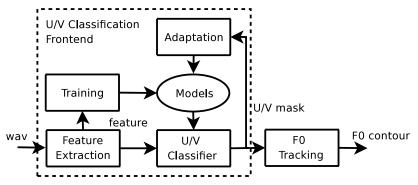
$$FFE = \frac{N_{F0E}}{N} \times 100\% + \frac{N_{U \to V} + N_{V \to U}}{N} \times 100\%.$$
(4)
$$= \frac{N_{VV}}{N} \times GPE + VDE$$

Therefore, FFE takes both GPE and VDE into consideration.

Error Metrics	U/V Classification	Experiments 0000000	References
F0 Frame Error Metrics			
Why FFE			

Analogy

- Unvoiced \rightarrow Voiced Error \iff Insertion Error;
- Voiced \rightarrow Unvoiced Error \iff Deletion Error;
- F0 Value Estimation Error ↔ Substitution Error.


Thus, FFE in F0 tracking \iff WER in ASR.

Error Metrics	U/V Classification	Experiments	References

II. Statistically-Based Unvoiced/Voiced Classification Frontend

Figure: 1. The flowchart of our statistically-based U/V classification frontend

Error Metrics	U/V Classification	Experiments	References
	000		
Unvoiced/Voiced Acoustic Modeling			

Phoneme to Unvoiced/Voiced Dictionary

Table: 1. The mapping from Phonemes to Unvoiced and Voiced

	Stops	Affricates &	Nasals	Semivowels	Others
		Fricatives	& Vowels	& Glides	
U	p(cl) t(cl) k(cl)	ch s f	-	hh	epi h
	bcl dcl gcl q	th sh			pau
V	b d g dx	jh z v	m n ng em en eng nx	lrel	-
		zh dh	iy ih eh ey ae aa aw	w y hv	
			ay ah ao oy ow uh uw		
			ux er ax ix axr ax-h		

- Phone symbols are used in the TIMIT phone level transcription.
- Two acoustic models were trained: unvoiced(U) and voiced (V).
- The models are left-to-right HMMs

Error Metrics	U/V Classification ○●○	Experiments 0000000	References
Unsupervised Speaker Adaptation			
Data Set			

For Training the U/V Models: TIMIT corpus

• Only the training data (4 hours) are used.

For Testing the F0 Tracking: KEELE corpus

- A simultaneous recording of speech and laryngograph signals for a phonetically-balanced text.
- The total length: 5 min 37 s, 5 male and 5 female speakers.

White and babble noise are artificially added to training and testing set, SNR = 0 dB

Error Metrics	U/V Classification	Experiments	References
00000	000	0000000	
Unsupervised Speaker Adaptation			

Adaptation to the Speaker Variance

Existing Mismatch

- Only American English corpus (TIMIT) is available for training the U/V models.
- The test set (KEELE) is a British English corpus.

Adaptively learn the distribution of 'Unseen data'!

Maximum Likelihood Linear Regression (MLLR) speaker adaptation [LW95]

A linear transformation $\boldsymbol{W}_{\text{s}}$ to all the mean vectors of the Gaussians:

$$\mu'_{\mathbf{s}} = \mathbf{W}_{\mathbf{s}}\mu_{\mathbf{s}} \tag{6}$$

Error Metrics

U/V Classification

Experiments

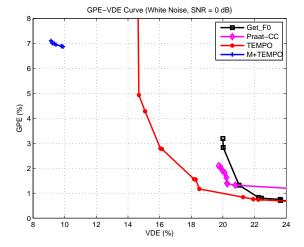
References

III. Experimental Results and Analysis

Error Metrics	U/V Classification	Experiments	References
		0000000	

VDE of the U/V Classifier Using the KEELE Corpus

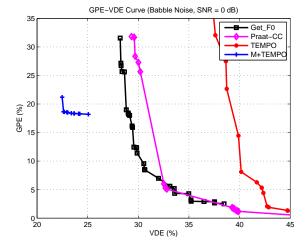
Table: 2. Error rates at SNR = 0 dB, **SI**: speaker independent models, **GSD/RSD**: global style/regression tree style adapted models. (error rates)


VDE	White Noise		ite Noise Babble Noise	
	MFCC	ETSI	MFCC	ETSI
SI	11.57%	10.84%	30.70%	26.27%
GSD	10.98%	9.81%	27.61%	22.48%
RSD	10.18%	9.14%	27.23%	23.54%

- MFCC: Mel-Frequency Cepstral Coefficients
- ETSI: feature output of the European Telecommunications Standard Institute (ETSI) advanced frontend.
 - before MFCCs extraction: two stage mel-warped Wiener filtering.
 - after MFCCs extraction: blind equalization.

Error Metrics	U/V Classification	Experiments	References
		0000000	

Experiments


GPE-VDE Curve (M+: using U/V classifier output as a mask) in White Noise

Error Metrics	U/V Classification	Experiments	References
		000000	

Experiments

GPE-VDE Curve (M+: using U/V classifier output as a mask) in Babble Noise

For every F0 tracker without the U/V mask, GPE \searrow when VDE \nearrow . A possible explanation could be:

- If the VDE
 , it may be because the F0 tracker only takes voiced frames with high SNR as voiced.
- Since it is easier to estimate the F0 value over a voiced frame with a higher SNR, the GPE ∖.

Recall: GPE and VDE

$$GPE = rac{N_{F0E}}{N_{VV}} imes 100\%, \qquad VDE = rac{N_{V
ightarrow U} + N_{U
ightarrow V}}{N} imes 100\%$$

Error	Metrics	

U/V Classification

Experiments 00000000 References

Experiments

GPE, VDE and FFE for the KEELE Corpus Under Default Parameters

Table: 3. Error rates at SNR = 0 dB, M+: U/V mask provided by model-based classifier

	White Noise			Babble Noise		
	GPE	VDE	FFE	GPE	VDE	FFE
Get_F0	0.59%	35.95%	36.04%	18.89%	30.54%	35.15%
Praat	0.73%	30.77%	30.93%	27.36%	30.99%	38.70%
TEMPO	1.49%	21.92%	22.38%	8.90%	47.37%	47.89%
M+TEMPO	6.99%	9.34%	12.64%	21.19%	22.48%	30.86%

Error Metrics	U/V Classification	Experiments 00000000	References

GPE, VDE and FFE for the KEELE Corpus

Table: 4. SNR = 0 dB, **M+**: U/V mask provided by model-based classifier, **min VDE/FFE**: when VDE/FFE is minimized. (error rates)

		White Noise		Babble Noise			
		GPE	VDE	FFE	GPE	VDE	FFE
Get F0	min VDE	3.19%	20.00%	21.04%	31.56%	28.21%	37.58%
	min FFE	2.83%	20.02%	20.94%	8.51%	30.65%	32.79%
Praat	min VDE	2.10%	19.72%	20.41%	31.82%	29.32%	38.69%
Plaal	min FFE	2.10%	19.72%	20.41%	5.31%	32.67%	33.86%
TEMPO	min VDE	15.87%	14.52%	20.59%	58.05%	36.51%	50.35%
TEINFO	min FFE	4.93%	14.69%	16.56%	8.11%	40.16%	41.24%
M+TEMPO	min VDE	7.10%	9.14%	12.52%	18.65%	22.48%	29.86%
	min FFE	7.10%	9.14%	12.52%	18.65%	22.48%	29.86%

Integrating our model-based U/V classifier into an F0-tracking algorithm can improve its FFE and VDE.

Error Metrics	U/V Classification	Experiments 00000000	References
Experiments			
Summary			

- The F0 Frame Error (FFE) and GPE-VDE curve can be used to evaluate the F0 tracking algorithms in a unified framework.
- The model-based U/V classifier can output robust U/V masks for F0 trackers under both white and babble noise conditions which is helpful for reducing the overall FFE.

Error Metrics	U/V Classification	Experiments ooooooo●	References

Future Work

- Better features for U/V classification to improve VDE.
- Explore noise robust F0 value estimation methods to reduce GPE.

Acknowledgement

The authors would thank Hideki Kawahara for providing the TEMPO package, and Georg Meyer for providing the KEELE corpus.

Thank you!

Q & A?

Experiments 00000000

C. J. Leggetter and P. C. Woodland.

"Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models." *Computer Speech and Language*, **9**(2):171–185, 1995.

T. Nakatani, S. Amano, T. Irino, K. Ishizuka, and T. Kondo. "A method for fundamental frequency estimation and voicing decision: Application to infant utterances recorded in real acoustical environments."

Speech Communication, **50**(3):203–214, 2008.

 L. Rabiner, M. Cheng, A. Rosenberg, and C. McGonegal.
 "A Comparative Performance Study of Several Pitch Detection Algorithms."

IEEE Trans. on Acoustics, Speech, and Signal Processing, **24**(5):399–418, 1976.