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ABSTRACT
Mobile devices like smartphones are getting increasingly im-
portant in our daily lifes. They are used in various en-
vironments and have to dynamically adapt themselves ac-
cordingly in order to provide an optimal runtime behavior.
Naturally, adapting to continuously changing environmental
conditions is a challenging task because mobile devices are
always limited in their resources and have to adapt in real-
time. In this paper, we introduce an approach that enables
resource limited devices to adapt to changing conditions us-
ing dynamic software product lines techniques. Therefore,
feature models are reduced to a specific hardware context
before installing the adaptive mobile application on the de-
vice. This reduces the amount of possible configurations
that are compatible with the device and, thereby, minimizes
the costs and the duration of an adaptation during runtime.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.9 [Software Engineering]: Man-
agement—Adaptive Software Systems; D.2.9 [Software En-
gineering]: Management—Software Configuration Manage-
ment
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1. INTRODUCTION
Emerging domains such as ubiquitous and pervasive soft-

ware systems are becoming more and more widespread. Mod-
ern computing and network environments demand a high
degree of adaptability [10]; sensor nodes, e.g., have to adapt
their transmission granularity to the remaining battery power
to enhance their life-time. These systems must dynamically
adapt to continuously changing environmental conditions
during runtime. Such Dynamic Adaptive Systems (DAS) are
complex software systems with a high degree of variability
in both requirements and resource constraints [2]. They are
able to adapt their properties and configuration at runtime
in response to dynamically varying needs and constraints.

Covering a multitude of different devices and platforms
and, therefore, facing both diverging properties and resource
requirements, the variability has to be handled at multiple
points during the lifetime of a DAS. By specifying a DAS
as a software product line (SPL) the heterogeneity between
devices or platforms is managed by deploying specific prod-
uct instances of a DAS on each device. Feature models [12]
are used to describe the variability in an SPL, specifically
how features of an application are related to each other and
which constraints are specified for them. Each feature rep-
resents either a logical group of requirements or a system
property that is relevant to some stakeholder [3, 9]. A con-
figuration consists of features that were selected according to
the variability constraints defined by the feature model [7].

Standard SPL engineering usually deals with static envi-
ronments, where a system is configured at design time to the
needs of a customer. In such a scenario, an adaptation of a
product configuration at runtime is out of scope. Dynamic
SPLs (DSPLs) have been proposed to handle such runtime
adaptivity with SPL engineering methodologies [10]. DSPLs
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are characterized by their abilities to handle configuration
and binding of features at runtime as well as to deal with
changes in the functional or qualitative requirements [10].
Using feature models to describe the variability, it is possi-
ble to adapt to the environmental conditions (context) by
continuously reconfiguring the DAS to the requirements a
context constitutes [6]. At runtime, a feature model is used
to compute a configuration to derive a plan how the compo-
nents of a DAS have to be bound and reconfigured.

However, applying DSPL based methodologies to resource
limited devices is a difficult task. Specifying constraints us-
ing a feature model requires a constraint solver to calculate
a configuration that matches both the specified constraints
and the requirements. The more features and constraints
a feature model contains, the more complex becomes the
process of solving a configuration. This is even intensified
if we focus on mobile and adaptive systems: any change
in the context may trigger a (re-)configuration. Thus, high
mobility will drain available resources, like battery power.

In this paper, we introduce our feature model reduction
approach to improve the runtime behavior of a DSPL ori-
ented configuration process. We focus on resource limited,
networked devices in distributed environments, e.g., smart-
phones or sensor nodes. Identifying several major challenges
for the development process in DAS, we propose an approach
that deals with the heterogeneity and resource limitations
of mobile devices. Providing a partial configuration that de-
scribes a specific hardware context of a device, we are able to
remove all features that are not compatible with this configu-
ration. By extracting the features that are variable, i.e., that
may be part of a configuration after this pre-configuration
or not, we reduce the space of possible configurations for a
device. This improves the configuration process at runtime
in both responsiveness and resource consumption.

2. RELATED WORK
Czarnecki et al. were the first to propose the approach

of a staged configuration using feature models [8]. The au-
thors argue that the derivation of a product configuration
using feature models may be done in stages, where each stage
eliminates possible configuration choices. With a given in-
put model, each stage yields a subset of the input model
thereby forming a specialized output feature model. The
process of a staged configuration describes successive spe-
cialization steps followed by configuration steps using the
most specialized feature model. We leverage the process of
a staged configuration to minimize the resource consump-
tion when reconfiguring mobile devices at runtime. This
approach can be described as applying a partial configura-
tion until there is no more variability left. In contrast to the
proposed staged configuration, our approach neither spe-
cializes nor generalizes the constraints of a feature model.
Instead our reduced feature model is always consistent with
the specified constraints in the original feature model.

Bencomo et al. investigated component-based technolo-
gies for runtime adaptivity using a component model called
OpenCOM [2]. OpenCOM offers component frameworks to
the developers, for both application and middleware plat-
form. The adaptive behavior is specified by reconfiguration
policies in the form of event-do-action rules. In this case,
an action describes architectural changes in the component
model, i.e., it binds components to other components dur-
ing runtime. Every possible variation of active components

and their relations is called a configuration. Using context-
aware monitors, relevant information is captured from the
environment which triggers the event-do-action properties.
The authors applied their approach to wireless sensor nodes
within a case study for a flood warning system. Possibilities
for an optimization, like a pre-configuration, are proposed
but not yet realized.

Another component-based approach that deals with adap-
tivity in ad-hoc systems is proposed by Pepper et al. [15].
The authors specifically address the problem of resource lim-
itation of mobile devices in an ad-hoc network and provide
an approach to handle the quality of services. Services are
composed by linking service units which are characterized
by their functionality and quality. The attributes are used
to describe the non-functional qualitative nature of a fea-
ture. Including quality and functional properties, the re-
sulting matching problem to find an optimal configuration
suitable for the stated requirements (best service vs. few
resources) is considered to be a major challenge. Pepper et
al. proposed several challenges and possibilities how to deal
with qualitative characteristics and how the solving may be
improved in a fair manner but no solution is provided yet.

There are several approaches which integrate contextual
aspects in variability modeling. Ali et al. studied how con-
text can influence variability [1]. Similar to our approach
they identified different variation points in which the con-
text has to be considered, e.g., at design time and at run-
time. Similarly, Hartmann et al. proposed the concept of a
context variability model [11]. Based on the context they de-
rive multiple context specific product lines. Both approaches
combine goal models with feature models to reason about
the requirements in a specific context. In our approach, we
propose to use separate feature models and to define a func-
tional mapping, i.e., require or exclude relations, between
the features in both feature models. Thus, we separate the
modeling of the variability and contextual requirements.

3. CASE STUDY
This section introduces a case study which we use to ex-

emplify our approach in the following sections. The feature
model describes a small subset of a software product line for
DAS, focusing on mobile devices.

The spectrum of devices in a DAS is characterized by
their heterogeneity, e.g., the supported connection types,
provided hardware sensors, and available memory. Figure
1 shows an example of a Software Product Line (SPL) for
smartphones, specified in the FODA notation for feature
modelling [7, 12].
Connection describes how the devices are connected to

an arbitrary network. This feature is a mandatory feature,
which means that it is contained in every possible product
configuration. A connection may either be Infrastructure

based (a centralized one-hop connection), like a connection
via GSM or via an Wi-Fi AP (access point). Furthermore, the
connection may be a wireless Ad-Hoc based connection [4]
and, thus, providing only access via decentralized multi-hop
networks. In ad-hoc environments, every device is both a
sender and a receiver, and operates as a routing point for all
devices in its range. As a consequence, it is not possible to
maintain an infrastructure and wireless ad-hoc based con-
nection at the same time. To specify such an exclusive-or
relation, alternative-groups are used. Such a group speci-
fies that exactly one feature in this group has to be selected
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Figure 1: Feature Model for Mobile Devices

when the parent feature is part of the configuration.
Depending on the environment, different Routing proto-

cols have to be used to provide an efficient connection. In
our case study, we have an alternative-group of two differ-
ent routing protocols: (i) BGP (Border Gateway Protocol1)
is an Internet Protocol (IP) based routing protocol which
is commonly used in infrastructure based networks like the
Internet. Hence, it is not compatible with a wireless ad-hoc
connection. Such constraints are modeled via different types
of cross-tree constraints. In this case of incompatibility be-
tween two features an exclude relation is defined. (ii) LAR

(Location Aided Routing [14]) is a routing protocol for wire-
less ad-hoc networks that uses the geographic location of the
devices, provided by a GPS sensor. Instead of flooding the
message to all devices in the neighborhood, the message can
be directed in a geographic direction. LAR cannot operate
without a GPS sensor. Such a dependency is modeled via the
cross-tree constraint relation require.

To provide flexibility in the targeted hardware platforms,
sensors are considered to be optional features and, therefore,
need not be part of every possible configuration. However,
if sensors are available on a specific device, we support mul-
tiple types of sensors, e.g., sensors for GPS, temperature,
and pressure monitoring. Once the parent feature Sensor

is part of the configuration, multiple but at least one of the
sub-features have to be contained in the final configuration.
Such a group of features is called an or-group.

Two optional example Applications are also contained in
an or-group. The feature VoIP (Voice over IP) describes the
ability to make a Phone Call over the Internet. To provide
its functionality, VoIP requires BGP to be part of the config-
uration. In addition to that, it is always possible to make
a Cellular based phone call as long as the GSM feature is
part of the product configuration. The application feature
Weather Forecast requires all sensors, i.e., GPS, Tempera-
ture, and Pressure.

For our case study we introduce two different kinds of
mobile phones: a smartphone of the most recent generation
and a classic mobile phone, in two different environmental
situations: Both phones are mobile and can move from one
context environment to another, but differ in their capabil-
ities. The smartphone is capable of networking via GSM

1https://bordergatewayprotocol.net/
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Figure 2: Sample Contextual Situations

and wi-fi; the mobile phone has no means of networking but
is capable to communicate via GSM. For example, Figure
2 shows three different contextual scenarios: moving from
(a) an office room to (b) walking the streets in a city. The
third scenario (c) is comparable to the first scenario (a), but
a mobile phone is used instead of a smartphone.

4. CONTEXT AWARENESS WITH DSPL
In this section we point out the importance of the different

contextual categories in the lifetime of a DAS. Afterwards we
point out major challenges in the development of context-
adaptive applications for DAS, derived by the case study
and the different contextual categories.

4.1 Contextual Categories
To bring the concept of context-awareness on mobile DAS

is a major issue in recent research [17]. One solution is to
equip a DAS with a so-called context model that describes
the characteristics of possible runtime environments.

The context specifies certain requirements for the func-
tional and qualitative aspects of a software product before
and at runtime [1, 11]. A change in the context triggers a
change in the configuration of the product to adapt it ac-
cordingly [6]. A functional requirement can be mapped to
a feature or a set of features. Qualitative characteristics
have to be assigned to every feature. Features, which pro-
vide the same functionality, can then be compared based on
their qualitative characteristics to meet the qualitative re-
quirements. For example, considering situation (a) in our
case study, it is possible to make either a VoIP based or
cellular based phone. But, if we want to use the cheapest
alternative, we will choose VoIP because it is cheaper than
a cellular based phone call.

Google 
Nexus S

Connection Sensors ...

GSM HSDPA Wi-Fi Bluetooth NFC GPS Gyroscope

Figure 3: Hardware Features for a Google Nexus S

We identified several contextual categories that may be
used for a context aware minimization of the feature model
and the reconfiguration at runtime: The hardware context
is directly related to each device, describing provided hard-
ware characteristics, e.g., installed sensors or CPU. There-



fore, this type of context is static for each device. The hard-
ware context provides both information regarding incompat-
ibilities to and requirements for specific features which are
part of an SPL. Such contextual information can be speci-
fied with a feature model, e.g., the hardware context of the
provided hardware features of a smartphone is depicted in
Figure 3. The depicted hardware context describes an ex-
tract of the smartphone product line for a Google Nexus S2.
This feature model defines a pre-selection of features that
are provided by such a kind of device. Using this knowledge
allows to derive a device specific configuration of a DAS.
Thus, every feature that is either required or incompatible
with the installed hardware has to be statically bound into
or completely removed from every configuration of a soft-
ware product for such a device.

Other contextual categories that may trigger a reconfig-
uration are based on the location, e.g., in an office or on
a street, the time, e.g., silent mode at night, the available
resources, e.g., the remaining battery power, or the used in-
terfaces, e.g., connected to a docking station. This shows,
that DAS are in a continuous struggle to adapt the func-
tionality of a device to available services and resources.

4.2 Challenges
The presented case study comprises several challenges that

have to be addressed when developing applications for mo-
bile devices which are capable to adapt themself to their
environment.

1. Heterogeneity. DAS include a multitude of devices,
basically any device that is capable to adapt itself
to its environment. This includes for example sensor
nodes [2], autonomic pervasive systems [5], or multime-
dia capable devices [15] like smartphones and tablets.
These devices differ in their provided features, e.g., in
their sensing capabilities, operating systems, or equip-
ped hardware. The composition of different features
is specific to every type of device. Hence, the capa-
bilities and requirements of each device are different
depending on the provided features.

2. Resource limitation. Hardware constraints are a com-
mon issue for developing applications for mobile de-
vices [15]. Every device is limited by the installed
hardware, e.g., the CPU, memory, and battery. In our
case study, we have two rather oppositional devices: a
smartphone and a more resource limited mobile phone.
The computation of a configuration process consumes
resources. To improve the resource consumption, the
amount of computations has to be minimized and the
process of computing a configuration has to be opti-
mized, e.g., by reducing the computational complexity.

3. Quality of Service. Deriving a configuration using a
feature model is usually limited to the functional as-
pects of the features. To support requirements re-
garding the quality of a provided functionality, it is
necessary to include features that provide the same
functionality, and are thereby exchangeable, but show
different runtime behavior. Benchmarking allows us
to categorize features in their non-functional runtime
behavior for the considered quality aspects [15]. To an-
notate qualitative characteristics, feature models have

2http://www.google.com/nexus/#/tech-specs

to be extended using attributes [13] such that require-
ments like “the responsiveness has to be below four
seconds” can be specified. However, a drawback of this
approach is that the process of solving the constraints
and deriving a configuration gets more complex and,
thus, consumes more resources.

4. Derive context. To provide context awareness, the raw
information which characterize the state of the envi-
ronment have to be collected first [17]. This is usu-
ally done by using sensors and monitoring mechanisms.
After a snapshot of the environment is taken, the col-
lected information has to be analyzed to derive the
needed information to trigger a local reconfiguration.
For such a reconfiguration, the current state of the
device configuration, a global goal, and the new en-
vironmental conditions and requirements have to be
known [1].

5. Runtime adaptivity. Looking at the scenarios in our
case study, an application has to compensate a change
of context when moving from one situation to another
(c.f. Section 3: moving from (a) to (b)). To avoid any
loss of data and to ensure responsiveness of the device,
the process of adaptation has to be seamless and con-
tinuous. Using a DSPL based engineering approach
mechanisms can be provided that support the adap-
tivity and autonomy of an application [6]. Considering
the previous challenge 2, the process of adaptation has
also to be efficient and to consume a minimal amount
of resources.

In the following sections, we will provide an approach that
addresses the first and the second challenges. The challenges
of handling non-functional characteristics, context deriva-
tion, and the process of runtime adaptation are considered
to be future work in our research.

5. IMPROVING RUNTIME ADAPTIVITY BY
FEATURE REDUCTION

In this section we introduce our approach to improve the
computation of a configuration at runtime. Therefore, a fea-
ture model for a large domain is reduced until there is only
a minimal set of variable (unbound) features left. By apply-
ing a partial configuration, this feature model is intended to
constitute a pre-configuration. Such a partial configuration
is given by the contextual requirements and may be used to
restrict the variability in a feature model. Figure 4 depicts
this process: starting with a large domain feature model, a
partial configuration is selected before a restricted, reduced
feature model is deployed on a phone. The reduced feature
model contains the needed variability to compute a configu-
ration according to the dynamically changing requirements,
continuously during runtime.

5.1 Reducing a Feature Model
A feature model can be depicted as a tree of features,

c.f. Figure 1, containing features as nodes, and constraints
as parent-child relations and cross-tree constraints. Such
a feature model is also specifiable as a set of propositional
logic formulas, using ∨ (disjunction), ∧ (conjunction), and
¬ (negation). Thus, a feature model FM = (F , C) is defined
as a finite set of features F = {f1, . . . , fn} and C as a single
propositional (three valued) logic formula over F .
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A feature model represents a set of configurations Γ. Each
configuration γ ∈ Γ is defined as an assignment of the three-
valued logic truth values in F :

γ ∈ Γ : F → {0, ?, 1} (1)

• 0 = false (feature is bound to value 0 , i.e., deselected
or dead)

• ? = unknown (feature is unbound, i.e., neither bound
to 1 or 0)

• 1 = true (feature is bound to value 1, i.e., selected or
alive)

to the features in F .
Bound-alive features are characterized by their necessity

on a device or in a certain context. These and all implicitly
required features are always part of a product configuration
for a specific context and may not be removed. For example,
the feature Connection in Figure 1 is considered to be a
bound-alive feature for the hardware context in Figure 3
because the targeted device is equipped with several types
of connections.

In contrast to a bound-alive feature, bound-dead features
are excluded from a configuration, e.g., if they are not com-
patible with a certain context. Therefore, they are removed
from the software product line that is specific to a certain
context. For example, the feature Temperature in the fea-
ture model in Figure 1 is removed from the feature model as
soon as it is deployed on a smartphone that is characterized
by the hardware context depicted in Figure 3.

Unbound features may not be required by bound-alive fea-
tures or require bound-dead features. In a further reduction
of a configuration, they can still be selected as a part of the
configuration.

A configuration γ ∈ Γ thus defines a substitution on a
formula C with

C′ := C[γ]

where C′ is derived from C by replacing all occurrences of a
feature f in F by

• 1 iff γ(f) = 1

• f iff γ(f) = ?

• 0 iff γ(f) = 0

A configuration gamma is called complete iff

@f ∈ F : γ(f) = ?

Analogously, a configuration is called partially complete iff

∃f ∈ F : γ(f) = ?

Thus, a partial configuration is similar to a specialization of
a configuration. Although the variability is reduced in this
process, a partial configuration is still containing features
that are unbound and, therefore, are variable.

The propositional formulas can be constructed as a con-
junction of implications from optional or mandatory child-
parent relations, implications from parents to groups and
additional constraints as require or exclude constraints. A
configuration is invalid if the feature assignment is not com-
patible with the constraints C defined in FM.

The set of all (partially) consistent configurations of FM =
(F , C), i.e., the set of all substitutions that do not (yet) map
the formula C onto an antinomy is given by

ΓC := {γ ∈ Γ | C[γ] 0 0}

Let FM = (F , C) and FM ′ = (F ′, C′) be two feature
models and γ ∈ Γ be a configuration of FM . A feature
model FM ′ is a reduction of FM w.r.t. to the configuration
γ iff

F ′ = { f ∈ F | γ(f) = ?

∧ C′ ` C[γ]

∧ C[γ] ` C′ }
(2)

The reduced and, thus, smaller feature model contains
only the still unbound feature set F ′ of the original fea-
ture model and a new usually simpler constraint C′ which
is equivalent to the original constraint C restricted to the
remaining set of unbound features. All bound-alive features
are always and all bound-dead features are never part of
a configuration by definition. Thus, if an unbound feature
becomes bound and part of the configuration in a further
reduction or runtime-configuration, the required bound fea-
tures are already part of the configuration.

Theorem 1. Any consistent configuration γ′ ∈ ΓC′ of a
reduced feature model FM ′ ⊆ FM w.r.t. γ can be extended
to a consistent configuration γ+ ∈ ΓC of the original feature
model FM such that

∀ f ′ ∈ F ′ : γ+(f ′) = γ′(f ′)

∀ f ∈ F\F ′ : γ+(f) = γ(f)
(3)

Furthermore, any consistent configuration γ+ ∈ ΓC with

∀ f ∈ F\F ′ : γ+(f) = γ(f) (4)

can be reduced to a consistent configuration γ′ ∈ ΓC′ such
that

∀ f ∈ F ′ : γ′(f ′) = γ+(f ′) (5)

Proof. That Theorem 1 holds can be shown by contra-
diction as follows:

1. Obviously, there exists at most one γ+ ∈ ΓC according
to the extension of a γ′ as defined in (4) (∀ f ∈ F)

2. Let us assume that γ+ 6∈ ΓC

⇒ C[γ+] ` 0

⇒ C[γ][γ′] ` 0

⇒ C′′[γ′] ` 0 with C′′ = C[γ]

⇒ C′[γ′] ` C′′[γ′] ` 0 with C′ ` C′′ as required in (2)

⇒ contradiction to γ′ ∈ ΓC′  



Analogously, we can show that any consistent configuration
γ+ ∈ ΓC with γ+(f) = γ(f) ∀f ∈ F\F ′ can be reduced to
a consistent configuration γ′ ∈ ΓC′ .

5.2 Reducing for a Hardware Context
An application scenario for minimizing a feature model

to improve the runtime adaptivity is depicted in Figure 5.
In this scenario, a deploy server is equipped with a domain
feature model valid for a DAS and supports multiple het-
erogeneous devices. Additionally, configurations which de-
scribe the hardware context of all target devices reside on
this server. Therefore, the deploy server is capable to re-
duce the domain feature model with respect to every partial
(device-)configuration on the server.

Device1 . . .             Devicen

Feature Model FM

HW configuration1

HW configurationn

. . .

Reduced FM1

Reduced FMn

. . .

FM1 FMn

Deploy 
Server

Figure 5: Deployment of reduced Feature Models

Algorithm 1 Deployment of a reduced FM’

Require: A feature model FM and a consistent partial de-
vice configuration γd

Ensure: γd specific FM’ reduced w.r.t (3), (4), and (5)

FM ′ = (F ′, C′)← (F , C)
for all f ∈ F ′ do

if (γd(f) 6= ?) then
F ′ ← F ′ \ f
C′ ← adapt(f, γd(f), C′)

else if (bound(f, 1, γd, C′) then
F ′ ← F ′ \ f
C′ ← adapt(f, 1, C′)

else if (bound(f, 0, C) then
F ′ ← F ′ \ f
C′ ← adapt(f, 0, C′)

end if
end for
Deploy FM’ to devices d | γd

5.2.1 Process of Reduction
The detailed reduction process for this deployment sce-

nario is given in Algorithm 1 that implements our formal
reduction approach from the previous Section. For a given
domain feature model FM, we assume to have a configu-
ration γd describing the hardware context for one specific
device d ∈ D. Thus, there is a configuration γd for every

device d ∈ D that fulfills the following conditions:

f ∈ FHW : γd(f) 6= ?

f ∈ F\FHW : γd(f) = ?

With a given FM and γd the algorithm computes a re-
duced FM ′ as follows. To derive a reduced feature model
FM ′ for a configuration γd, the algorithm checks every fea-
ture f ∈ F . To find unbound features for FM ′, the feature
has to be evaluated if it can be set to bound-alive (1) or
bound-dead (0) for γd according to the constraints in C. This
is done by an evaluation function bound(f, v, γd, C′) that
evaluates the feature according to its assignment with the
given configuration and constraints. If a substitution of f by
¬v in the formula C leads to a contradiction, the feature f
may only be substituted by v:

bound(f, v, γ, C′) :⇐⇒ C′[f → ¬v] ` 0

Thus, f is implicitly bound to v and the function bound is
evaluated to true.

Keeping the constraints consistent in both FM and in the
derived FM’ is a difficult task. Removing features from the
original feature model implies to remove constraints related
to those features. This leads to new configuration possibil-
ities that were not intentionally specified. Thus, the con-
straints have to be adapted to provide a consistent reduc-
tion of FM which is done by the method adapt(f, v, C).
A naive implementation of adapt simply replaces all occur-
rences of f in C by v, i.e., adapt(f, v, C) = C [ f → v]. An
extensive description of all possible constraint transforma-
tions is out scope in this paper. However, we give a short
description of two transformation possibilities depicted in
Figure 6 for an (i) or-group and (ii) an alternative-group. If
the parent feature of an alternative-group is configured to
be bound-alive (grey background) it is substituted by 1 and
removed from FM’. The alternative-group relation is then
inherited to the root feature in FM’ (c.f. Figure 6(a)). In
contrast, if a feature within an or-relation is selected to be
bound-alive, the group is dissolved and all other features
become optional features, and, therefore, are unbound. The
parent feature is selected to be bound-alive within the con-
figuration and the optional features are linked to the root
feature in FM’ (c.f. Figure 6(b)).
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Figure 6: Resolving Group Constraints

After all features in FM’ have been checked and configured
according to γd and constraints have been adapted to pro-
vide a consistent reduction, the reduced feature model FM’
is deployed on all devices compatible with the configuration



γd. Although our approach addresses only the reduction of
the feature model itself, the reduction may also be used to
reduce the deployable software application. To reduce the
application the implementation of features which are classi-
fied as bound-dead is removed because the implementation
is incompatible to the hardware context and would never be
used during runtime of the device.

The final result of this brute force reduction process pro-
duces a feature model FM ′ such that each consistent con-
figuration of the original feature model FM that extends the
partial configuration γd corresponds to a consistent reduced
configuration of the stepwise reduced feature model FM ′

for the following reasons: The reduction process for a given
FM and partial configuration above preserves the required
property as proven in Theorem 1.

5.2.2 Reducing the Case Study Example
In this section we apply the reduction process to the fea-

ture model of the case study in Figure 1. Using the hardware
context given in Figure 3 as a partial configuration, we are
able to reduce the original feature model to its unbound fea-
tures. Figure 7 shows the unbound features and the remain-
ing constraints for the hardware context of the smartphone
product line. These unbound features require the features
provided by the hardware context to be bound-alive on the
target device.
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Application

Infra-
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Wi-Fi 
Ad-Hoc

Wi-Fi 
AP

GSM

BGP

LAR

Phone 
Call

VoIP

Cellular

Mobile 
Device

Figure 7: Reduced Feature Model for Figure 1

Using the reduced feature model in Figure 7 we are now
able to compute specific configurations according to the dy-
namically changing requirements of the context more effi-
ciently. Considering our context scenarios in Section 3 a
suitable configuration is computed when changing the loca-
tion from (i) Office Ad-Hoc to (ii) City GSM.

6. EVALUATION
This section provides an evaluation of our feature model

reduction approach presented in this paper based on simu-
lation. The evaluation illustrates the benefit of using a re-
duced feature model for a reconfiguration at runtime instead
of the original feature model. Therefore, the evaluation fo-
cuses on a comparison of the time to compute a configuration
and resources spent during such a computation.

6.1 Simulation Setup
As simulation environment we used a simulation server

with 3.4GHz and 8GB of RAM. As the test model we used
a feature model FM containing 72 features from the SPLOT3

repository. We randomly created a configuration γ by bind-
ing features to bound-alive (20%) and bound-dead (5%).

3http://www.splot-research.org/

Reducing the FM according to γ using the Algorithm 1 re-
sulted in a reduced feature model FM’ with 32 features (44%
smaller). One simulation run consisted of 300 configuration
requests on both feature models FM’ and FM using a par-
tial configuration γ′. Each (re-)configuration represents a
change in the contextual environment and would trigger an
adaptation on a device. Therefore, a complete and valid
configuration is computed that may be used to reconfigure
the device.

In each simulation run we recorded the time to compute a
complete configuration and the executed operational steps,
e.g., method calls. The operational steps are used as an
abstraction for the consumed computational resources. To
validate our results and to identify deviations in our results,
we executed 500 simulation runs.

6.2 Results
The results for comparing the execution time for the com-

putation of a complete configuration for γ′ in comparison
for FM and FM’ are depicted in Figure 8(a). During the
computation of 300 reconfigurations a single computation
was approximate 60% faster in averge if we used the reduced
feature model FM’ instead of the original feature model FM.
The variance in the simulation runs result from the differ-
ent, randomly generated configuration requirements γ′ since
they differ in their complexity between 3 to 12 features.

Figure 8(b) shows the amount of executed operations over
300 reconfiguration requests. Again, the computation using
a reduced feature model outperforms the computation us-
ing the original feature model. During the processing of 300
reconfigurations 66% less operations were executed if a re-
duced feature model is used. This implies that 34% less
computational power was utilized and, thus, solving on a
reduced feature model proofs to be more energy efficient.
Compared to the runtime comparison, the variance in the
amount of executed operations was about four times higher
if the original feature model FM was used.

However, reducing a feature model is costly: the reduc-
tion of FM using our Algorithm 1 executed 2264 × 103 op-
erations. Computing a configuration executed 17 × 103 or
8×103 operations in average, using FM or FM’ respectively.
This implies, that we have to execute approximate 250 re-
configurations using FM’ to regain the resources spend in
the reduction of FM. These results shows, that a reduction
of complex feature models should be computed on a device
that has the sufficient resources, e.g., a deployment server.
Nevertheless, for our simulation setup we are up to 60% fes-
ter and use up to 34% less computational resources if we use
a reduced feature model.

Naturally, our results depend on the amount of reduced
features. Our test model was reduced by 44%; if the level
of reduction is lower, the difference between solving on an
original and reduced feature model are smaller.

7. CONCLUSION AND FUTURE WORK
In this paper we proposed to apply dynamic software

product lines to the domain of dynamic adaptive systems.
Introducing a context aware case study focusing on mobile
devices we derived several contextual categories and chal-
lenges. To approach the challenges of resource limitation
and heterogeneity in dynamic adaptive systems, we intro-
duced a reduction methodology to minimize a feature model
according to the hardware context of a device. We provided
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Figure 8: Comparison computing a Configuration at Runtime with a reduced and original Feature Model

a formal approach to reduce a feature model to a minimal
set of variable features by removing features that are bound
according to a partial configuration. With this approach, we
reduce a feature model on a powerful device, like a server,
before the application is installed on a resource limited de-
vice, like a smartphone. As a consequence the computation
of a configuration at runtime is faster and utilizes fewer re-
sources. Setting up a simulation based on a deployment
scenario, we evaluated our reduction approach. The results
of the simulation were promising and illustrated how much
resources may be saved using a reduced feature model. Ad-
ditionally, the results lead to the conclusion that amount of
improvement depend of the amount of reduced features.

Our next steps in future research focus on three major
areas: (i) validate our deploy scenario on a set of mobile de-
vices, (ii) include qualitative characteristics in features and
the configuration process, and (iii) adopt a structured ap-
proach for modeling and composing multiple contextual cat-
egories each inducing reduced pre-configurations and consti-
tuting a valid specialization of the feature model, cf., [16].
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