
Reducing File System Latency using a
Predictive Approach �

James Griffioen, Randy Appleton

Department of Computer Science
University of Kentucky
Lexington, KY 40506

Abstract

Despite impressive advances in file system throughput
resulting from technologies such as high-bandwidth
networks and disk arrays, file system latency has not
improved and in many cases has become worse. Con-
sequently, file system I/O remains one of the major
bottlenecks to operating system performance [10].

This paper investigates an automated predictive
approach towards reducing file latency. Automatic
Prefetching uses past file accesses to predict future
file system requests. The objective is to provide data in
advance of the request for the data, effectively masking
access latencies. We have designed and implement a
system to measure the performance benefits of auto-
matic prefetching. Our current results, obtained from
a trace-driven simulation, show that prefetching results
in as much as a 280% improvement over LRU espe-
cially for smaller caches. Alternatively, prefetching
can reduce cache size by up to 50%.

1 Motivation

Rapid improvements in processor and memory speeds
have created a situation in which I/O, in particular file
system I/O, has become the major bottleneck to operat-
ing system performance [10]. Recent advances in high
bandwidth devices (e.g., RAID, ATM networks) have
had a large impact on file system throughput. Unfor-
tunately, access latency still remains a problem and is
not likely to improve significantly due to the physical
limitations of storage devices and network transfer la-
tencies. Moreover, the increasing popularity of certain
file system designs such as RAID, CDROM, wide area
distributed file systems, wireless networks, and mo-
bile hosts has only exacerbated the latency problem.
For example, distributed file systems experience net-
work latency combined with standard disk latency. As

�This work was supported in part by NSF grant number CCR-
9309176

distributed file systems scale both numerically and ge-
ographically, as envisioned by the Andrew File System
designers [7], network delays will become the dom-
inant factor in remote file system access. Similarly,
local file systems built on technologies like CD-ROMs
also suffer from very high latencies but continue to in-
crease in popularity due to the large amount of storage
space they offer.

Although a variety of high bandwidth technologies
are now available, it is unlikely that existing (and
emerging) low-end technologies such as serial lines
running SLIP or PPP, 64/128 Kb ISDN and other slower
speed networks will disappear in the near future given
their low-cost and wide-spread use. Such communica-
tion technologies suffer from both high latencies and
low bandwidths. Distributed file systems that build on
or incorporate these technologies will experience la-
tencies substantially higher than that of conventional
file systems. However, the appeal of low-cost widely
available shared access to files will certainly prolong
the existence of such file systems, despite their poor
performance.

The goal of our research is to investigate methods
for successfully reducing the the perceived latency as-
sociated with file system operations. In this paper, we
describe a new method for masking file system latency
called automatic prefetching. Automatic prefetching
takes a heuristic-based approach using knowledge of
past accesses to predict future access without user or
application intervention. As a result, applications au-
tomatically receive reduced perceived latencies, better
use of available bandwidth via batched file system re-
quests, and improved cache utilization.

2 Related work

Both caching and prefetching have been used in a vari-
ety of settings to improve performance. The following
briefly describes related work involving caching and
prefetching to improve file system performance.



2.1 Caching

Caching has been used successfully in many systems
to substantially reduce the amount of file system I/O
[16, 6, 8, 1]. Despite the success of caching, it is pre-
cisely the accesses that cannot be satisfied from the
cache that are the current bottleneck to file system per-
formance [10]. Unfortunately, increasing the cache
size beyond a certain point only results in minor per-
formance improvements. Experience shows that the
relative benefit of caching decreases as cache size (and
thus cache cost) increases [9, 8]. There exists a thresh-
old beyond which performance improvements are mi-
nor and prohibitively expensive. Moreover, studies
show that the “natural” cache size or threshold is be-
coming a substantially larger fraction (one forth to one
third) of the total memory, due in part to larger files
(e.g., big applications, databases, video, audio, etc.)
[2]. Consequently, new methods are needed to reduce
the perceived latency of file accesses and keep cache
sizes in check.

Although machines with large memories are now
available, low-end workstations, PCs, mobile lap-
tops/notebooks, and now PDAs (personal data assis-
tants) with limited memory capacities enjoy wide-
spread use. Because of cost or space constraints these
machines cannot support large file caches. The desire
for smaller portable machines combined with continu-
ally increasing files size means that large caches cannot
be assumed to be the complete solution to the latency
problem.

Finally, as a result of rapid improvements in band-
width, cache miss service times are dominated by la-
tency. Note that:

� Most files are quite small. In fact, measurements
of existing distributed file systems show that the
average file is only a few kilobytes long [9, 2].
For files of this size, transmission rate is of lit-
tle concern when compared to the access latency
across a WAN or from a slow device. As a result,
access latency, not bandwidth, becomes the dom-
inate cost for references to files not in the cache.

� In many distributed file systems, the open() and
close() functions represent synchronization points
for shared files. Although the file itself may reside
in the client cache, each open() and close() call
must be executed at the server for consistency
reasons. The latency of these calls can be quite
large, and tends to dominate other costs, even
when the file is in the file cache.

In short, the benefits of standard caching have been
realized. To improve file system performance further

and keep file cache sizes in check, caching will need to
be supplemented with new methods and algorithms.

2.2 Prefetching

The concept of prefetching has been used in a va-
riety of environments including microprocessor de-
signs, virtual memory paging, databases, and file read
ahead. More recently, long term prefetching has been
used in file systems to support disconnected operation
[14, 15, 5]. Prefetching has also been used to improve
parallel file access on MIMD architectures [4].

One relatively straight forward method of prefetch-
ing is to have each application inform the operating
system of its future requirements. This approach has
been proposed by Patterson et. al. [11]. Using this ap-
proach, the application program informs the operating
system of its future file requirements, and the operating
system then attempts to optimize those accesses. The
basic idea is that the application knows what files will
be needed and when they will be needed.

Application directed prefetching is certainly a step
in the right direction. However, there are several draw-
backs to this approach. Using this approach, applica-
tions must be rewritten to inform the operating system
of future file requirements. Moreover, the program-
mer must learn a reasonably complex set of additional
system directives that must be strategically deployed
throughout the program. This implies that the appli-
cation writer must have a thorough understanding of
the application and its file access patterns. Ironically, a
key goal of many recent languages, in particular object-
oriented languages, is abstraction and encapsulation;
hiding the implementation details from the program-
mer. Even when the details are visible, our experience
indicates that the enormity and complexity of many
software systems creates a situation in which experts
may have difficulty grasping the complete picture of
file access patterns. Moreover, incorrectly placed di-
rectives or an incomplete set of directives can actually
degrade performance rather than improve it.

A second problem is that the operating system needs
a significant lead-time to insure the file is available
when needed. Therefore, in order to benefit from
prefetching, the application must have a significant
amount of computation to do between the time the file
is predicted and the time the file is accessed. However,
many applications do not know which files they will
need until the actual need arises. For instance, the pre-
processor of a compiler does not know the pattern of
nested include files until the files are actually encoun-
tered in the input stream, nor will an editor necessarily
know which files a user normally edits. Our approach
attempts to solve this problem by predicting the need



for a file well in advance of when the application could;
in some cases long before the application even begins
to execute.

A third problem with application driven prefetching
arises in situations where related file accesses span mul-
tiple executables. Typically applications are written in-
dependently and only know file access patterns within
the application. In situations where a series of applica-
tions execute repeatedly, like an edit/compile/run cycle,
or certain commonly run shell scripts, no one applica-
tion knows the cross-application file access patterns,
and therefore cannot inform the operating system of a
future application’s file requirements. In some cases,
batch-type utilities, such as the Unix make facility, can
be instrumented to understand cross-application access
patterns. However, even in this case, a complete view
of the real cross application pattern is often unknown to
the user or requires extreme expertise to determine the
pattern. Our approach uses long term history informa-
tion to support prefetching across application bound-
aries.

3 Automatic Prefetching

We are investigating an approach we call automatic
prefetching, in which the operating system rather
than the application predicts future file requirements.
The basic idea and hypothesis underlying automatic
prefetching is that future file activity can be success-
fully predicted from past file activity. This knowledge
can then be used to improve overall file system perfor-
mance.

Automatic prefetching has several advantages over
existing approaches. First, existing applications do not
need to be rewritten or modified, nor do new appli-
cations need to incorporate non-portable prefetching
operations. As a result, all applications receive the
benefits of automatic prefetching, including existing
software. Second, because the operating system au-
tomatically performs prefetching on the application’s
behalf, application writers can concentrate on solving
the problem at hand rather than worrying about opti-
mizing file system performance. Third, the operating
system monitors file access across application bound-
aries and can thus detect access patterns that span mul-
tiple applications executed repeatedly. Consequently,
the operating system can prefetch files substantially
earlier than the file is actually needed, often before the
application even begins to execute.

Automatic prefetching allows the operating system
effectively to overlap processing with file transfers.
The operating system can also use past access infor-
mation to batch together multiple file requests and thus
make better use of available bandwidth. Past access in-

formation can also be used to improve the cache man-
agement algorithm, effectively reducing cache misses
even if no prefetching occurs.

The first goal of our research was to determine
whether such an approach is viable. Our second goal
was to develop effective prefetch policies and quantify
the benefits of automatic prefetching. The following
sections consider each of these objectives and describe
our results.

4 Analysis of Existing Systems

To determine the viability of automatic prefetching, we
analyzed current file system usage patterns. Although
other researchers have gathered file system traces [9, 2],
we decided to modify the SunOS kernel in order to
gather our own traces that extract specific information
important to our research. In addition to recording all
file system calls made by the system, the kernel gathers
precise information regarding the issuing process and
the timing for every operation. The timing information
not only serves as an indicator of the system’s perfor-
mance, but it also provides information as to whether
prefetching can have any substantial effects on perfor-
mance.

We gathered a variety of traces, including the normal
daily usage of several researchers, and also various
synthetic workloads. Traces were collected on a single
Sun Sparcstation supporting several users executing a
variety of tasks. Traces were collected for varying time
periods with the longest traces spanning more than 10
days and containing over 500,000 operations. Users
were not restricted in any way. Typical daily usage
included users processing email, editing, compiling,
preparing documents and executing other task typical
of an academic environment. This particular set of
traces contains almost no database activity. The data
we collected appears to be in line with that of other
studies [9, 2] given similar workloads.

Our initial analysis of the trace data indicates that
typical file system usage can realize substantial per-
formance improvements from the use of prefetching,
and also provides several guidelines for a successful
prefetching policy.

First, the data shows that there is relatively little time
between the moment when a file is opened and the
moment when the first read occurs (see figure 1). In
fact, the median time for our traces was less than three
milliseconds. Consequently, prefetching must occur
significantly earlier than the open operation to achieve
any significant performance improvement. Prefetching
at open time will only provide minor improvements.

Second, the data shows that the average amount
of time between successive opens is substantial (200



0

10

20

30

40

50

60

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

P
er

ce
nt

 o
f a

ll 
O

pe
ns

Time in ms

Figure 1: Histogram of times between open and first read of a file.

ms). If the operating system can accurately predict the
next file that will be accessed, there exists a sufficient
amount of time to prefetch the file.

In a multi-user, multiprogramming environment,
concurrently executing tasks may generate an inter-
leaved stream of file requests. In such an environment,
reliable access patterns may be difficult to obtain. Even
when patterns are discernable, the randomness of the
concurrency may render the prefetching effort inef-
fective. However, analysis of trace data consisting of
multiple users (and various daemons) shows that even
in a multiprogramming environment accesses tend to
be “sequential” where we define sequential as a sen-
sible/predictable uninterrupted progression of file ac-
cesses associated with a task. In fact, measurements
show that over 94% of the accesses follow logically
from the previous access. Thus multiprogramming
seems to have little effect on the ability to predict the
next file referenced.

5 The Probability Graph

We have designed and implemented a simple analyzer
that attempts to predict future accesses based on past
access patterns. Driven by trace data, the analyzer
dynamically creates a logical graph called a Probability
Graph. Each node in the graph represents a file in the
file system.

Before describing the probabilitygraph, we must de-

fine the lookahead period used to construct the graph.
The lookahead period defines what it means for one file
to be opened “soon” after another file. The analyzer
defines the lookahead period to be a fixed number of
file open operations that occur after the current open.
If a file is opened during this period, the open is consid-
ered to have occurred “soon” after the current open. A
physical time measure rather than a virtual time mea-
sure could be used, but the above measure is easily
obtained and can be argued to be a better definition
of “soon” given the unknown execution times and file
access patterns of applications. Our results show that
this measure works well in practice.

We say two files are related if the files are opened
withina lookahead period of one another. For example,
if the lookahead period is one, then the next file opened
is the only file considered to be related to the current
file. If the lookahead period is five, then any file opened
within five files of the current file is considered to be
related to the current file.

The analyzer allocates a node in the probability
graph for each file of interest in the file system. Unix
exec system calls are treated like opens and thus are
included in the probability graph. One graph, derived
from the trace described in section 7, generated ap-
proximately 6,500 nodes accessed over an eight day
period. Each node consumes less than one hundred
bytes, and can be efficiently stored on disk in the inode
of each associated file, with active portions cached for



better performance. Our current graph storage scheme
has not been optimized and thus is rather wasteful. We
have recently begun investigating methods that will
substantially reduce the graph size via graph pruning,
aging, and/or compression.

Arcs in the probability graph represent related ac-
cesses. If the open for one file follows within the
lookahead period of the open for a second file, a di-
rected arc is drawn from the first to the second. Larger
lookaheads produce more arcs. The analyzer weighs
each arc by the number of times that the second file is
accessed after the first file. Thus, the graph represents
an ordered list of files demanded from the file system,
and each arc represents the probability of a particular
file being opened soon after another file.

Figure 2 illustrates the structure of an example prob-
ability graph. The probability graph provides the in-

alloca.h

171

65

66
40

30

4

97

131

40

config

tm.h

Figure 2: Three nodes of an example probabilitygraph.

formation necessary to make intelligent prefetch de-
cisions. We define the chance of a prediction being
correct as the probability of a file (say file B) being
opened given the fact that another file (file A) has been
opened. The chance of file B following file A can be
obtained from the probability graph as the ratio of the
number of arcs from file A to file B divided by the total
number of arcs leaving file A. We say a prediction is
reasonable if the estimated chance of the prediction is
above a tunable parameter minimum chance. We say
a prediction is correct if the file predicted is actually
opened within the lookahead period.

Establishing a minimum chance requirement is cru-
cial to avoid wasting system resources. In the absence
of a minimum requirement, the analyzer would produce
several predictions for each file open, consuming net-
work and cache resources with each prediction, many
of which would be incorrect.

To measure the success of the analyzer we define an
accuracy value. The accuracy of a set of predictions is
the number of correct predictions divided by the total
number of predictions made. The accuracy will almost
always be at least as large as the minimum chance, and
in practice is substantially higher.

The number of predictions made per open call varies
with the required accuracy of the predictions. Re-
quiring very accurate predictions (predictions that are
almost never wrong) means that only a limited number
of predictions can be made. For one set of trace data,
using a relatively low minimum chance value (65%) the
predictor averaged 0.45 files predicted per open. For
higher minimum chance values (95%) the predictor av-
eraged only 0.1 files predicted per open. Even when
using a relatively low minimum chance (e.g., 65%), the
predictor was able to make a prediction about 40% of
the time and was correct on approximately 80% of the
predictions made.

Figure 3 shows the distribution of estimated chance
values with a lookahead of one. The distributionshows
that a large number of predictions have an estimated
chance of 100%. Setting the minimum chance less
than 50% places the system in danger of prefetching
many unlikely files. By setting the minimum chance at
50%, very few files that should have been prefetched
will be missed. Moreover, the distribution shows how
a low minimum chance can still result in a high average
accuracy.

6 A Simulation System

To evaluate the performance of systems based on au-
tomatic prefetching, we implemented a simulator that
models a file system. In order to simulate a variety
of file system architectures having a variety of perfor-
mance characteristics, the simulator is highly parame-
terized and can be adjusted to model several file system
designs. This flexibility allows us to measure and com-
pare the performance of various cache management
policies and mechanisms under a wide variety of file
system conditions. The simulator consists of four basic
components: a driver, cache manager, disk subsystem,
and predictor.

The driver reads a timestamped file system trace and
translates each file access into a file system request for
the simulator to process. Because the driver generates
file requests directly from the trace data, the workload
is exactly like that of typical (concurrent) user-level
applications. However, the driver must modify the
set of requests in a few special cases. Because the
simulator is only interested in file system I/O activity,
the driver removes accesses made to files representing
devices such as terminals or /dev/null. References to



0

5

10

15

20

25

30

0 20 40 60 80 100

P
er

ce
nt

 o
f A

ll 
A

rc
s

Estimated Chance in Percent

Figure 3: Histogram of estimated chances given a lookahead of one.

certain standard shared libraries such as the C library
are also eliminated. Accesses (e.g., mmap() calls) to
these libraries rarely require any file system activity,
since they are typically already present in the virtual
memory cache.

The cache manager manages a simulated file cache
and services as many requests as possible from the
cache without invoking the disk subsystem. We have
implemented two cache managers. The first is a stan-
dard LRU cache manager, where disk pages are re-
placed in the order of least recent use. The second
cache manager is the prefetch cache manager. The
prefetch cache manager operates much like the LRU
manager, updating timestamps on each access and re-
placing the least recently used page. However, the
prefetch manager also updates timestamps based on
knowledge of expected accesses from the predictor,
thus rescuing some-soon-to-be-accessed pages from
replacement. We have found that prefetch cache man-
agement can improve performance even if no prefetch-
ing occurs (i.e., no pages are actually brought in ahead
of time). When run in prefetch mode, the simulator
shows that anywhere between 5% and 30% of the per-
formance improvement comes from pages that were
rescued rather than actually being prefetched.

The task of the disk subsystem is to simulate a file
storage device. The current disk subsystem has been
configured to emulate local disks. Local disk have rel-
atively low latency when compared to our other target

file systems (e.g., wide area distributed file systems,
CDROMs, RAIDs, or wireless networks). Conse-
quently, we expect that the performance improvements
realized with a local disk model will only be amplified
in our other target environments. In the following tests,
we assumed a disk model with a first access latency of
15 ms and a transfer rate of 2 MB/sec after factoring in
typical file system overhead.

Finally, the simulator contains a predictor. The
predictor observes open requests that arrive from the
driver, and records the data in the probability graph
described earlier. The predictor builds the probability
graph dynamically just as it would be done in a real
system. The longer the simulator executes, the wiser it
becomes. On each access the simulator gains a clearer
understanding of the true access patterns.

During each open, the probability graph is examined
for prefetch opportunities. If an opportunity is discov-
ered, then a read request is sent to the cache manager. If
the cache contains the appropriate data, then the data’s
access time is set to the current time. This ensures
that the data will be present for the anticipated need,
and possibly rescues the data from an impending flush
from the cache. If the prefetch request cannot be satis-
fied from the cache, then it is prefetched from the disk
subject to the characteristics of the disk subsystem.

Notice that the current disk subsystem does no re-
ordering of requests. In particular, it does not preempt
or defer prefetch requests to satisfy subsequent appli-



0

2

4

6

8

10

12

0 200 400 600 800 1000

P
er

ce
nt

 o
f a

ll 
P

re
fe

tc
he

s

Time in ms

Figure 4: Histogram of times between prefetch and first read access.

cation requests. Reordering and prioritizing requests
represents an area of further potential performance im-
provements.

We are currently in the process of implementing the
automatic prefetching system inside a Unix kernel run-
ning NFS to measure performance on an actual system.

7 Experimental Results

We performed several tests to measure the performance
improvements achieved by automatic prefetching. For
the particular set of tests described below, a trace taken
over an eight day period containing the unrestricted
activity of multiple users was used. To determine the
performance benefits of prefetching, we ran several
simulations varying the cache size, lookahead value,
and minimum chance and also measured the LRU per-
formance in each case for comparison purposes.

Recall from section 4, that the time between the open
of a file and the first read is too small for prefetching to
be effective. Figure 4 shows that the simulator is able
to predict and begin prefetching files sufficiently far in
advance of the first read to the file. Our measurements
indicate that 94% of the files that were predicted and
then subsequently access were prefetched more than
20 ms before the actual need, resulting in cache hits at
the time of the first read.

7.1 Prefetch Parameters Effect on Perfor-
mance

Two parameters that significantly affect the predictions
made by the predictor are the lookahead and minimum
chance values.

Recall that the lookahead represents how close two
file opens need be for the files to be considered related.
Setting this value very large increases the number of
files that are considered related to each other, and there-
fore each file open may potentially cause several other
files to be prefetched.

Large lookaheads increase the number of files
prefetched since more predictions are made in response
to each open request. Moreover, large lookaheads re-
sult in files being prefetched substantially earlier, be-
cause predictions can be made much further in ad-
vance. As a result, large lookaheads are inappropriate
for smaller cache sizes, but often perform very well
with larger caches1 . In the case of small caches, large
lookaheads tend to prefetch files too far in advance of
the need. As a result, data necessary to the current com-
putation may be forced out of the cache and replaced

1Here we use the terms “small” and “large” as relative measures
of cache size where the meaning of “small” and “large” depend on
the workload. A “small cache” will have many cache misses while
a “large cache” will have few misses. For the workload in this trace,
caches of one megabyte or less would be considered small while
caches of three megabytesor more would be considered large. Other
traces would produce different values.



5

10

15

0.5

0.7

0.9

44

46

48

50

52

54

56

Lookahead

MinChance

Miss Rate in Percent

Figure 5: Cache misses as function of lookahead and MinChance for a 400K cache. Performance varies by as much
as 13% (between 43% and 56%) depending on the lookahead and minchance settings.

5

10

15

0.5

0.7

0.9

10

11

Lookahead

MinChance

Miss Rate in Percent

Figure 6: Cache misses as function of lookahead and MinChance for a 4M cache. Performance varies by as much as
2% (between 9% and 11%) depending on the lookahead and minchance settings.



400K Cache Miss Rates (%)
Lookahead

1 3 5 9 13 17

50% 43.2 44.5 45.7 51.6 53.0 54.9
60% 47.3 46.8 45.2 48.3 53.3 53.1

MinChance 70% 50.6 51.6 49.6 47.1 53.5 53.2
80% 50.8 53.0 50.0 48.9 52.7 52.2
90% 52.8 54.3 52.2 49.2 48.5 48.9
95% 55.9 56.2 55.6 54.2 51.8 51.6

Table 1: Data points corresponding to Figure 5.

4000K Cache Miss Rates (%)
Lookahead

1 3 5 9 13 17

50% 10.9 10.0 9.8 9.7 9.4 9.1
60% 11.1 10.5 10.2 10.0 10.1 9.9

MinChance 70% 11.0 10.6 10.5 10.2 10.2 10.2
80% 11.0 10.7 10.6 10.4 10.2 10.1
90% 11.0 11.0 10.9 10.7 10.6 10.4
95% 10.9 10.9 11.0 10.9 10.7 10.6

Table 2: Data points corresponding to Figure 6.

by (useless) data needed far in the future. However,
for larger cache sizes, the cache may have sufficient
space to load in file data required in the future without
disturbing the file data required by the current compu-
tation.

MinChance is the minimum estimated probability
that a given file will be needed in the near future.
For larger cache sizes smaller MinChance values per-
form better. Setting the MinChance low results in
aggressive prefetching. When the cache is large, in-
correct prefetches have minimal affect on overall per-
formance. Somewhat surprisingly, an aggressively low
MinChance value benefits small caches as well. Be-
cause the hit rate is low for small caches, correct pre-
dictions result in large performance benefits. A low
minimum chance increases the total number of cor-
rect predictions. For moderate cache sizes, the optimal
MinChance is a function of the specific cache size and
must limit the number of missed prefetch opportunities
without prefetching unnecessary files.

In summary, MinChance should be low (aggressive)
for both large and small caches, but higher for inter-
mediate size caches. Lookahead should increase with
increasing cache size. Figures 5 and 6 and their asso-
ciated tables, tables 1 and 2, illustrate these tradeoffs

for a 400 KB cache and a 4000 KB cache respectively.
Clearly, the Lookahead and MinChance parameters are
highly sensative to the cache size and must be adjusted
in accordance with the cache size. Moreover, mul-
tiple settings for a particular cache size may result in
approximately equal miss ratios. In this case, other fac-
tors such as network congestion and processing over-
head can be used to aid in the selection of appropriate
parameter settings.

7.2 Performance Compared to LRU

The primary goal of automatic prefetching is to bring
necessary file data into the cache before it is needed.
If automatic prefetching is successful we would expect
the number of cache misses to be less than the number
of cache misses experienced under standard LRU cache
management.

Figure 7 shows the number of page misses that the
file system incurred under LRU and under prefetching
for various cache sizes. After tuning the above parame-
ters, prefetching performs better than LRU for all cache
sizes, in some cases outperforming LRU by as much as
280%. Also note that for the cache sizes shown here,
prefetching provided the same or better performance



0

10

20

30

40

50

60

500 1000 1500 2000 2500 3000 3500 4000

M
is

s 
R

at
e 

in
 P

er
ce

nt

Cache size in KB

Prefetch
Lru

Figure 7: Cache misses as a function of cache size.

than LRU using a cache half the size. This is partic-
ularly important for machines that do not have large
amounts of memory available for file caching. Even
for large memory machines, the ability to achieve sim-
ilar performance using smaller cache sizes results in
more memory for applications. This also indicates that
the number of correctly prefetched pages more than
offsets any pages incorrectly forced out of the cache by
prefetching, even for small cache sizes.

For this particular trace, both LRU and prefetching
realize relatively little improvement in the miss ratios
for caches larger than 4 MB2. However, although LRU
performance begins to approach prefetch performance
as cache size increases, simulations out to cache sizes
of 20 MB still show that prefetching results in an 11%
reduction in the number of misses as compared to LRU.

8 Conclusions

Our results show that reasonable predictions can be
made based on past file activity. As a result, auto-
matic prefetching can substantially reduce I/O latency,
make better use of the available bandwidth via batched
prefetch requests, and improve cache utilization. As
wide area distributed file systems, CDROM, RAID,

2Like the traces reported in [2], this particular trace consisted of
unrestricted real user usage. However, unlike the traces in [2], this
trace contained no “heavy users” and thus can achieve reasonable
miss rates with a 4 MB cache.

and other high latency/high bandwidth systems become
prevalent, prefetching will become an increasingly im-
portant mechanism toward high-performance I/O.

9 Acknowledgements

We would like to thank the reviewers for their helpful
comments and suggestions. We would also like to
thank Mary Baker for reviewing an early draft of the
paper and providing valuable feedback. Finally we
would like to thank the DCS users for submitting to
being traced.

References

[1] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and
M. Seltzer. Non-Volatile Memory for Fast, Re-
liable File Systems. In Proceedings of the 5th
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems, pages 10–22, October 1992.

[2] Mary G. Baker, John H. Hartman, Michael D.
Kupfer, Ken W. Shirriff, and John K. Ousterhout.
Measurements of a distributed file system. In
Proceedings of 13th ACM Symposium on Operat-
ing Systems Principles, pages 198–212. Associa-
tion for Computing Machinery SIGOPS, October
1991.



[3] James Griffioen and Randy Appleton. Automatic
Prefetching in a WAN. In Proceedings of the
IEEE Workshop on Advances in Parallel and Dis-
tributed Systems, pages 8 – 12, Oct 1993.

[4] D. Kotz and C. Ellis. Prefetching in file systems
for MIMD multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, 1:218–230,
1990.

[5] Geoff Kuenning, Gerald J. Popek, and Peter Rei-
her. An Analysis of Trace Data for Predictive File
Caching in Mobile Computing. In Proceedings
of the 1994 Summer USENIX Conference, June
1994.

[6] Samuel J. Leffler, Marshal K. Mc Kusick,
Michael J. Karels, and John S. Quarterman. The
Design and Implementation of the 4.3 BSD Unix
Operating System. Addison Wesley, 1989.

[7] J. Morris, M. Satyanarayanan, M. Conner,
J. Howard, D. Rosenthal, and F. Smith. Andrew:
A Distributed Personal Computing Environment.
CACM, 29:184–201, March 1986.

[8] M. Nelson, B. Welch, and J. Ousterhout. Caching
in the Sprite network file system. ACM Transac-
tions on Computer Systems, 6(1):134–154,Febru-
ary 1988.

[9] J. Ousterhout, Da Costa, H. Harrison, J Kunze,
M. Kupfer, and J. Thompson. A Trace-Driven
Analysis of the Unix 4.2 BSD File System. In
Proceedings of the 10th Symposium on Operat-
ing Systems Principles, pages 15–24, December
1985.

[10] John K. Ousterhout. Why Aren’t Operating Sys-
tems Getting Faster As Fast as Hardware? In
Proceedings of the Summer 1990 USENIX Con-
ference, pages 247–256, June 1990.

[11] H. Patterson, G. Gibson, and M. Satyanarayanan.
A Status Report on Research in Transparent In-
formed Prefetching. SIGOPS, Operating Systems
Review, 27(2):21–34, April 1993.

[12] D. Presotto, R. Pike, K. Thompson, and
H. Trickey. Plan 9, A Distributed System. In
Proceedings of the Spring 1991 EurOpen Conf.,
pages 43–50, May 1991.

[13] R. Sandberg, D. Goldberg, S. Kleiman, Dan
Walsh, and Bob Lyon. Design and Implementa-
tion of the Sun Network File System. In Proceed-
ings of the Summer USENIX Conference, pages
119–130. USENIX Association, June 1985.

[14] M. Satyanarayanan. Coda: A Highly Available
File System for a Distributed Workstation Envi-
ronment. IEEE Trans. on Computers, 39:447–
459, April 1990.

[15] Peter Skopp and Gail Kaiser. Disconnected Oper-
ation in a Multi-User Software Development En-
vironment. In Proceedings of the IEEE Workshop
on Advances in Parallel and Distributed Systems,
pages 146–151, October 1993.

[16] A. Smith. Cache memories. Computing Surveys,
14(3), September 1982.

[17] R. van Renesse, A. S. Tanenbaum, and
A. Wilschut. The Design of a High Performance
File Server. Proceedings of the IEEE 9th Inter-
national Conference on Distributed Computing
Systems, 1989.

10 Author Information

James Griffioen is an Assistant Professor in the Com-
puter Science Department at the University of Ken-
tucky. He received a B.A. in computer science from
Calvin College in 1985, and his M.S. and Ph.D in
computer science from Purdue University in 1988
and 1991 respectively. He was the recipient of
the ’89-’90 USENIX scholarship. His research in-
terests include high-performance distributed file sys-
tems, scalable distributed shared memory systems, and
high-speed network protocols. His email address is
griff@dcs.uky.edu.

Randy Appleton is a Ph.D student in the Computer
Science Department at the University of Kentucky. He
received his B.S. degree from the University of Illinois
in 1989 and his M.S. from the University of Kentucky
in 1992. His research interests are distributed file sys-
tems, operating systems, and databases. His email
address is randy@dcs.uky.edu.


