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Reducing greenhouse gas emissions of Amazon
hydropower with strategic dam planning
Rafael M. Almeida 1, Qinru Shi2, Jonathan M. Gomes-Selman3, Xiaojian Wu 2,12, Yexiang Xue2,13,

Hector Angarita 4, Nathan Barros5, Bruce R. Forsberg6, Roosevelt García-Villacorta1, Stephen K. Hamilton7,8,

John M. Melack9, Mariana Montoya10, Guillaume Perez2, Suresh A. Sethi11, Carla P. Gomes2 &

Alexander S. Flecker1

Hundreds of dams have been proposed throughout the Amazon basin, one of the world’s

largest untapped hydropower frontiers. While hydropower is a potentially clean source of

renewable energy, some projects produce high greenhouse gas (GHG) emissions per unit

electricity generated (carbon intensity). Here we show how carbon intensities of proposed

Amazon upland dams (median= 39 kg CO2eqMWh−1, 100-year horizon) are often com-

parable with solar and wind energy, whereas some lowland dams (median= 133 kg CO2eq

MWh−1) may exceed carbon intensities of fossil-fuel power plants. Based on 158 existing and

351 proposed dams, we present a multi-objective optimization framework showing that low-

carbon expansion of Amazon hydropower relies on strategic planning, which is generally

linked to placing dams in higher elevations and smaller streams. Ultimately, basin-scale dam

planning that considers GHG emissions along with social and ecological externalities will be

decisive for sustainable energy development where new hydropower is contemplated.
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H
ydropower has been promoted as a climate-friendly
alternative to meet the world’s growing electricity
demand1. Globally, hydropower dam construction is

expected to reach unprecedented rates in the coming decades,
especially in countries with emerging economies2. One hotspot
for future hydropower expansion is the Amazon3–5, the world’s
largest river basin. Although dams have already been built in
several regions of the basin, the Amazon hydropower potential
remains largely untapped, and electricity generation is the pri-
mary motivation for new dam construction2. Existing evidence
suggests that most global hydropower projects have total green-
house gas (GHG) emissions per unit electricity generated (also
known as carbon intensity, Table 1) within the range of other
renewable energy sources like solar and wind power6–8. However,
about 10% of the world’s hydropower facilities emit as much
GHGs per unit energy as conventional fossil-fueled power
plants6. Some existing dams in the lowland Amazon have been
shown to be up to ten times more carbon-intensive than coal-
fired power plants9–11. In light of the expected boom in con-
struction of new hydropower dams in the Amazon basin, it is
critical to identify whether future dams will produce low-carbon
energy.

GHG emissions from reservoirs stem primarily from the
decomposition of organic matter that is either flooded, trans-
ferred to the reservoir via runoff and river input, or produced
within the reservoir as aquatic plant and algal biomass12.
Although part of the emissions would occur under natural pre-
impoundment conditions, reservoirs generally result in net
increases of both carbon dioxide (CO2) and methane (CH4)
emissions to the atmosphere, and should thus be considered
anthropogenic GHG sources13,14. CH4 is the most important
GHG produced in reservoirs and originates from bacterial
decomposition of organic matter in anoxic water and sediment
environments created by impoundment13. GHG emissions
(Table 1) from reservoirs vary substantially over space and
time15,16, being positively correlated with temperature17,18 and
aquatic primary production12, and negatively correlated with
reservoir age17,19. Since total GHG emission is proportional to
flooded area, the electricity generation capacity (installed capa-
city) per unit of reservoir flooded area, or power density
(Table 1), is a key determinant of carbon intensity8,9,20,21. Hence,
projects with low GHG emission (e.g., oligotrophic reservoirs12)
can still have high carbon intensities if they produce low amounts
of electricity per unit flooded area (i.e., low power density).

Environmental impact studies for new dams rarely consider
GHG emissions, especially in developing countries where
hydropower is currently expanding22. The problem is com-
pounded by the piecemeal nature of these studies where each
project is evaluated independently without considering the inte-
grated effect of all existing and planned dams on basin-wide

emissions. Here, we use a database of GHG fluxes for existing
tropical and subtropical reservoirs12 to calculate the range of
carbon intensities expected for 351 proposed and 158 existing
Amazon hydropower dams. To incorporate the time-related
radiative forcing effect of CH4, a potent GHG with an approx-
imate atmospheric residence time of only about a decade, we
conducted analyses of carbon intensities considering 20-year and
100-year time horizons. We found that carbon intensities vary by
over two orders of magnitude from the lowest to the highest
emitting dam, with projects in lower elevations and larger rivers
being associated with higher emissions per unit electricity gen-
erated. Using a basin-wide optimization approach, we show that
strategic dam planning could minimize aggregate carbon inten-
sity as hydropower generation expands. Our approach can be
adapted to different scales and could help Amazonian countries
achieve their energy goals more sustainably.

Results and Discussion
Carbon intensities of proposed dams. We estimate that existing
Amazon hydropower reservoirs collectively emit 14 Tg CO2eq per
year over a 100-year time horizon (95% confidence interval (CI):
10–19), or ≈2% of the current total annual GHG emission from
reservoirs globally12; if all 351 proposed dams are built, annual
emissions from Amazon reservoirs would increase approximately
fivefold (Supplementary Table 1). The carbon intensities of
reservoirs that would be created by proposed dams differ mark-
edly depending on whether dams are built in upland (> 500m
a.s.l.) or lowland reaches (Fig. 1).

Based on projections of the sustainable development scenario
of the International Energy Agency’s (IEA) World Energy
Outlook 201723, we consider 80 kg CO2eqMWh−1 as a reference
carbon intensity for sustainable electricity generation. This value
is consistent with achieving the energy-related goals of the United
Nations 2030 Agenda for Sustainable Development (2030
Agenda), which would reduce the collective carbon intensity of
the global electricity sector from the current ≈500 kg CO2eq
MWh−1 to ≈80 kg CO2eqMWh−1 in 2040. Our analysis indicates
that most proposed upland dams (92% for a 100-year time
horizon and 60% for a 20-year time horizon) would likely result
in carbon intensities below 80 kg CO2eqMWh−1 (Fig. 1b, c). By
contrast, only a minority of lowland dams would be expected to
emit less than 80 kg CO2eqMWh−1 (36% for a 100-year time
horizon and 14% for a 20-year time horizon). In fact, over a 20-
year time horizon about 25% of the proposed lowland dams
would likely be more carbon-intensive than coal-fired power
plants (Fig. 1b).

Lowland dams have significantly higher carbon intensities due
to their typically larger reservoir areas and innately lower power
densities, whereas the steeper topography of high-elevation areas

Table 1 Metrics commonly used to evaluate GHG emissions in hydropower projects

Metric Units Description

GHG flux kg CO2eq km
−2 d−1 The exchange of GHG, in CO2 equivalents, at the reservoir air-water interface per unit of surface area over a

certain time period. The direction of GHG flux can be from water to atmosphere (emission or efflux; positive

value) or from atmosphere to water (uptake or influx; negative value).

Total GHG flux Tg CO2eq GHG flux over a reference time period multiplied by the total reservoir area. The reference times considered

here are a day and 1, 20, and 100 years (1 Tg= 1012 g).

Power density MWkm−2 The ratio of electricity generation capacity to reservoir flooded area. This metric reflects the strong link between

GHG emissions and flooded area and is often used as a simple proxy for carbon intensity.

Carbon intensity kg CO2eqMWh−1 Also known as emission intensity or emission factor. CO2-equivalent emissions produced per unit electricity

generated. This metric is used to compare emissions performance across projects of different sizes, and also

among electricity sources.
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favors hydropower projects with higher power densities. This
explains why the largest number of Amazon dams with high
carbon intensities occurs in Brazil, a predominantly lowland
country, whereas dams with lower carbon intensities are
concentrated in mountainous parts of Bolivia, Ecuador, and Peru

(Fig. 1c). Notably, while it has recently been suggested that dams
can mitigate natural GHG emissions from downstream floodplain
wetlands by reducing the extent and duration of inundation1,
hydropower dams that can regulate inundation of downstream
wetlands are typically those in lowland reaches, which generally
implies lower power density and hence high carbon intensities for
such projects. In addition, it is critical to understand whether
lowland dams are more likely to create reservoirs enriched in
nutrients such as phosphorus and nitrogen, which would increase
aquatic primary production and consequently GHG
emissions12,24, thereby increasing their carbon intensities.

Achieving low-carbon hydropower with strategic planning.
Our findings suggest that Amazon hydropower must be devel-
oped strategically on a basin-wide scale to achieve low-carbon
energy goals. We therefore performed a multi-objective optimi-
zation to determine the Pareto-optimal frontier25, which defines
the set of solutions (i.e., dam portfolios) that minimizes total
basin-wide GHG emissions while satisfying varying hydroelec-
tricity generation goals (Supplementary Fig. 1). Our computa-
tional framework adapts and parallelizes previously proposed
algorithms26,27 to compute the exact (provably optimal) Pareto
frontier for 2351 (≈10105) possible combinations of proposed
Amazon dams in very fast computational time (< 10min) (Sup-
plementary Fig. 2).

Our multi-objective optimization indicates that if future
hydropower dams are selected optimally, it will be possible to
develop ≈80% (75 GW) of the total proposed electricity
generation capacity while creating a portfolio of new dams with
an aggregate carbon intensity below 80 kg CO2eqMWh−1 over a
100-year time horizon (Fig. 2a, b). Conversely, uncoordinated
planning may result in portfolios of new dams with collective
carbon intensities incompatible with sustainable energy goals
(Fig. 2a, b). For instance, suboptimally exploiting about 15 GW of
the total proposed installed capacity—which is equivalent to the
current installed capacity of the entire electricity sector of Bolivia,
Ecuador and Peru—could result in hydropower portfolios as
carbon-intensive as equivalent electricity generation by fossil-fuel
sources (Fig. 2a, b, e). Optimal planning, however, would allow
the exploitation of 15 GW through a portfolio of new dams
emitting < 25 kg CO2eqMWh−1 for a 100-year time horizon,
which is below the carbon intensity of a typical solar power plant7

(Fig. 2a, b, f). Thus, the ability of hydropower to mitigate climate
change1 relies critically on strategic dam portfolio planning so as
to avoid carbon-intensive projects, especially over short time
horizons (Fig. 2a).

Building dams without basin-wide coordination has led to a
current Amazon dam portfolio with a collective carbon intensity
of ≈200 kg CO2eqMWh−1 (20-year time horizon) and ≈90 kg
CO2eqMWh−1 (100-year time horizon) (Fig. 2c, d). Optimal
selection of future dams can lead to significant improvements,
lowering the overall carbon intensity of Amazon hydropower
(Fig. 2c, d). After ≈75 GW of the proposed Amazon hydropower
potential is tapped, however, it will not be possible to add extra
dams without increasing the corresponding carbon intensity of
the portfolio (Fig. 2c, d). This would occur because all of the most
efficient proposed projects would have been selected; thus,
tapping more energy thereafter implies selecting more dams on
higher-order streams at lower elevations, which tend to have
higher carbon intensities (Fig. 3).

The need for strategic planning to balance energy and water
management benefits provided by dams with associated social
and environmental externalities is becoming increasingly
apparent25,28–34. For instance, a study in a large tributary basin
to the Mekong River, the largest river in Southeast Asia, has
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demonstrated that strategic planning would have allowed the
exploitation of 70% of the basin’s hydropower potential while
trapping only 20% of the river’s sand-sized (64 μm to 2 mm)
sediment load, which is critical for downstream geomorphology,
floodplain development and aquatic biota. However, project-by-
project hydropower development implemented in the region has
led to trapping of more than 90% of the sand load while
exploiting only 50% of the hydropower potential33. Similar
concepts of strategic planning have been applied to optimize dam
removal strategies. For instance, a study in the Willamette River
basin in the western US has shown that removing 12 existing
dams would reconnect over 50% of the river network while
sacrificing <2% of current hydropower and water-storage
capacity28.

Climate-friendly hydropower projects. Because the carbon
intensity of hydroelectric dams is strongly linked to power
density9,20,21, power density is the criterion employed by the
Clean Development Mechanism of the UN Framework Con-
vention on Climate Change to finance and grant carbon credits to
hydropower projects35. Projects with power densities above
4MW km−2 are eligible for credits and GHG emissions from
candidate projects with power densities above 10MWkm−2 are
assumed to be negligible over 100-year horizons. While power
density may provide a convenient sustainable energy metric,
natural variability in GHG emissions observed in reservoirs
can lead to differences in carbon intensities for dams with com-
parable power densities. We plotted power densities against our
predicted carbon intensities to examine what densities may
satisfy sustainable energy goals (i.e., < 80 kg CO2eqMWh−1). For

a 100-year time horizon, power densities above 6.7MWkm−2 (95%
CI: 4.5–9.5) were associated with projects emitting <80 kg CO2eq
MWh−1 (Fig. 4a). The lower bound of the 95% CI (4.5MWkm−2)
suggests that the Clean Development Mechanism lending criter-
ion of 4 MW km−2 avoids most carbon-intensive projects. The
more conservative upper bound of the 95% CI indicates that
projects are very likely to emit <80 kg CO2eqMWh−1 only when
power densities exceed 9.5 MW km−2; about half of the proposed
Amazon dams have power densities below 9.5MW km−2

(Fig. 4a). Considering a 20-year time horizon for carbon inten-
sities causes approximately a threefold increase in the power
density threshold for designating climate-friendly projects
(Fig. 4b).

On a basin scale, prioritizing projects with high power densities
can attenuate carbon intensities of future hydropower dam
portfolios. However, mitigation measures can also reduce the
carbon intensities of individual projects. Tackling internal and
external sources of organic matter supporting CH4 production in
reservoirs is key. Previous studies suggest that reducing nutrient
inputs to reservoirs12,36 and clearing terrestrial vegetation prior to
flooding20 can significantly decrease carbon intensities of hydro-
power projects. In addition, project-scale improvements to power
densities can make future hydropower projects less carbon-
intensive20, including alternative project designs that sacrifice a
fraction of power generation to favor disproportionately smaller
reservoir flooded areas, which would increase power density and
hence reduce carbon intensity. Finally, retrofitting existing
hydropower turbines with more efficient designs can increase
electricity generation by up to 30% without requiring additional
flooded area31, thus contributing to lower carbon intensities in
the hydropower sector.
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Moving forward. Our findings point to the complexities of uti-
lizing hydropower as an energy source compatible with climate
change mitigation. Integrated regional assessments of GHG
emissions can help identify portfolios of dams that are consistent
with low-carbon energy goals. Although our study has focused on
Amazon dams, our approach can be adapted to other regions
where hydropower is rapidly expanding, including the Balkans
and major river basins such as the Congo, the Mekong, the
Ganges-Brahmaputra, and the Yangtze2.

Carbon intensity is a key criterion for sustainable energy
planning. However, we emphasize that hydropower dams have a
wide range of additional interactions with social and ecological
systems, and some dams may have other purposes such as water
supply, flood control, and recreation. Dam construction can lead
to social disruptions37 and seriously compromise a variety of
ecosystem services and processes38 including altered natural flow
and flood regimes39,40, reduced sediment33 and nutrient41 supply
to downstream waters, blockage of fish migrations3, deterioration
of habitat connectivity42,43, and loss of biodiversity42–44.
Ultimately, a broader suite of criteria including consideration of

alternative energy sources will be needed to fully integrate the
social and ecological externalities into strategic hydropower
planning, ideally using a multicriteria optimization framework
building on the approach we employed in this study.

Methods
Amazon dams database. Geographic location, elevation and technical data
including installed capacity and flooded area for proposed and existing dams were
obtained from published databases on existing and proposed Amazon dams3,45.
Our database incorporated information from recent national government databases
for countries where updated inventory data were readily available46,47. We calcu-
lated the level of branching in the river network using the Strahler stream order
method48.

There are 158 existing dams, either operating or under construction, with over
1 MW of installed capacity in the Amazon basin, totaling 32,608MW of electricity
generation capacity with an average of 206MW per dam (range: 1–11,233MW).
We identified 351 proposed dams in various stages of inventory, planning and
licensing (installed capacity >1MW). The proposed dams have a combined
electricity generation capacity of 91,887 MW, on average 262MW per dam (range:
1–6133MW). Watershed areas above each dam were estimated from a digital
elevation model of the region. Existing and proposed dams were categorized as
upland or lowland using a cutoff of 500 m a.s.l.49. In some cases (26% of dams),
information on flooded areas was unavailable. For existing reservoirs without
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reported flooded areas, we quantified flooded areas from satellite imagery (Google
Earth Pro 7.3.2.5776). For proposed dams with missing information, we used
available flooded areas as a training dataset to develop a multiple regression model
including country, watershed area, installed capacity, and elevation as covariates to
estimate flooded areas (Supplementary Fig. 3a). The predictive power of the
regression model was high; however, we also ran sensitivity analyses to confirm
that our main conclusions were robust to the inclusion of estimated flooded areas
for the subset of dams with missing data (Supplementary Fig. 3b).

Time horizon of the analyses. To compare the radiative forcing effects of GHGs
with different warming potentials and atmospheric residence times, an index
termed Global Warming Potential (GWP) is typically used. The GWP measures the
relative amount of energy the emission of a gas will absorb over a given period of
time in relation to the same amount of CO2. The most widely used time horizon for
GWP of atmospheric gases is 100 years, but shorter time frames are particularly
appropriate for interpreting the climate effects of certain activities when short-lived
gases are to be prioritized. This is the case of CH4, which remains in the atmo-
sphere for approximately a decade but has a large radiative forcing effect. There-
fore, all of our analyses also consider a 20-year time horizon in addition to the
commonly used 100-year time horizon. In terms of radiative forcing, CH4 is the
predominant GHG emitted from hydropower reservoirs, and the general temporal
pattern of GHG emissions from dams indicates that emissions peak in the first
decade after damming and then fall to lower levels that remain somewhat constant
over time13. Therefore, the high potential of dams to cause warming over short
timescales gets underrepresented when the GHG footprint of dams is assessed only
over long time horizons. We converted CH4 emissions to CO2-equivalents using a
GWP of 34 over 100 years and 86 over 20 years50.

Carbon intensity estimates. The carbon intensity (also referred to as emission
intensity or emission factor) of power sources measures the net GHG emission per
unit electricity generated (kg CO2eqMWh−1). We combined project-specific data
on flooded areas and installed capacity from our Amazon dams database with 48
CO2 and 38 CH4 published flux estimates for tropical and subtropical reservoirs12

to calculate carbon intensity ranges for all existing and proposed Amazon dams. To
calculate the carbon intensity of a given dam, we first calculated total GHG flux as
follows:

TEdam ¼ Adam ´ netCO2
´ FCO2;dam

þ netCH4
´ FCH4;dam

´GWPCH4

� �

´ 1þ Rdownstreamð Þ ð1Þ

where TEdam is the total GHG flux (kg CO2eq d−1), with positive values denoting
emission (water-to-atmosphere flux) and negative values denoting uptake (atmosphere-
to-water flux); Adam is the reservoir flooded area (km2); FCO2,dam is the CO2 flux (kg
CO2 km−2 d−1); FCH4,dam is the CH4 flux (kg CH4 km−2 d−1); GWPCH4 is a conversion
factor for the global warming potential of CH4 over the corresponding time horizon
(20 or 100 years) to transform kgCH4 km−2 d−1 to kg CO2eq km−2 d−1; Rdownstream is
a constant representing the ratio of downstream emissions to reservoir-surface emis-
sions, estimated to be 17%51. We multiplied CO2 fluxes by a discount factor of 0.25
(netCO2) and CH4 fluxes by 0.90 (netCH4) to account only for the net (anthropogenic)
change in GHG emissions associated with reservoir creation (see details below). We

then calculated total electricity generation as follows:

EGdam ¼ Capdam ´ 24 ´ PCap ð2Þ

where EGdam is the total electricity generation of a given dam over a day
(MWh d−1); Capdam is the installed capacity (MW), which was multiplied by 24 to
obtain the energy output in 24 h and to have numerator and denominator units of
Eq. (3) in the same time unit; and PCap is a constant representing the capacity
factor (0.5727), which denotes the effective electricity generation as a proportion of
installed capacity, and was derived from an empirical relationship between data in
our database on existing Amazon dams. Carbon intensity (CIdam,
kg CO2eqMWh−1) is then calculated as:

CIdam ¼
TEdam
EGdam

þ CIconstruction ð3Þ

where CIconstruction is a constant representing the carbon intensity associated with
construction and infrastructure of hydropower dams (19 kg CO2eqMWh−1 for a
100-year time horizon)7.

Uncertainty in estimated carbon intensities for proposed Amazon dams is
largely influenced by variability in the GHG flux input data (i.e., FCO2,dam and FCH4,

dam in Eq. (1)). Thus, for each Amazon dam, we generated 10,000 carbon intensity
predictions through the implementation of a bootstrapping procedure that
randomly resampled with equal probability from the dataset of published CO2 and
CH4 fluxes from tropical and subtropical reservoirs12. CH4 fluxes from these
reservoirs included both ebullition (bubbles rising directly from sediments) and
diffusion. Our bootstrapped ranges of carbon intensities therefore reflect project-
to-project variability in GHG flux rates as observed for existing tropical and
subtropical dams. The CO2 and CH4 fluxes measured for single dams12 were found
to be uncorrelated (r= 0.19, p= 0.16), which allowed us to combine independently
resampled CO2 and CH4 fluxes. Variation in calculated carbon intensity among
dams is essentially driven by two parameters: installed capacity and flooded areas.
Supplementary Fig. 4 shows examples of the bootstrapping output for two existing
dams with contrasting power densities. Emissions results presented in the main
text are based on mean and 95% confidence intervals for bootstrapped values.

Our calculations incorporate the net change in GHG fluxes resulting from the
transformation of a riverine landscape into a reservoir by dam construction. The
most comprehensive review on GHG emissions from reservoirs, which we used to
support our analysis, reported gross fluxes12. To assess the net change in GHG
fluxes resulting from the creation of a reservoir, emissions that would have existed
under pre-impoundment conditions have to be discounted from the gross fluxes.
Although conceptually simple, disentangling natural and anthropogenic reservoir
emissions is a complex task with limited empirical support13. A recent review
suggested that it is reasonable to assume that practically all CH4 emissions from
global reservoirs are new and therefore anthropogenic, whereas the majority of
CO2 emissions (perhaps ≈ 75%) over a 100-year time horizon would take place
even without the reservoir creation13. In our analysis, we conservatively assumed
that 75% of reservoir CO2 emissions and 10% of CH4 emissions reflect natural pre-
impoundment emissions, and thus we incorporated these corrections in Eq. (1)
(netCO2 and netCH4). For a particular reservoir, the percentage of CH4 emissions
that can be attributed to reservoir creation depends in part on the preexisting
environments that become inundated; floodplains and other wetlands would have
higher CH4 emissions rates than non-wetland environments52,53. We use the 10%

C
a

rb
o

n
 i
n

te
n

s
it
y

(k
g

 C
O

2
e

q
 M

W
h

–
1
)

Power density

(MW km–2)

100-year time horizon 20-year time horizon

a b

2030 Agenda

Power density

(MW km–2)

10,000

1000

100

10

0 10 20 30 40 50

10,000

1000

100

10

0 10 20 30 40 50

30

20

10

0

1 10 100 1000
Power density (MW km–2)

N
u

m
b

e
r 

o
f 

d
a

m
s

Fig. 4 Low-carbon power densities for Amazon hydropower. Power density is a key determinant of carbon intensity. We plotted the functional relationship

between power density and carbon intensity for existing and proposed Amazon dams over a a 100-year and b 20-year time horizon. Shaded areas reflect

uncertainty about GHG fluxes (95% bootstrap confidence region, see Methods). Points below the green line indicate projects with carbon intensities that

satisfy the reference carbon intensity for sustainable electricity production (80 kg CO2eqMWh−1). To improve visualization, we omitted projects with

power densities above 50MWkm−2 (≈25% of the dams). The inset figure in (a) shows the frequency distribution of the power densities of all proposed

Amazon dams
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estimate in our analysis because preexisting land cover information for all of the
existing and proposed reservoirs in the Amazon is not available. We ran sensitivity
analyses to verify how much these assumptions affect our results (Supplementary
Fig. 5). Emissions of nitrous oxide (N2O) can also occur in reservoirs; however, this
gas was not considered in our analysis because N2O emissions generally represent
< 5% of the total gross CO2-equivalent emissions from impoundments12, and
because Amazon soils have naturally high rates of N2O emission, such that net
increases in N2O emissions associated with dams are expected to be relatively
low54.

Previous studies indicate that reservoir GHG emissions vary as a function of
temperature18 and therefore latitude17, with low-latitude dams generally emitting
more GHG per unit area. Thus, we used flux information only from tropical and
subtropical dams in the global reservoir emissions database to represent the
latitudinal range of dam projects proposed in the Amazon12. Sensitivity analyses
indicated that carbon intensities would not change substantially if fluxes from
tropical dams only or dams from all climates (with most dams being located in
northern temperate zones) were utilized instead of the subset that we adopted
(Supplementary Fig. 6).

The increased rate of GHG emissions varies over the lifetime of a hydropower
dam, with peak fluxes occurring in the first years after damming due to the
decomposition of flooded biomass, followed by a protracted period of lower fluxes
due to decomposition of soil organic matter, continuing river inputs, and new
aquatic primary production9,14,19. The reported GHG flux measurements for
tropical and subtropical dams12 refer to dams on average > 30 years old, which
means that they reflect GHG fluxes that miss the large pulse of emissions
anticipated when dam reservoirs are first flooded. To account for the initial pulse of
emissions from a hydropower project, we applied multiplier factors to the reported
emissions associated with the first 5 years post-damming (300% for years 1–3,
200% for years 4–5) for a given dam for which we predict a carbon intensity, based
upon the emissions profile from an existing Amazon reservoir19,20.

Validation of estimated carbon intensities. To assess the validity of our
approach to generating predicted carbon intensities for Amazon dams, we com-
pared our estimated carbon intensities against intensities calculated using reported
measurements of CO2 and CH4 fluxes for operational Amazon dams in ref. 12 (n=
6). Our predictions were in reasonable agreement with observed carbon intensities
(Supplementary Fig. 7), which was supported by a paired t-test between observed
and mean modeled values (t=−1.0, two-tailed P= 0.34, degrees of freedom= 5).

Carbon intensity of electricity sources. The International Energy Agency (IEA)
releases an annual report on the status and trends of global energy (World Energy
Outlook), which includes carbon intensities anticipated under a range of global
energy development scenarios23. To place proposed hydropower dams in the
Amazon in a global energy production context, we used benchmarks from the IEA
2040 Sustainable Development Scenario, which portrays a decarbonized global
electricity sector to meet the United Nations 2030 Agenda for Sustainable Devel-
opment goals55. The IEA report suggests that a decarbonized global electricity
sector should emit about 80 kg CO2eqMWh−1 in 2040, which is representative of a
power mix sustained by renewables such as solar and wind power, as well as low-
carbon hydropower plants. We also directly compared our calculated carbon
intensities for Amazon hydropower dams against those reported for alternative
energy technologies by the Intergovernmental Panel on Climate Change (IPCC),
including coal-fired, combined-cycle natural gas-fired, and solar power plants7. The
carbon intensities reported by the IPCC are for a 100-year time horizon. Owing to
CH4 emissions, carbon intensities of natural gas and coal are at least 37 and 4%
higher over a 20-year time horizon, respectively, compared with a 100-year time
horizon56. We applied 37 and 4% correction factors to obtain carbon intensities for
natural gas and coal over 20 years.

Tradeoff analysis and computation of the Pareto frontier. To analyze the tra-
deoffs between electricity generation capacity and GHG emissions, we computed
the Pareto frontier with respect to the two criteria. The Pareto frontier is a function
that identifies for a given installed capacity target the portfolio (or combination) of
dams with the lowest amount of GHG emissions, or conversely, for a given GHG
emission target, the portfolio of dams with the highest installed capacity. In our
case, considering the 351 proposed dams in the Amazon basin, the possible
portfolios of dams are: the empty portfolio that builds none of the proposed dams,
351 singleton portfolios with only one dam, 61,425 portfolios with two dams each

351
2

� �

, 7,145,775 portfolios with three dams each
351
3

� �

, and so on, until we

reach the final portfolio comprising all 351 dams.
The application of the Pareto frontier is illustrated in the following scenarios. In

Scenario 1, portfolio A has an installed capacity of 20,000 MW and carbon intensity
of 90 kg CO2eq MWh−1, whereas portfolio B has an installed capacity of 20,000
MW and carbon intensity of 100 kg CO2eqMWh−1; we say that portfolio A
dominates portfolio B since portfolio A has a lower carbon intensity for the same
electricity generation capacity. In Scenario 2, portfolio A has an installed capacity
of 20,000 MW and carbon intensity of 90 kg CO2eqMWh−1, whereas portfolio B

has an installed capacity of 18,000 MW and carbon intensity of 100 kg CO2eq
MWh−1; in that case we say that portfolio A dominates portfolio B since portfolio
A has lower carbon intensity and higher electricity generation capacity. In Scenario
3, portfolio A has an installed capacity of 20,000 MW and carbon intensity of 90 kg
CO2eqMWh−1, whereas portfolio B has an installed capacity of 18,000 MW and
carbon intensity of 85 kg CO2eqMWh−1; in this scenario neither portfolio
dominates the other. The Pareto frontier is then defined as the set of all portfolios
of dams that are not dominated by any other portfolio.

Computing the exact Pareto frontier is a challenging computational problem,
referred to as non-deterministic polynomial-time hard (NP-hard) problem, which
means that in the worst case the computational time increases exponentially as a
function of the number of dams27. Our framework for computing the exact (i.e.,
provably optimal) and approximate (with optimality guarantees) Pareto frontier
exploits the tree structure of river networks26,27, extending previously proposed
algorithms for single-objective optimization stochastic network design in bidirected
trees57,58 to multi-objective optimization and computation of the Pareto frontier.
In this approach, the river network is converted into a more abstract tree structure,
whereby a node corresponds to a continuous section of the river uninterrupted by
existing or proposed hydropower dams and an edge represents a proposed or an
existing dam. This abstract tree structure is used by our dynamic-programming
algorithm for the sequence of the merging and pruning of Pareto-optimal
solutions.

The dynamic-programming approach recursively computes the Pareto-optimal
partial solutions from leaf nodes up to the root26,27. The key insight is that at a
given node u, we only need to keep the Pareto non-dominated partial solutions and
we can therefore eliminate suboptimal (dominated) solutions. To increase
incremental pruning, we convert the original tree into an equivalent binary tree.
Given a binary tree, we first compute non-dominated Pareto solutions for the two
children of the given parent node u, enumerate the partial solutions from the
children and consider the four possible different combinations of whether to
include each of the dams associated with each edge from the children. We then
compute the objective values for the different extended partial solutions and add
them to the set of overall partial solutions. Finally, we remove all dominated partial
solutions from this set, so that the remaining partial solutions are Pareto-optimal
for the parent node. This procedure allows us to systematically explore the entire
search space of possible Pareto-optimal solutions. To prevent memory overflow in
response to the large number of partial Pareto solutions considered, the algorithm
batches partial solutions at each node and is parallelized to speed up the approach.
We do not assume spatial dependencies among reservoirs when optimizing
hydropower for GHGs, but consideration of spatial dependence may be critical for
other environmental criteria (e.g., fish migrations or sediment retention), and our
algorithm has the ability to solve problems where spatial dependence is important
to consider.

In addition to computing the exact Pareto frontier, our dynamic-programming
approach can provide a fully polynomial-time approximation scheme (FPTAS) by
applying a rounding technique to the exact algorithm. The FPTAS finds a
polynomially succinct solution set, which approximates the Pareto frontier within
an arbitrary small factor ε and runs in time that is polynomial in the size of the
instance and 1/ε26,27. The exact algorithm guarantees to find all optimal portfolios
on the Pareto frontier. The approximate algorithm finds fewer portfolios but
guarantees that every portfolio on the exact Pareto frontier is ε-approximately
dominated by one of the portfolios on the approximate Pareto frontier. The
algorithm used in our framework adapts and parallelizes a dynamic-programming
based algorithm for the exact and approximate Pareto frontier. More
computational details concerning our approach can be found in ref. 26,27, and the
code is publicly available (see Code Availability section).

Compared with previous approaches used to compute the Pareto frontiers for
dam placement, our algorithm provides coverage optimality guarantees and runs
faster. Importantly, we also show that the approximate version of our algorithm is
guaranteed to run in polynomial time (Supplementary Fig. 2). The computation of
the exact Pareto frontier for the 351 proposed dams takes 8.6 min (wall-clock time,
8 threads; ≈1 h CPU time) and produces 83,108 non-dominated portfolios.
Computing the ε-approximate Pareto frontier with 99% accuracy (i.e., ε= 0.01) for
the 351 proposed dams takes 1.5 min wall-clock time (8 threads, ≈7 min CPU time)
and produces 66,312 non-dominated portfolios. Except for Supplementary Fig. 2,
all results presented here are based on the exact Pareto frontier. Finally, we also
generated random suboptimal portfolios to compare with the Pareto-optimal ones.
Due to the large number of all possible portfolios (≈10105), we show only a subset
of the suboptimal portfolios.

Data availability
All relevant data are publicly available in the supplementary materials and online data

repositories, and are available from the authors.

Code availability
The Pareto optimization code can be downloaded from Cornell University’s Institute for

Computational Sustainability website (http://www.cs.cornell.edu/gomes/udiscoverit/

downloads/hydro-pareto-tree-dp-2c/gomes-selman-et-al-dp-amazon-e-ghg-

naturecommunications-2019.zip).
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