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Abstract

Background: INDELs, especially those disrupting protein-coding regions of the genome, have been strongly associated

with human diseases. However, there are still many errors with INDEL variant calling, driven by library preparation,

sequencing biases, and algorithm artifacts.

Methods: We characterized whole genome sequencing (WGS), whole exome sequencing (WES), and PCR-free sequencing

data from the same samples to investigate the sources of INDEL errors. We also developed a classification scheme

based on the coverage and composition to rank high and low quality INDEL calls. We performed a large-scale

validation experiment on 600 loci, and find high-quality INDELs to have a substantially lower error rate than low-quality

INDELs (7% vs. 51%).

Results: Simulation and experimental data show that assembly based callers are significantly more sensitive and robust

for detecting large INDELs (>5 bp) than alignment based callers, consistent with published data. The concordance of

INDEL detection between WGS and WES is low (53%), and WGS data uniquely identifies 10.8-fold more high-quality

INDELs. The validation rate for WGS-specific INDELs is also much higher than that for WES-specific INDELs (84% vs. 57%),

and WES misses many large INDELs. In addition, the concordance for INDEL detection between standard WGS and

PCR-free sequencing is 71%, and standard WGS data uniquely identifies 6.3-fold more low-quality INDELs. Furthermore,

accurate detection with Scalpel of heterozygous INDELs requires 1.2-fold higher coverage than that for homozygous

INDELs. Lastly, homopolymer A/T INDELs are a major source of low-quality INDEL calls, and they are highly enriched in

the WES data.

Conclusions: Overall, we show that accuracy of INDEL detection with WGS is much greater than WES even in the

targeted region. We calculated that 60X WGS depth of coverage from the HiSeq platform is needed to recover 95% of

INDELs detected by Scalpel. While this is higher than current sequencing practice, the deeper coverage may save total

project costs because of the greater accuracy and sensitivity. Finally, we investigate sources of INDEL errors (for example,

capture deficiency, PCR amplification, homopolymers) with various data that will serve as a guideline to effectively reduce

INDEL errors in genome sequencing.

Background

With the increasing use of next-generation sequencing

(NGS), there is growing interest from researchers, physi-

cians, patients, and consumers to better understand the

underlying genetic contributions to various conditions. For

rare diseases and cancer studies, there has been increasing

success with exome/genome sequencing in identifying mu-

tations that have a large effect size for particular pheno-

types [1-3]. Some groups have been trying to implement

genomic and/or electronic health record approaches to

interpret disease status and inform preventive medicine

[4-8]. However, we are still facing practical challenges for

both analytic validity and clinical utility of genomic medi-

cine [9-13]. In addition, the genetic architecture behind

most human disease remains unresolved [14-19]. Some

have argued that we should bring higher standards to hu-

man genetics research in order to return results and/or re-

duce false-positive reports of ‘causality’ without rigorous
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standards [20,21]. Others have reported that analytic valid-

ity for WES and WGS is still a major issue, pointing out

that the accuracy and reliability of sequencing and bio-

informatics analysis can and should be improved for a clin-

ical setting [10,11,22-25].

There is also debate whether we should primarily in

the year 2014 use whole genome sequencing (WGS) or

whole exome sequencing (WES) for personal genomes.

Some have suggested that a first-tier cost-effective WES

might be a powerful way to dissect the genetic basis of

diseases and to facilitate the accurate diagnosis of indi-

viduals with ‘Mendelian disorders’ [26,27]. Others have

shown that targeted sequencing misses many things [28]

and that WGS could reveal structural variants (SVs),

maintains a more uniform coverage, is free of exome

capture efficiency issues, and actually includes the non-

coding genome, which likely has substantial importance

[29-32]. Some groups directly compared WGS with

WES, but thorough investigation of INDEL errors was

not the focus of these comparisons [10,23,24,33]. Sub-

stantial genetic variation involving INDELs in the hu-

man genome has been previously reported but accurate

INDEL calling is still difficult [34-36]. There has been a

dramatic decrease of sequencing cost over the past few

years, and this cost is decreasing further with the release

of the Illumina HiSeq X Ten sequencers which have

capacity for nearly 18,000 whole human genomes per in-

strument per year. However, it is still unclear whether

we can achieve a high-accuracy personal genome with a

mean coverage of 30X from the Illumina HiSeq X Ten

sequencers. In addition, there have been questions on

the use of PCR amplification in the library preparations

for NGS, although very few have characterized the PCR

errors that might be complicating the detection of inser-

tions and deletions (INDELs).

Concordance rates among INDELs detected by the

GATK Unified Genotyper (v1.5), SOAPindel (v1.0) and

SAMtools (v0.1.18) are reportedly low, with only 26.8%

agreeing across all three pipelines [10]. Another group also

reported low concordance rates for INDELs between

different sequencing platforms, further showing the diffi-

culties of accurate INDEL calling [24]. Other efforts have

been made to understand the sources of variant calling

errors [12]. Common INDEL issues, such as realignment

errors, errors near perfect repeat regions, and an in-

complete reference genome have caused problems for

approaches working directly from the alignments of the

reads to reference [37,38]. De novo assembly using de

Brujin graphs has been reported to tackle some of these

limitations [39]. Fortunately, with the optimization of

micro-assembly, these errors have been reduced with a

novel algorithm, Scalpel, with substantially improved ac-

curacy over GATK-HaplotypeCaller (v3.0), SOAP-indel

(v2.01), and six other algorithms [40]. Based on validation

data, the positive prediction rate (PPV) of algorithm spe-

cific INDELs was high for Scalpel (77%), but much lower

for GATK HaplotypeCaller (v3.0) (45%) and SOAP-indel

(v2.01) (50%) [40].

Thus, we set out to investigate the complexities of

INDEL detection on Illumina reads using this highly

accurate INDEL-calling algorithm. First, we used simu-

lation data to understand the limits of how coverage

affects INDEL calling with Illumina-like reads using

GATK-UnifiedGenotyper and Scalpel. Second, we ana-

lyzed a dataset including high coverage WGS and WES

data from two quad families (mother, father and two

children), in addition to extensive high-depth validation

data on an in-house sample, K8101-49685s. In order to

further understand the effects of PCR amplification on

INDEL calling, we also downloaded and analyzed two

WGS datasets prepared with and without PCR from the

well-known HapMap sample NA12878. We characterized

the data in terms of read depth, coverage uniformity, base-

pair composition pattern, GC contents, and other sequen-

cing features, in order to partition and quantify the INDEL

errors. We were able to simultaneously identify both the

false-positives and false-negatives of INDEL calling, which

will be useful for population-scale experiments. We ob-

serve that homopolymer A/T INDELs are a major source

of low quality INDELs and multiple signatures. As more

and more groups start to use these new micro-assembly-

based algorithms, practical considerations for experimen-

tal design should be introduced to the community. Lastly,

we explicitly address the question concerning the neces-

sary depth of coverage for accurate INDEL calling using

Scalpel for WGS on HiSeq sequencing platforms. This

work provides important insights and guidelines to

achieve a highly accurate INDEL call set and to improve

the sequencing quality of personal genomes.

Methods
Analysis of simulated data

We simulated Illumina-like 2*101 paired-end reads with

randomly distributed INDELs, which were in the range of

1 bp to 100 bp. The simulated reads were mapped to

human reference genome hg19 using BWA-mem (v0.7-6a)

using default parameters [41]. The alignment was sorted

with SAMtools (v0.1.19-44428cd) [42] and the duplicates

were marked with Picard using default parameters (v1.106),

resulting in a mean coverage of 93X. We down-sampled

the reads with Picard to generate 19 sub-alignments. The

minimum mean coverage of the sub-alignments was 4.7X

and increased by 4.7X each time, before it reached the ori-

ginal coverage (93X). Scalpel (v0.1.1) was used as a repre-

sentative of assembly-based callers to assemble the reads

and call INDELs from each alignment separately, resulting

in 20 INDEL call sets from these 20 alignments, using the

following parameter settings: ‘–single –lowcov 1 –mincov
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3 –outratio 0.1 –numprocs 10 –intarget’. We also used

GATK-UnifiedGenotyper (v3.2-2) as a representative of

alignment based callers to call INDELs from each set of

alignments [43]. We followed the best practices on the

GATK website, including all the pre-processing procedures,

such as INDEL realignment and base recalibration. Scalpel

internally left-normalized all the INDELs so we only used

GATK-LeftAlignAndTrimVariants on the INDEL calls from

UnifiedGenotyper. We then computed both the sensitivity

and false discovery rate (FDR) for both INDEL callers, with

respects to all and large (>5 bp) INDELs. The same ver-

sions and the same sets of parameter settings for BWA-

mem, Picard, and Scalpel, were also used in the rest of the

study, including the analysis of WGS/WES data, standard

WGS, and PCR-free data.

Generation of WGS and WES data

Blood samples were collected from eight humans of two

quartets from the Simons Simplex Collection (SSC) [44].

Both WGS and WES were performed on the same gen-

omic DNA isolated from these eight blood samples. The

exome capture kit used was NimbleGen SeqCap EZ

Exome v2.0, which was designed to pull down 36 Mb (ap-

proximately 300,000 exons) of the human genome hg19.

The actual probe regions were much wider than these tar-

geted regions, because probes also covered some flanking

regions of genes, yielding a total size of 44.1 Mb. All of the

libraries were constructed with PCR amplification. We se-

quenced both sets of libraries on Illumina HiSeq2000 with

average read length of 100 bp at the sequencing center of

Cold Spring Harbor Laboratory (CSHL). We also gener-

ated WGS (mean coverage =30X) and WES (mean cover-

age =110X) data from an in-house sample K8101-49685s

(not from SSC), which was extensively investigated in the

later validation experiment. Exome capture for this sample

was performed using the Agilent 44 Mb SureSelect proto-

col and the resulting library was sequenced on Illumina

HiSeq2000 with average read length of 100 bp. All of the

HiSeq data from K8101-49685s have been submitted to

the Sequence Read Archive (SRA) [45] under project ac-

cession number SRX265476 (WES data) and SRX701020

(WGS data). All of the HiSeq data from eight SSC samples

have been submitted to the National Database for Autism

Research (NDAR) [46] under collection ‘Wigler SSC aut-

ism exome families’ (project number: 1936).

Institutional review board approval

The Simons Simplex Collection (SSC) is a permanent re-

pository of genetic samples from 2,700 families operated

by SFARI [47] in collaboration with 12 university-affiliated

research clinics. SFARI maintains the consent of all indi-

viduals in the SSC and the analysis of those samples in this

project was supervised under the CSHL IRB review com-

mittee. This study of the internal sample K8101-49685s

was approved by the CSHL Institutional Review Board,

and all participants provided informed written consent.

Analysis of the INDELs from WGS and WES data

We excluded all of the low quality raw reads, aligned the

remaining high quality ones with BWA-mem, and mark-

duplicated with Picard. We used Scalpel to assemble the

reads and identify INDELs under both single mode and

quad mode. The single mode outputs all of the putative

INDELs per person, and the quad mode outputs only the

putative de novo INDELs in the children in a family. We

expanded each of the exons by 20 bp upstream and 20 bp

downstream in order to cover the splicing sites and we

called this set of expanded regions the ‘exonic targeted re-

gions’. The exonic targeted regions are fully covered by

the exome capture probe regions. We excluded INDELs

that were outside the exonic targeted regions in the down-

stream analysis.

We left-normalized the INDELs and compared the two

call sets for the same person using two criteria: exact-

match and position-match. Position-match means two

INDELs have the same genomic coordinate, while exact-

match additionally requires that two INDELs also have the

same base-pair change(s). We called the INDELs in the

intersection based on exact-match as WGS-WES intersec-

tion INDELs. Further, we named the INDELs only called

from one dataset as ‘WGS-specific’ and ‘WES-specific’

INDELs, respectively. Regions of the above three cate-

gories of INDELs were partitioned and investigated sep-

arately. In particular, we focused on regions containing

short tandem repeats (STR) and homopolymers. We used

BedTools (v2.18.1) with the region file from lobSTR (v2.04)

to identify homopolymeric regions and other STR (dual

repeats, triplets and etc.) in the human genome [48-50].

Generating summary statistics of alignment from WGS

and WES

We used Qualimap (v0.8.1) to generate summary statistics

of the alignment files of interest [51]. For a certain region,

we define the proportion of a region covered with at least

X reads to be the coverage fraction at X reads. In addition

to the coverage histograms, we also computed the coeffi-

cient of variation CV to better understand the coverage

uniformity of the sequencing reads. An unbiased estimator

of CV can be computed by Cv
�̂
¼ 1þ 1

4n

� �

�
s
�x

� �

, where s

represents the sample standard deviation and �x represents

the sample mean. In our case, Cv
�̂ asymptotically ap-

proaches to s
�x

� �

as the sample size (n) of the data is usually

greater than 10,000. The reference genome used here is

hg19. There were four region files that we used for this

part of the analysis. The first one is the exon region bed

file from NimbleGen. We generated the other three region

files by expanding 25 bp upstream and downstream
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around loci of WGS-WES intersection INDELs, WGS-

specific INDELs, and WES-specific INDELs, respectively.

We followed all of the default settings in Qualimap except

for requiring the homopolymer size to be at least five

(-hm 5). Finally, we used Matplotlib to generate the figures

with the raw data from Qualimap under the Python envir-

onment 2.7.2 [52].

Generation of MiSeq validation data of sample K8101-49685s

We randomly selected 200 INDELs for validation on an

in-house sample K8101-49685s from each of the following

categories: (1) INDELs called from both WGS and WES

data (WGS-WES intersection), (2) WGS-specific INDELs,

(3) WES-specific INDELs. Out of these 600 INDELs, 97

were covered with more than 1,000 reads in the previous

MiSeq data set reported by Narzisi et al. Hence, we only

performed additional Miseq validation on the remaining

503 loci [40]. PCR primers were designed using Primer 3

to produce amplicons ranging in size from 200 to 350 bp,

with INDELs of interest located approximately in the cen-

ter. Primers were obtained from Sigma-Aldrich in 96-well

mixed-plate format, 10 μmol/L dilution in Tris per oligo-

nucleotide. 25 μL PCR reactions were set up to amplify

each INDEL of interest using K8101-49685s’ genomic

DNA as template and LongAmp Taq DNA polymerase

(New England Biolabs). PCR products were visually

inspected for amplification efficiency using 1.5% agarose

gel electrophoresis, and then pooled for ExoSAP-IT

(Affymetrix) cleanup. The cleanup product was purified

using QIAquick PCR Purification Kit (Qiagen) and quanti-

fied by Qubit dsDNA BR Assay Kit (Invitrogen). Subse-

quently, a library construction was performed following

the TruSeq Nano DNA Sample Preparation Guide for the

MiSeq Personal Sequencer platform (Illumina). Before

loading onto the MiSeq machine, the quality and quantity

of the sample was reevaluated using the Agilent DNA

1000 Kit on the Agilent Bioanalyzer and with quantitative

PCR (Kapa Biosystems).

We generated high quality 250 bp paired-end reads with

an average coverage of 55,000X over the selected INDELs.

We aligned the reads with BWA-MEM (v0.7.5a) to hg19,

sorted the alignment with SAMtools (v0.1.18) and marked

PCR duplicates with Picard (v1.91). The alignment quality

control showed that 371 out of the 503 loci were covered

with at least 1,000 reads in the data and we only consid-

ered these loci in the downstream analysis. Therefore, we

have validation data on 160, 145, and 161 loci from the

WGS-WES intersection, WGS-specific, and WES-specific

INDELs, respectively. As reported by Narzisi et al., map-

ping the reads containing a large INDEL (near or greater

than half the size of the read length) is problematic. This

was particularly difficult when the INDEL is located

toward either end of a read [40]. To avoid this, we used

very sensitive settings with Bowtie2 (–end-to-end –very-

sensitive –score-min L,-0.6,-0.6 –rdg 8,1 –rfg 8,1 –mp

20,20) to align the reads because it can perform end-to-

end alignment and search for alignments with all of the

read characters [53]. We generated the true INDEL call

set by two steps: (1) used GATK UnifiedGenotyper to call

INDELs from the BWA-MEM alignment, (2) performed

manual inspection on the large INDELs from the Bowtie2

alignment (require at least 25% of the reads supporting an

INDEL) [43]. The alignments were realigned with the

GATK (v2.6-4) IndelRealigner and base quality scores

were recalibrated before variants were called with Uni-

fiedGenotyper. Left-normalization was performed to avoid

different representations of a variant. An INDEL was con-

sidered valid if a mutation with the same genomic coor-

dinate and the same type of variation exists in the

validation data. For example, an insertion call would not

be considered valid if the variant with the same coordinate

in the validation data was instead a deletion. All of the

MiSeq data can be downloaded from the Sequence Read

Archive under project accession number SRX386284 (Ac-

cession number: SRR1575211, SRR1575206, SRR1042010).

Classifications of INDEL with calling quality based on the

validation data

We previously benchmarked Scalpel with respect to the

coverage of the alternative allele CAlt
O

� �

and the k-mer

Chi-Square scores (χ2). Scalpel applied the standard for-

mula for the Chi-Square statistics and applied to the K-

mer coverage of both alleles of an INDEL.

χ
2
¼

CRef
o −CRef

e

� �2

CRef
e

þ
CAlt
o −CAlt

e

� �2

CAlt
e

where CRef
O and CAlt

O are the observed k-mer coverage for

the reference and alternative alleles, CRef
e and CAlt

e are the

expected k-mer coverage, that is, CRef
e ¼ CAlt

e ¼
CRef
o þCAlt

o

2
.

Here we used 466 INDELs from the validation data to

understand the relationship between the FDR and these

two metrics (Additional file 1: Figure S4). Our validation

data showed that with the same χ
2, INDELs with a lower

CAlt
O tend to have a higher FDR, especially for INDELs

with CAlt
O not greater than 10 (Additional file 1: Figure S4).

For INDELs with relatively the same CAlt
O , a higher χ2 also

made them less likely to be valid. We noticed that the call-

ing quality could be determined by the error rate inferred

by these two metrics. To achieve a consistent accuracy for

INDELs with different CAlt
O , we classified INDEL calls and

determined the calling quality with the below criteria:

� High quality INDELs: low error-rate (7%) INDELs

meeting any of the three cutoffs: CAlt
O >10 and χ

2 <

10.8, or 5 < CAlt
O ≤10 and χ

2
≤ 4.5, or CAlt

O ≤5 and χ
2
≤ 2;
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� Low quality INDELs: high error-rate (51%) INDELs

meeting the following cutoff: CAlt
O ≤10 and χ

2 > 10.8;

� Moderate quality: The remaining INDELs that do

not fall into the above two categories.

Analysis of PCR-free and standard WGS data of NA12878

We downloaded PCR-free WGS data of NA12878 (ac-

cess Code: ERR194147), which is publicly available in

the Illumina Platinum Genomes project. We also down-

loaded another WGS dataset of NA12878 with PCR

amplification during library preparation, and we called

it standard WGS data (SRA access Code: SRR533281,

SRR533965, SRR539965, SRR539956, SRR539947, SRR

539374, SRR539357). Both data were generated on the

Illumina HiSeq 2000 platform. Although the PCR-free

data was not supposed to have any PCR duplicates, we ob-

served a duplication rate of 2% as reported by Picard, and

we excluded these reads, yielding 50X mean coverage for

both data sets after removing PCR duplicates. We used

the same methods for alignment, INDEL calling, and

downstream analysis as described above. INDELs outside

the exonic targeted regions were not considered in the

downstream analysis.

Analysis of INDEL detection sensitivity in WGS data

We were interested to know how depth of coverage af-

fects the sensitivity of INDEL detection in WGS data.

To accurately measure this sensitivity, one needs a ro-

bust call set as a truth set. Fortunately, we had exact-

match INDELs concordant between high coverage WGS

and high coverage WES data. We therefore measured

sensitivity based on these WGS-WES intersection INDELs,

rather than on the whole set of INDELs, which might con-

tain more false positives. We down-sampled each WGS

data set to mean coverages of 20X, 32X, 45X and 57X. We

then used Scalpel to call INDELs from the resulting four

sub-alignment files for each sample and computed the sen-

sitivity at a certain mean coverage (X) for each sample by

the equation:

Sensitivity at X coverage ¼

Number of WGS−WES intersection
INDELs called at X coverage

Number of WGS−WES intersection
INDELs at the full coverage

This equation measures how many of the WGS-WES

intersection INDELs can be discovered as a function of

read depth. We also analyzed the WGS-WES intersec-

tion INDEL call set in terms of zygosity: WGS-WES

intersection heterozygous and homozygous INDEL, sub-

sequently measuring the sensitivity with respect to dif-

ferent zygosities.

Results and discussion
Simulated data: characterizing alignment and assembly

based callers at different coverage

We started our study with asking whether depth of

sequencing coverage affect different kinds of INDEL call-

ing algorithms (for example, assembly-based callers and

alignment-based callers). Thus, we began with simulated

reads with known error rates across the genome to answer

this question. We used GATK-UnifiedGenotyper (v3.2-2)

and Scalpel (v0.1.1) as a representative of alignment based

callers and assembly based callers, respectively. Figure 1A

shows that for both algorithms, higher coverage improves

sensitivity of detecting both general INDELs (that is, any

size starting from 1 bp) and large INDELs (that is, size

greater than 5 bp). For general INDEL detection with both

algorithms, this improvement did not saturate until a

mean coverage of 28X. Furthermore, detecting large

INDELs was more difficult than general INDELs because

the increase of sensitivity did not saturate until reaching a

mean coverage of 42X. However, there were substantial

differences of sensitivity performance between these two

algorithms for large INDEL detection. We noticed that

even at a very high coverage (mean coverage =90X),

GATK-UnifiedGenotyper could call only about 52% of the

large INDELs while Scalpel could reveal more than 90% of

them. This is because GATK-UnifiedGenotyper tries to

infer genotypes from alignment and large INDELs could

complicate or distort the correct mapping. To achieve a

sensitivity of 90% with Scalpel, a mean coverage of 30X

was required for general INDEL detection while 90X was

needed to detect large INDELs at a similar sensitivity. This

showed that much higher coverage is needed for large

INDEL detection, especially to maintain coverage across

the INDEL and to have enough partially mapping or soft-

clipped reads to use for the micro-assembly.

The FDRs of Scalpel were robust to the changes in

coverage while GATK-UnifiedGenotyper’s FDRs were af-

fected by coverage. For the detection of large INDELs

with Scalpel, the FDRs marginally decreased as the mean

coverage increased from 5X to 28X, and remained basic-

ally the same again from 33X to 93X (Figure 1B). This

indicates that for large INDELs, insufficient coverage re-

sults in more assembly errors, which results in a higher

error rate for micro-assembly variant calling. Based on

the simulation data, a mean coverage of at least 30X is

needed to maintain a reasonable FDR for Scalpel. In

contrast, FDRs of GATK-UnifiedGenotyper are much

higher and more unstable at different coverages, espe-

cially for large INDELs. Nonetheless, since these results

were based on simulation data, which does not include

the effects of any sequencing artifacts on INDEL calling,

these values establish the upper bound of accuracy and

performance compared to genuine sequence data. Previ-

ous studies reported that local assembly allows to call
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INDELs much larger than those that can be identified by

the alignment [13,40,54]. Consistent with previous re-

ports, our simulated data suggested that assembly based

callers can reveal a much larger spectrum of INDELs

than alignment based callers, in terms of their size. Fur-

thermore, Narzisi et al. recently reported that Scalpel is

more accurate than GATK-HaplotypeCaller and SOA-

Pindel, especially within regions containing near-perfect

repeats [40]. Thus, in order to control for artifacts from

callers, we chose to use Scalpel as the only INDEL caller

in our downstream analysis on the experimental data,

which could help to better clarify differences between

data types.

WGS vs. WES: Low concordance on INDEL calling

We analyzed a data set including high coverage WGS and

WES data from eight samples in the SSC. To make a fair

comparison, the INDEL calls were only made from the ex-

onic targeted regions as explained in the Methods. The

mean INDEL concordance between WGS and WES data

was low, 53% using exact-match and 55% using position-

match (Figure 2, Table 1). Position-match means the two

INDELs have the same genomic coordinate, while exact-

match additionally requires that the two INDELs also have

the same base-pair change(s) (see Methods). When we ex-

cluded regions with less than one read in either data set,

the mean concordance rates based on exact match and

position-match increased to 62% and 66%, respectively

(Table 1). If we excluded regions with base coverage in

either data set with less than 20, 40, 60, or 80 reads, the

mean concordance rate based on exact-match and

position-match both continued to increase until reaching

a base coverage of 80 reads (Table 1). This showed that

some INDELs were missing in either data set because of

low sequencing efficiency in those regions. Although WES

data had higher mean coverage than WGS data, we were

surprised to see that in regions requiring at least 80 reads,

there were more INDELs that were specific to WGS data

than WES data (21% vs. 4%). Regions with excessive

coverage might indicate problems of sequencing or library

preparation, and this highlights the importance of cover-

age uniformity in WGS (Figure 3A and B, Table 2). It

should be noted that mapping artifacts could also be a

possible reason. For example, the reads may originate in

regions which are absent from the reference genome, such

as copy number variants [55]. Based on exact-match, the

proportion of the WGS-specific INDELs was 2.5-fold

higher than that of WES-specific INDELs (34% vs. 14%).

This difference was even larger based on position-match

(3-fold). In principle, the reasons for this could be either

high sensitivity of INDEL detection with WGS data or

high specificity of INDEL detection with WES data, and

we will examine these options in more detail below.

Coverage distributions of different regions in WGS and

WES data

An ideal sequencing experiment should result in a high

number of reads covering a region of interest uniformly.

Using the eight SSC samples, we investigated the coverage

behaviors of the WGS and WES data by the following: dis-

tribution of the read depth, mean coverage, coverage frac-

tion at X reads, coefficient of variation (Cv) (See Methods).

Hence, ideally one should expect to see a normal distribu-

tion of read depth with a high mean coverage and a small

Cv. Comparisons of the coverage distributions are shown

in the following order: (1) Exonic targeted regions, that is,

the exons that the exome capture kit was designed to pull

down and enrich; (2) WGS-WES intersection INDEL

regions, that is, the regions where WGS and WES revealed

the identical INDELs based on exact-match; (3) WGS-

specific INDEL regions, that is, the regions where only

WGS revealed INDELs based on position-match; (4)

WES-specific INDEL regions, that is, the regions where

only WES revealed INDELs based on position-match.

Figure 1 Performance comparison between the Scalpel and GATK-UnifiedGenotyper in terms of sensitivity (A) and false discovery rate

(B) at different coverage based on simulation data. Each dot represents one down-sampled experiment. Round dots represent performance

of general INDELs (that is, INDELs of size starting at 1 bp) and triangles represent performance of large INDELs (that is, INDELs of size greater than

5 bp). The data of Scalpel are shown in blue while GATK-UnifiedGenotyper are shown in green.
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First, in the exonic targeted regions, the mean cover-

ages across eight samples were 71X and 337X for WGS

and WES data, respectively (Figure 3A and B, Additional

file 1: Table S1). We noticed that there was a recovery

issue with WES in some regions, as the coverage fraction

at 1X was 99.9% in WGS data but only 84% in WES

data, meaning that 16% of the exonic targeted regions

were not recovered, which could be due to capture inef-

ficiency or other issues involving DNA handling during

the exome library preparation and sequencing protocols

(Figure 3C and D, Additional file 1: Table S2). The

coverage was much more uniform in the WGS data than

that in the WES data because Cv of the WGS data was

much lower (39% vs. 109%, Figure 3A and B, Table 2).

Second, in the WGS-WES intersection INDEL regions,

the mean coverage across eight samples were 58X and

252X for WGS and WES data, respectively (Additional

file 1: Figure S1A and B, Additional file 1: Table S1). We

noticed that there was an increase of coverage uniform-

ity for WES in the WGS-WES intersection INDEL re-

gions, relative to the exonic targeted regions, because Cv

was lower (109% vs. 97%) (Table 2, Figure 3B, Additional

file 1: Figure S1B). We noticed WGS was able to reveal

WGS-WES intersection INDELs at a much lower cover-

age relative to WES, which we attribute to a better uni-

formity of reads across the genome (Cv: 47% vs. 97%,

Table 2, Additional file 1: Figure S1A and B). The cover-

age distributions were skewed in the WES data, with

some regions poorly covered and other regions over sat-

urated with redundant reads.

Third, in WGS-specific INDEL regions, the mean cover-

ages across eight samples were 61X and 137X for WGS

and WES data, respectively (Figure 4, Additional file 1:

Table S1). Compared to the entire exonic targeted regions,

the mean coverage for WES data was significantly reduced

in these regions (137X vs. 337X), and 44% of the regions

were not covered with a single read (Figure 4, Additional

file 1: Table S2). We noticed that compared to the WGS

data, the WES data poorly covered these regions with 20

reads or more (94% vs. 31%, Figure 4C and D). In these re-

gions, the coverage uniformity of the WES data was much

lower than that of the WGS data (Cv: 282% vs. 75%,

Figure 4A and B, Table 2). The reason why WES data

missed these INDELs could be insufficient coverage

around the INDELs in these regions. Finally, in WES-

specific INDELs regions, the mean coverages across eight

samples were 41X and 172X for WGS and WES data, re-

spectively (Additional file 1: Figure S2A and B, Additional

file 1: Table S1). In these regions, both data had a relatively

high coverage and the WES data covered most of these re-

gions with at least one read (Additional file 1: Figure S2C

and D). However, we noticed that the WES data still had a

Figure 2 Mean concordance of INDELs over eight samples between WGS (blue) and WES (green) data. Venn diagram showing the

numbers and percentage of shared between data types based on (A) Exact-match (B) Position-match. The mean concordance rate increased

when we required at least a certain number of reads in both data (Table 1).

Table 1 Mean concordance and discordance rates of INDEL detection between WGS and WES data in different regions

Concordance rate Without filtering ≥1 read ≥20 reads ≥40 reads ≥60 reads ≥80 reads

Exact-match 53% (0.8%) 62% (1.1%) 69% (1.5%) 73% (2.3%) 76% (1.6%) 74% (1.3%)

Position-match 55% (0.8%) 66% (1.0%) 73% (1.1%) 77% (1.8%) 79% (1.1%) 76% (1.3%)

Discordance rate Without filtering ≥1 read ≥20 reads ≥40 reads ≥60 reads ≥80 reads

WGS-specific 34% (1.4%) 20% (1.5%) 14% (1.6%) 14% (2.2%) 15% (2.5%) 20% (3.2%)

WES-specific 11% (1.2%) 14% (1.4%) 13% (1.3%) 9% (2.6%) 6% (2.2%) 4% (1.5%)

The data are shown in the following order: (1) regions without filtering, and regions filtered by requiring base coverage to be at least (2) one read, (3) 20 reads, (4) 40

reads, (5) 60 reads, or (6) 80 reads in both data. The mean discordance rate is calculated based on position-match, which is the percentage of INDELs specific to either

data set. The standard deviation is shown in parentheses.
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much lower coverage uniformity (Cv: 117% vs. 56%,

Table 2). In order to better understand these issues, we

used the WGS-WES intersection INDEL set as a positive

control and proceeded to assess each call set with newly

developed quality criteria.

MiSeq validation of INDELs in WGS and WES data on the

sample K8101-49685s

In order to understand error rates and behaviors of the

INDEL call from the WGS and WES data, we randomly

selected 200 INDELs for MiSeq validation on the sample

K8101-49685s from each of the following categories: (1)

INDELs called from both WGS and WES data (WGS-

WES intersection INDELs), (2) WGS-specific INDELs, (3)

WES-specific INDELs. First, the validation rate of WGS-

WES intersection INDELs was in fact very high (95%), in-

dicating INDELs called from both WGS and WES data

were mostly true-positives (Table 3). Second, the valid-

ation rate of WGS-specific INDELs was much higher than

that of WES-specific INDELs (84% vs. 57%). Third, among

the validation set, large INDELs (>5 bp) that were called

from both the WGS and WES data were 100% valid, while

the validation rate of large INDELs that were specific to

the WGS data was only 76%. However, we noticed that

there was only one large INDEL specific to the WES data

that we selected for validation. Since the sampling was

performed randomly, we examined the original call set to

understand this phenomenon. Only 9% of the WGS-WES

intersection INDELs (176) and 21% of the WGS-specific

INDELs (106) were greater than 5 bp (Table 4). But we

were surprised to see that only 1.5% of the WES-specific

INDELs were greater than 5 bp, meaning only 10 INDELs

were large according to our definition. This showed that

the WES data missed most large INDELs, which we

Figure 3 Coverage distributions and fractions of the exonic targeted regions. The coverage distributions of the exonic targeted regions in

(A) the WGS data, (B) the WES data. The Y-axis for (A) and (B) is of log10-scale. The coverage fractions of the exonic targeted regions from 1X to

51X in (C) the WGS data, (D) the WES data.

Table 2 Mean coefficients of variation of coverage with respects to the different regions

Exonic targeted regions WGS-WES intersection INDEL regions WGS-specific INDEL regions WES-specific INDEL regions

WGS 39.4% (1.9%) 47.2% (3.0%) 75.3% (5.7%) 56.1% (9.6%)

WES 109.3% (1.5%) 96.8% (3.2%) 281.5% (13.3%) 117.4% (22.8%)

Exonic targeted regions means the exons that the exome capture kit was designed to pull down and enrich. WGS-WES intersection INDELs means the INDELs

called from both WGS and WES data. WGS-specific INDELs means the INDELs only called from the WGS data while WES-specific INDELs means the INDELs only

called from the WES data. The standard deviation is shown in parenthesis.
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speculate might be due to capture deficiency or some

other procedure related to the process of exome capture

and sequencing. In particular, large INDELs could disrupt

the base pairing that occurs during the exome capture

procedure, which would then result in insufficient cover-

age in those regions (Figure 4).

Assessment of the INDEL call sets from WGS and WES

To understand the error profile of the WGS and WES

data with a larger sample size, we developed a classifica-

tion scheme based on the validation data and applied

them to the eight samples in the Simons Simplex Collec-

tion (SSC). Three combinations of thresholds were used

to define the calling quality of an INDEL call as either

high, moderate, or low quality based on the following two

metrics: the coverage of the alternative allele and the k-

mer Chi-Square score of an INDEL (see Methods). Based

on those cutoffs, there was 7.3-fold difference between

high-quality and low-quality INDELs in terms of their

error rates (7% vs. 51%). This suggests that our classifica-

tion scheme is able to effectively distinguish behaviors of

problematic INDEL calls from likely true-positives. Our

classification scheme is also useful for eliminating false de

novo INDEL calls in family-based studies (see Additional

file 1: Note S1). Furthermore, WGS-WES intersection and

WGS-specific INDELs seem to be reliable calls, and the

majority of the INDELs in these two call sets were of high

quality, 89% and 78%, respectively. Only a very small frac-

tion of them were of low quality, 2% and 7%, respectively.

(Figure 5, Additional file 1: Table S3). In contrast, for

WES-specific INDELs, there was a striking enrichment of

low-quality events (41%), and a 4.1-fold decrease of the

high-quality events (22%). Notably, among these eight

samples. there were 991 WGS-specific INDELs and 326

Figure 4 Coverage distributions and fractions of the WGS-specific INDELs regions. The coverage distributions of the WGS-specific INDELs

regions in (A) the WGS data, (B) the WES data. The Y-axis for (A) and (B) is of log10-scale. The coverage fractions of the WGS-specific INDELs

regions from 1X to 51X in (C) the WGS data, (D) the WES data.

Table 3 Validation rates of WGS-WES intersection, WGS-specific, and WES-specific INDELs

INDELs Valid PPV INDELs (>5 bp) Valid (>5 bp) PPV (>5 bp)

WGS-WES intersection 160 152 95.0% 18 18 100%

WGS-specific 145 122 84.1% 33 25 75.8%

WES-specific 161 91 56.5% 1 1 100%

We also calculated the validation rates of large INDELs (>5 bp) in each category. The validation rate, positive predictive value (PPV), is computed by the following:

PPV = #TP/(#TP + #FP), where #TP is the number of true-positive calls and #FP is the number of false-positive calls.
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WES-specific INDELs, and from these, 769 of WGS-

specific INDELs and 71 of the WES-specific INDELs were

of high quality. This comparison determined that WGS

yielded 10.8-fold more high quality INDELs than WES ac-

cording to our classification scheme. Furthermore, WES

produced 133 low quality INDELs per sample, while WGS

only produced 71 low quality INDELs per sample. That

being said, WES yielded 1.9-fold more low quality

INDELs. This indicates WES tends to produce a larger

fraction of error-prone INDELs, while WGS reveals a

more sensitive and specific set of INDELs.

In order to understand what was driving the error rates

in different data sets, we partitioned the INDELs accord-

ing to their sequence composition: homopolymer A (poly-

A), homopolymer C (poly-C), homopolymer G (poly-G),

homopolymer T (poly-T), short tandem repeats (STR) ex-

cept homopolymers (other STR), and non-STR. We no-

ticed that for the high-quality events, the majority of the

WGS-WES intersection INDELs (70%) and WGS-specific

INDELs (67%) were within non-STR regions (Figure 6,

Additional file 1: Table S4 and S5). On the contrary, the

majority of the high-quality INDELs specific to WES were

within poly-A (24%) and poly-T regions (30%). When we

compared the low-quality INDELs to the high-quality

INDELs, there were consistent enrichment of homo-

polymer A or T (poly-A/T) INDELs in all three call sets,

2.3-fold for WGS-WES intersection events, 2.1-fold for

WGS-specific events, and 1.5-fold for WES-specific events.

The WES-specific call set contained a much higher pro-

portion (83%) of Poly-A/T INDELs from the low-quality

INDELs, relative to the WGS-WES intersection call set

(44%), and the WGS-specific call set (45%). This suggested

that poly-A/T is a major contributor to the low quality

INDELs, which gives rise to much more INDEL errors.

We explored this further in the comparison of PCR-free

and standard WGS data below.

Sources of multiple signatures in WGS and WES data

Another way of understanding INDEL errors is to look

at multiple signatures at the same genomic location.

Multiple signatures means that for the same genomic lo-

cation, there are more than one INDELs called. If we as-

sume only one signature can be the true INDEL in the

genome, any additional signatures would represent false-

positive calls. So if we have a higher number of multiple

signatures, it means that these reads contained more

INDEL errors or the algorithm tends to make more mis-

takes in these regions. We combined the call sets from

both datasets and identified multiple signatures in the

union set for each sample. In order to understand the

error behaviors in the above assessment, we also parti-

tioned the signatures by the same regional criteria. We

noticed that the poly-A/T INDELs are the major source

of multiple signatures, which are enriched in WES data

(72% for WES vs. 54% for WGS). In particular, there is a

higher number of poly-A (35 vs. 25) and poly-T (36 vs.

16) INDEL errors in the WES data than in the WGS

data (Figure 7, Additional file 1: Table S6).

We investigated the source of multiple signatures by

the numbers of reads containing homopolymer INDELs

inferred by the CIGAR code (Figure 8). Figure 8 showed

that there is a much higher proportion of poly-A/T

INDELs in the WES-specific regions from both WGS

(56%) and WES data (64%), relative to other regions. In

addition, WES data have also 6.3-fold more reads than

WGS data in the regions with INDELs specific to WES

data (11,251 vs. 1775, Additional file 1: Table S7). Ac-

cording to Qualimap, a large number of homopolymer

indels might indicate a problem in sequencing for that

Table 4 Number and fraction of large INDELs in the following INDEL categories: (1) WGS-WES intersection INDELs, (2)

WGS-specific, and (3) WES-specific

All INDELs Large INDELs (>5 bp) Fraction of large INDELs (>5 bp)

WGS-WES intersection 2,009 176 8.8%

WGS-specific 494 104 21.1%

WES-specific 674 10 1.5%

Figure 5 Percentage of high quality, moderate quality, and low

quality INDELs in three call sets. From left to the right are: the

WGS-WES intersection INDELs, the WGS-specific INDELs, the WES-

specific INDELs. The numbers on top of a call set represent the

mean number of INDELs in that call set over eight samples.
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region. Here we particularly identified the effects of these

problematic sequencing reads on INDEL calling, which re-

vealed more multiple signatures of poly-A/T INDELs.

Standard WGS vs. PCR-free: assessment of INDELs calling

quality

The concordance rate within the exonic targeted regions

between standard WGS (defined as WGS involving PCR

during library construction) and PCR-free data on

NA12878 using exact-match and position-match were

71% and 76%, respectively (Figure 9). Note that both

data used here are WGS data, so it is not surprising that

these concordance rates were higher than those between

WGS and WES, even for regions having at least one

read in both data sets. Based on exact-match, the pro-

portion of INDELs specific to standard WGS data was

18%, which is 1.6-fold higher than the proportion of

INDELs specific to PCR-free data (11%). This ratio was

similar based on position-match (1.7-fold). Like previous

assessments, we classified the three call sets with respect

to calling quality. We again used the INDELs called from

both standard WGS and PCR-free data as a positive con-

trol. Figure 10 shows that 89% of the standard WGS &

PCR-free intersection INDELs are considered as high

quality, 9% as moderate quality, and only 2% as low

quality. However, for INDELs specific to standard WGS

data, there is a large proportion of low quality events

(61%), and a very limited proportion are of high quality

(7%). There were on average 310 INDELs specific to

PCR-free data and 538 INDELs specific to standard

WGS data. Notably, 177 of the PCR-free-specific INDELs

and 40 of the standard-WGS-specific INDELs were of

high quality, suggesting that in these specific regions,

PCR-free data yielded 4.4-fold more high quality INDELs

than standard WGS data. Furthermore, 326 of the

standard-WGS-specific INDELs were of low quality, while

in the PCR-free-specific call set, 52 INDELs were of low

quality. That being said, in regions specific to data types,

standard WGS data yielded 6.3-fold more low quality

INDELs. Consistent with the comparisons between WGS

Figure 6 Percentage of poly-A, poly-C, poly-G, poly-T, other-STR, and non-STR in three call sets. (A) High-quality INDELs, (B) low-quality

INDELs. In both figures, from left to the right are WGS-WES intersection INDELs, WGS-specific INDELs, and WES-specific INDELs.

Figure 7 Numbers of genomic locations containing multiple

signature INDELs in WGS (blue) and WES data (green). The

height of the bar represents the mean across eight samples and the

error bar represents the standard deviation across eight samples.
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and WES data, this suggested PCR amplification induced

a large number of error-prone INDELs to the library, and

we could effectively increase INDEL calling quality by

reducing the rate of PCR amplification.

To understand the behaviors of errors in the poly-A/T

regions, we partitioned the INDEL call set by the same six

regions again. We noticed that for the high quality events,

a majority of the standard WGS and PCR-free intersection

INDELs (68%) were within non-STR regions (Figure 11).

The proportion of poly-A/T INDELs was small for the

standard WGS and PCR-free intersection call set (20%),

larger for PCR-free-specific call set (35%), and even larger

for standard-WGS-specific call set (51%). This was similar

to the WGS and WES comparisons because there would

be more poly-A/T INDELs when a higher rate of PCR

amplification was performed. A majority of the high-

quality INDELs specific to standard WGS data were within

poly-A (24%) and poly-T regions (38%). When we com-

pared the low-quality INDELs to the high-quality ones,

there was consistent enrichment of poly-A/T INDELs in

all three call sets, 2.3-fold for standard WGS and PCR-

free intersection events, 2.3-fold for PCR-free-specific

events, and 1.3-fold for standard-WGS-specific events. For

INDELs specific to standard WGS data and PCR-free data,

poly-A/T INDELs represented a large proportion of the

low quality INDELs: 80% and 62%, respectively. Ross et al.

previously reported that for human samples, PCR-free li-

brary construction could increase the relative coverage for

Figure 8 Percentage of reads near regions of Non-homopolymer, poly-N, poly-A, poly-C, poly-G, poly-T in (A) WGS data, (B) WES data.

In both figures, from left to right are exonic targeted regions, WGS-WES intersection INDELs, WGS-specific INDELs, and WES-specific INDELs.

Figure 9 Concordance of INDEL detection between PCR-free and standard WGS data on NA12878. Venn diagram showing the numbers

and percentage of shared between data types based on (A) exact-match and (B) position-match.
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high AT regions from 0.52 to 0.82, resulting in a more uni-

form coverage [22]. This again suggested that PCR amplifi-

cation could be a major source of low quality poly-A/T

INDELs, and a PCR-free library construction protocol

might be one possible solution to improve the accuracy of

INDEL calls.

What coverage is required for accurate INDEL calling?

Ajay et al. reported that the number of SNVs detected

exponentially increased until saturation at 40 to 45X

average coverage [56]. However, it was not clear what

the coverage requirement should be for INDEL detec-

tion. To answer this question, we down-sampled the

reads, called INDELs again, and measured correspond-

ing sensitivity for each sample using the WGS-WES

intersection calls as our truth set (Methods). Figure 12A

shows that we are missing 25% of the WGS-WES inter-

section INDELs at a mean coverage of 30X. Even at 40X

coverage recommended by Ajay et al. 2011 [56], we

could only discover 85% of the WGS-WES intersection

INDELs. We calculated that WGS at 60X mean coverage

(after removing PCR duplicates) from the HiSeq 2000

platform is needed to recover 95% of INDELs with

Scalpel, which is much higher than current sequencing

practice (Figure 12A). If economically possible, WGS at

60X mean coverage with PCR-free library preparation

would generate even more ideal sequencing data for

INDEL detection.

Some groups previously reported that determining

heterozygous SNPs requires higher coverage than homo-

zygous ones [57]. The sensitivity of heterozygous SNP

detection was limited by depth of coverage, which re-

quires at least one read from each allele at any one site

and in practice much more than one read to account for

sequencing errors [58]. However, the read depth require-

ment of INDEL detection in terms of zygosity has not

Figure 10 Percentage of high-quality, moderate-quality, and

low-quality INDELs in two data sets. From left to the right are:

the PCR-free and standard WGS INDELs, the PCR-free-specific INDELs,

the standard-WGS-specific INDELs. The numbers on top of a call set

represent the number of INDELs in that call set.

Figure 11 Percentage of poly-A, poly-C, poly-G, poly-T, other-STR, and non-STR in (A) high-quality INDELs and (B) low-quality INDELs.

In both figures, from left to the right are PCR-free and standard WGS INDELs, INDELs specific to PCR-free data, and INDELs specific to standard

WGS data.
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been well understood. To answer this question, we took

the WGS-WES intersection INDELs and partitioned

them by zygosities. We first plotted the pair-wise cover-

age relationship between WGS and WES for each WGS-

WES intersection INDEL. Additional file 1: Figure S3

shows that the detection of homozygous INDELs starts

with a lower coverage, which is consistent in both WGS

and WES data sets, although the rest of the homozy-

gotes and heterozygotes were highly overlapping. To fur-

ther understand this phenomenon, we measured the

sensitivity again for heterozygous INDELs and homozy-

gous INDELs separately. At a mean coverage of 20X, the

false negative rates of WGS-WES intersection INDELs

was 45% for heterozygous INDELs and 30% for homozy-

gous INDELs, which is consistent with the fact that

homozygous INDELs are more likely to be detected at a

lower coverage shown above (Figure 12B). This shows

that one should be cautious about the issue of false-

negative heterozygous INDELs in any sequencing experi-

ment with a low coverage (less than 30X). Figure 12B

also shows that detection of heterozygous INDELs in-

deed requires higher coverage than homozygous ones

(sensitivity of 95% at 60X vs. 50X). Notably, the number

of heterozygous INDELs was 1.6-fold higher than homo-

zygous ones (1,000 vs. 635 per sample). This re-affirms

the need for 60X mean coverage to achieve a very high

accuracy INDEL call set.

Conclusions
Despite the fact that both WES and WGS have been

widely used in biological studies and rare disease diag-

nosis, limitations of these techniques on INDEL calling

are still not well characterized. One reason is that ac-

curate INDEL calling is in general much more difficult

than SNP calling. Another reason is that many groups

tend to use WES, which we have determined is not

ideal for INDEL calling for several reasons. We report

here our characterization of calling errors for INDEL

detection using Scalpel. As expected, higher coverage

improves sensitivity of INDEL calling, and large INDEL

detection is uniformly more difficult than detecting

smaller INDELs. We also showed that assembly-based

callers are more capable of revealing a larger spectrum

of INDELs, relative to alignment-based callers. There

are several reasons for the low concordance for WGS

and WES on INDEL detection. First, due to the low

capture efficiency, WES failed to capture 16% of candi-

date exons, but even at sites that were successfully cap-

tured, there were more coverage biases in the WES

data, relative to the WGS data. Second, PCR amplifica-

tion introduces reads with higher INDEL error rate, es-

pecially in regions near homopolymer A/Ts. Lastly,

STR regions, especially homopolymer A/T regions were

more likely to result in multiple candidates at the same

locus. We recommend controlling for homopolymer

Figure 12 Sensitivity performance of INDEL detection with eight WGS data sets at different mean coverages on Illumina HiSeq2000

platform. The Y-axis represents the percentage of the WGS-WES intersection INDELs revealed at a certain lower mean coverage. (A) Sensitivity

performance of INDEL detection with respects with each sample, (B) Sensitivity performance of heterozygous (blue) and homozygous (green)

INDEL detection were shown separately.
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false INDEL calls with a more stringent filtering cri-

teria. This is essential for population-scale sequencing

projects, because the expense of experimental valid-

ation scales with the sample size.

Our validation data showed that INDELs called by

both WGS and WES data were indeed of high quality

and with a low error rate. Even though the WGS data

have much lower depth coverage in general, the accur-

acy of INDEL detection with WGS data is much higher

than that with WES data. We also showed that the WES

data are missing many large INDELs, which we specu-

late might be related to the technical challenges of pull-

ing down the molecules containing large INDELs during

the exon capture process. Homopolymer A/T INDELs

are a major source of low-quality INDELs and multiple

signature events, and these are highly enriched in the

WES data. This was confirmed by the comparison of

PCR-free and standard WGS data. In terms of sensitiv-

ity, we calculated that WGS at 60X mean coverage from

the HiSeq platform is needed to recover 95% of INDELs

with Scalpel.

As more and more groups are moving to use new

micro-assembly-based algorithms such as Scalpel, prac-

tical considerations for experimental design should be

introduced to the community. Here we present a novel

classification scheme utilizing the validation data, and

we encourage researchers to use this guideline for evalu-

ating their call sets. The combination of alternative allele

coverage and the k-mer Chi-Square score is an effective

filter criterion for reducing INDEL calling errors without

sacrificing much sensitivity. This classification scheme

can be easily applied to screen INDEL calls from all vari-

ant callers. Since alternative allele coverage is generally

reported in the VCF files, the Chi-Square scores can also

be computed directly. For consumer genome sequencing

purposes, we recommend sequencing human genomes

at a higher coverage with a PCR-free protocol, which

can substantially improve the quality of personal ge-

nomes. Although this recommendation might initially

cost more than the current standard protocol of genome

sequencing used by some facilities, we argue that the

significantly higher accuracy and decreased costs for val-

idation would ultimately be cost-effective as the sequen-

cing costs continue to decrease, relative to either WES

or WGS at a lower coverage. However, it is important to

point out that with the release of Illumina HiSeq X-Ten

and other newer sequencers, the coverage requirement

to accurately detect INDELs may decrease because reads

with longer read length can span repetitive regions more

easily. Besides, bioinformatics algorithms are another

important consideration, and we expect the further en-

hancements of Scalpel and other algorithms will help re-

duce the coverage requirement while maintaining a high

accuracy.
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