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Abstract

Purpose

To compare manual corrections of liver masks produced by a fully automatic segmentation

method based on convolutional neural networks (CNN) with manual routine segmentations

in MR images in terms of inter-observer variability and interaction time.

Methods

For testing, patient’s precise reference segmentations that fulfill the quality requirements for

liver surgery were manually created. One radiologist and two radiology residents were

asked to provide manual routine segmentations. We used our automatic segmentation

method Liver-Net to produce liver masks for the test cases and asked a radiologist assistant

and one further resident to correct the automatic results. All observers were asked to mea-

sure their interaction time. Both manual routine and corrected segmentations were com-

pared with the reference annotations.

Results

The manual routine segmentations achieved a mean Dice index of 0.95 and a mean relative

error (RVE) of 4.7%. The quality of liver masks produced by the Liver-Net was on average

0.95 Dice and 4.5% RVE. Liver masks resulting from manual corrections of automatically

generated segmentations compared to routine results led to a significantly lower inter-

observer variability (mean per case absolute RVE difference across observers 0.69%) when

compared to manual routine ones (2.75%). The mean interaction time was 2 min for manual

corrections and 10 min for manual routine segmentations.
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Conclusions

The quality of automatic liver segmentations is on par with those frommanual routines.

Using automatic liver masks in the clinical workflow could lead to a reduction of segmenta-

tion time and a more consistent liver volume estimation across different observers.

Introduction

Total liver volume plays an essential role in planning liver interventions such as liver surgery

or radioembolization and in therapy response assessment [1, 2]. Manual liver segmentation is

a tedious and time-consuming task, which also is prone to inter-observer variability, in partic-

ular for MRI data. Automation of the liver contouring process allows for shorter segmentation

times and reduction of measurement subjectivity [3].

Recently, several approaches for automatic liver segmentation in MRI have been proposed.

A 3D liver model guided by a precomputed probability map was used by Bereciartua et al. [4],

which achieved a mean Dice of 0.90 for patients with healthy livers. Le et al. used a histogram-

based liver segmentation with a subsequent geodesic active contour refinement step and

reported a mean Dice of 0.91 [5]. Huyhn et al. proposed a method based on watershed trans-

formation and active contours, which achieved a mean Dice of 0.91 [6]. Christ et al. trained a

fully convolutional neural network for this problem, which produced liver masks with a mean

Dice of 0.87 [7].

A related problem of automatic liver segmentation in CT images has received more atten-

tion recently compared to segmentation in MRI data thanks to the Liver Tumor Segmentation

Challenge (LiTS) organized in 2017 [8]. Top-ranking submissions used deep learning based

segmentation approaches including hierarchical models for coarse-to-fine segmentation [9],

3D networks combining original image data with features derived from 2Dmodels [10] and

orthogonal 2D networks [11]. Other well-established algorithms for CT liver segmentation

employ statistical shape models to describe plausible shape variations [12, 13].

Whereas automatic methods produce liver segmentations of a quality close to that of

experts, they can still fail in some cases, thus requiring manual corrections. As reported in [6],

major segmentation errors are caused by leakage into neighboring organs (heart, colon, stom-

ach, or kidneys) or by lesions located near the organ’s boundary. None of the recently pub-

lished MRI segmentation methods was evaluated with respect to the required time to correct

such major errors, which should be considered when assessing the overall utility of an auto-

matic method.

The contribution of this paper is twofold. First, we provide a validation of our automatic

method in MRI based on convolutional neural networks dubbed Liver-Net by comparing its

results with manual routine segmentations performed by clinicians. Second, we report on seg-

mentation errors of Liver-Net and required correction time by clinical users. Additionally, we

investigate the influence of automatic liver proposals on the inter-observer variability with

respect to the estimated total liver volume.

Materials andmethods

Data

For our study, we used DCE-MRI data of 83 patients with primary liver cancer and/or liver

metastases that were scheduled for selective internal radiation therapy (SIRT). Image data was
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acquired at Städtisches Klinikum Dresden, Germany, on a 3TMRI scanner (Discovery, GE

Healthcare Systems, USA). The image in-plane resolution ranged from 0.74 to 1.76 mm and

the slice thickness from 2 to 5 mm. Segmentations were performed on the late hepatocellular

phase acquired 15 min after intravenous injection of the contrast agent (Gd-EOB-DTPA,

Bayer, Germany). We randomly selected 62 cases for training and optimization of our auto-

matic method. The remaining 21 cases were left out for evaluation.

For all patients, reference segmentations were performed by two radiologist assistants with

over ten years of experience in a precise segmentation according to liver-surgery planning

requirements. The contours were drawn using a semi-automatic tool [14] and reviewed by a

radiologist.

Imaging data for this study was evaluated at Städtisches Klinikum Dresden after approval

by the ethics committee of Sächsiche Landesärztekammer (EK-BR-79/16-1 / 118834). All

patients gave written informed consent. The study did not include minors.

Automatic segmentation method

Architecture. Our segmentation method Liver-Net employs three orthogonal 2D CNN

models trained with axial, coronal and sagittal image patches (see Fig 1) [15]. Each of the CNN

models is of a U-net-like [16] architecture working on four resolution levels and has a recep-

tive field of 93 × 93, which was empirically found to provide enough context information for

Fig 1. Overview of the Liver-Net method. Three 2D U-net-like models analyze axial, coronal and sagittal image patches. The final segmentation mask
is obtained by a majority vote.

https://doi.org/10.1371/journal.pone.0217228.g001
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liver segmentation (see Fig 2). The models use convolutional layers with 3 × 3 kernel size.

Downscaling (upscaling) is performed via strided (transposed) 2 × 2 convolutions. Each con-

volution is followed by a batch normalization to speed up the convergence and ReLU nonline-

arity. Short skip connections were added to improve the gradient flow throughout the network

[17]. Additionally, in the upscaling path, dropout layers were used to avoid overfitting. Hard

prediction outputs of the three models are combined via majority vote to produce the final seg-

mentation mask.

Training. CNNmodels were trained using 2D image patches (228 × 228) and a mini-

batch size of 16. Input was padded reflectively with 45 pixels on each side to account for convo-

lutions computed in the “valid” mode. Models were trained using the soft dice loss function

with the Adam optimizer (10−4 learning rate). Model quality was evaluated every 500 iterations

on the validation set using the Jaccard coefficient. The training was stopped if the model qual-

ity had not improved for 20 validations.

Data preprocessing. The images fed into the models were resampled to 2 mm isotropic

voxel size and normalized by a linear mapping of the intensities between the 2nd and 98th per-

centile of each MR image to the [0, 1] range. Random rotations a½deg� � N ð0; 10Þ and ran-

dom intensity shifts x � N ð0; 0:1Þ were applied to augment the training set.

Experiments

Comparison with manual routine segmentations. To evaluate the segmentation quality

of our automatic method, we asked one radiologist Rad (23-year radiology experience) and

two radiology residents: Res1 (3-year radiology experience), Res2 (3-month radiology experi-

ence) to delineate livers for 21 test patients according to routine clinical standards employed

for SIRT planning and to measure the required time. The segmentations were performed

using basic contouring software [18]. The automatic and routine segmentations were evalu-

ated against the reference segmentations.

Error analysis of the automatic method. To analyze errors of the automatic method, we

asked another radiology resident Res3 (2-year radiotherapy, 1-year radiology experience) and

one radiologist assistant RA (10-year contouring experience) to correct major errors of the

automatically generated liver masks and to measure the correction time. The corrections were

done using the same contouring tool as for the routine segmentations. To measure the impact

of the corrections, we compared the automatic and corrected liver masks with the references.

Fig 2. Architecture of CNNmodels employed in the Liver-Net method. The numbers denote the feature map count.

https://doi.org/10.1371/journal.pone.0217228.g002
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Before the study was conducted, all observers participating in this study were trained to use

the contouring tool used for manual segmentation and corrections.

Inter-observer variability. To assess the influence of the automatic liver segmentation on

the inter-observer variability of the estimated liver volume, we compared the inter-observer

variability of the manual routine segmentations with the corrected segmentation masks.

Evaluation metrics

Segmentation quality. The segmentation quality was measured using complementary

metrics computed in 3D. We used the Dice index (DICE) as an overlap-based metric, the rela-

tive volume error (RVE) as a volume-based error measure and the mean surface distance

(MSD) and the Hausdorff distance (HD) as surface-based metrics. DICE between two binary

objects is defined as:

DICEðX;YÞ ¼
2jX \ Yj

jXj þ jYj
ð1Þ

We define RVE as:

RVEðX;YÞ ¼
jVX � VY j

VY

� 100% ð2Þ

where VX and VY are the volumes of the test object and reference object, respectively. MSD

and HD are defined as follows:

MSDðX;YÞ ¼
1

2N

X

x2X

min
y2Y

dðx; yÞ þ
X

y2Y

min
x2X

dðx; yÞ

 !

ð3Þ

HDðX;YÞ ¼ maxfsup
x2X

inf
y2Y

dðx; yÞ; sup
y2Y

inf
x2X

dðx; yÞg ð4Þ

where d(x, y) is the Euclidean distance between points x and y. To analyze how many slices

had to be corrected, we computed a percentage of corrected slices (CS):

CS ¼
nc

nt

� 100% ð5Þ

where nc denotes count of corrected slices and nt denotes count of slices occupied by the auto-

matic liver mask.

Inter-observer variability. The variability among users was measured as the average of

absolute inter-observer RVE differences. The consistency analysis of the volume estimation

was performed using the intraclass correlation coefficient (ICC) [19]. We used the two-way

random, single measure model ICC(2,1).

Differences were tested for statistical significance using the Wilcoxon signed-rank test at

0.01 level.

Results

The CNNs constituting the Liver-Net were trained in 3h, 1.5h and 6h for the axial, coronal and

sagittal model, respectively. Time measurements for training as well as for prediction were

done on a desktop PC (Intel Core i7-4770K, 32 GB RAM, NVIDIA Titan Xp).

Reducing inter-observer variability and interaction time of MR liver volumetry

PLOSONE | https://doi.org/10.1371/journal.pone.0217228 May 20, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0217228


Comparison with manual routine segmentations

The quality of automatic liver masks was on par with manual ones according to the mean

DICE: 0.95 for the automatic and 0.94, 0.95, and 0.94 for the manual segmentations (see

Table 1 and Fig 3). The mean RVE of the routine segmentations was 5.8%, 3.6%, and 4.7%

compared to 4.5% achieved by our method. For the surface distance metrics, our method

resulted in the lowest errors (average of 2.0 mm and 32 mm for MSD and HD, respectively).

No differences in metric values between the automatic and routine segmentations were signifi-

cant. Our method needed on average 20 ± 7 s per case, whereas the routine segmentations

took 10 ± 4 min. Fig 4 shows representative examples of automatic results compared to routine

segmentations.

Table 1. Evaluation results (mean ± standard deviation) for the Liver-Net and manual routine segmentations by a radiologist (Rad) and two residents (Res1, Res2)
when compared to the reference.

Liver-Net Rad Res1 Res2

DICE 0.95 ± 0.02 0.94 ± 0.03 0.95 ± 0.02 0.94 ± 0.03

RVE [%] 4.5 ± 3.5 5.8 ± 4.8 3.6 ± 4.9 4.7 ± 5.0

MSD [mm] 2.0 ± 0.5 4.9 ± 5.7 4.5 ± 5.7 5.1 ± 6.7

HD [mm] 32 ± 10 57 ± 55 54 ± 55 60 ± 64

Best results according to the mean are indicated in bold.

https://doi.org/10.1371/journal.pone.0217228.t001

Fig 3. Box plots showing segmentation quality of Liver-Net and that of manual routine segmentations.

https://doi.org/10.1371/journal.pone.0217228.g003
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Error analysis of the automatic method

Res3 and RA corrected on average 38% and 25% of slices, respectively, which led to improve-

ments in all error metrics (see Table 2 and Fig 5). Liver masks corrected by the radiologist

assistant scored significantly better than the automatic ones according to DICE (p = 0.001),

RVE (p = 0.004), and MSD (p = 0.002), when compared with the high-quality reference. The

corrections took 2.3 ± 1.7 min for Res3 and less than 2 min for RA. Examples with no or

minimal corrections needed as well as ones requiring many adjustments are illustrated in

Fig 6.

Fig 4. Examples of segmentations produced by the Liver-Net (cyan) compared to three routine delineations by Rad (blue), Res1 (yellow) and Res2
(purple). (a) Case where Liver-Net was more consistent with the reference than the routine segmentations: 0.70% (0.96), 8.89% (0.94), 6.56% (0.95) and
11.7% (0.92) for RVE (DICE) for the automatic method and the routine segmentations by Rad, Res1 and Res2, respectively. (b) Case where automatic
and routine segmentations were very similar: 2.62% (0.97), 2.27% (0.97), 0.87% (0.97) and 0.09% (0.97). (c) Case where automatic liver mask had the
biggest RVE: 8.49% (0.94), 2.24% (0.94), 0.80% (0.95) and 5.97% (0.94).

https://doi.org/10.1371/journal.pone.0217228.g004
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Inter-observer variability

The average per-case absolute inter-observer RVE difference was 2.75 ± 1.41% for the manual

routine segmentations, which was significantly higher (p = 0.0002) compared to 0.69 ± 0.88%

for corrected automatic liver masks (Fig 7). Table 3 lists RVE values for each patient and each

observer. The ICC(2,1) with a 95% confidence interval was 0.989 (0.978, 0.995) and 0.999

(0.998, 1) for manual and corrected segmentations, respectively.

Table 2. Evaluation results (mean ± standard deviation) for the Liver-Net and for the liver masks corrected by
Res3 and RA.

Liver-Net Corr_Res3 Corr_RA

DICE 0.95 ± 0.02 0.95 ± 0.01 0.96 ± 0.01�

RVE [%] 4.5 ± 3.5 3.5 ± 2.2 3.1 ± 2.2�

MSD [mm] 2.0 ± 0.5 1.9 ± 0.2 1.8 ± 0.2�

HD [mm] 32 ± 10 31 ± 9 29 ± 9

CS [%] n/a 38 ± 30 25 ± 28

Best results according to the mean are indicated in bold.
�Significant difference when compared to Liver-Net.

https://doi.org/10.1371/journal.pone.0217228.t002

Fig 5. Box plots showing segmentation quality of the Liver-Net masks and their corrections done by Res3 and RA.

https://doi.org/10.1371/journal.pone.0217228.g005
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Discussion

Our Liver-Net method delivered segmentations which were on par with the manual routine

segmentations. In case an observer corrected the automatic liver segmentation, the contours

and subsequent volume measurement become less subjective than manual segmentations

from scratch. The automatic suggestions may help to achieve segmentations more consistent

with guidelines used to segment the training data. For example, in the case of Patient10 from

Table 3, routinely segmented livers did not include a large lesion in the liver mask, which was

not the case for the reference and both corrected segmentations (see Fig 6). Only RA, who also

created reference segmentations, was able to achieve a significant quality improvement of cor-

rected masks according to DICE, RVE, and MSD when compared to the automatic Liver-Net

Fig 6. Examples showing how the automatic Liver-Net results (cyan) were corrected. The contours denote corrected liver masks by Res3 (blue) and
RA (yellow). (a) Case with minor or no corrections: 1.42% for the Liver-Net liver masks, 1.51% (4.3%) and 1.42% (0%) RVE (CS) for the corrections by
Res3 and RA, respectively. (b) Case where less than half of all slices were corrected: 5.66%, 5.57% (47.6%) and 5.40% (35.7%). (c) Case where most of the
slices were corrected by all observers: 11.48%, 1.62% (74.0%) and 0.10% (78.3%).

https://doi.org/10.1371/journal.pone.0217228.g006
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Fig 7. Box plots showing mean absolute inter-observer relative volume difference for routine and corrected
automatic segmentations. See Table 3 for RVE values of all observers.

https://doi.org/10.1371/journal.pone.0217228.g007

Table 3. Per patient relative volume error for routine and corrected automatic segmentations.

Routine Corrected

Rad Res1 Res2 Res3 RA

Patient1† 8.89% 6.56% 11.73% 4.20% 0.70%

Patient2 8.52% 4.44% 1.39% 4.59% 3.87%

Patient3 1.84% 4.42% 2.45% 5.57% 5.41%

Patient4 1.15% 6.19% 2.07% 2.25% 4.56%

Patient5 4.72% 0.24% 3.47% 0.93% 0.93%

Patient6 2.81% 1.09% 4.47% 6.30% 6.62%

Patient7 3.49% 0.26% 1.17% 3.56% 3.32%

Patient8 3.51% 1.10% 3.37% 4.88% 3.91%

Patient9 2.27% 0.87% 0.09% 2.11% 2.62%

Patient10 22.62% 22.89% 22.18% 1.62% 0.09%

Patient11 7.24% 2.69% 2.12% 0.78% 0.87%

Patient12 3.10% 0.17% 2.40% 7.73% 7.73%

Patient13 2.24% 0.79% 5.97% 7.86% 6.72%

Patient14 6.06% 4.93% 4.61% 3.56% 2.54%

Patient15 11.39% 5.24% 6.50% 0.52% 0.43%

Patient16 5.07% 3.37% 4.29% 5.15% 4.51%

Patient17 1.13% 1.34% 4.21% 2.66% 2.62%

Patient18� 6.79% 1.17% 10.58% 2.71% 1.83%

Patient19 9.14% 4.28% 2.49% 1.57% 1.38%

Patient20 6.12% 1.42% 2.87% 1.51% 1.42%

Patient21 4.31% 2.30% 0.49% 3.91% 3.93%

Case with the highest inter-observer variability among manual routine� and corrected† segmentations: 6.27% and 3.50%, respectively.

https://doi.org/10.1371/journal.pone.0217228.t003
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segmentations. The consistency among observers measured as ICC(2,1) for manual (0.989)

and corrected (0.999) segmentations was excellent and similar to the inter-observer correlation

reported for CT (0.997) [20].

We asked an expert radiologist to analyze visually how the liver masks produced by Liver-

Net were corrected by observers and the following factors causing major segmentations were

identified (see Fig 8 for error examples):

• Contrast changes causing FPs and FNs due to lesions located near the organ surface or con-

trast enhanced vessels.

• Large inhomogeneous lesions leading to liver underestimation.

• Similar intensities of surrounding nearby organs cause FPs (e.g., kidneys and stomach).

Comparison with other methods

The segmentation quality of the Liver-Net evaluated using a challenging data set consisting of

pathological livers with numerous tumors was 0.95 according to DICE, which is better than

other methods in the literature reporting DICE in the 0.87-0.91 range [4–7]. Unfortunately, a

direct comparison is not possible, as different datasets were used for method optimization and

evaluation.

Liver-Net, in contrast to approaches employing shape models [4–6], does not contain an

explicit knowledge about plausible liver forms. Therefore, in some cases, it produces segmenta-

tions that do not completely resemble a liver (Fig 8a). On the other hand, the lack of a shape

prior allows for a correct segmentation of livers strongly deviating in form from a normal liver

shape (e.g., resected liver, Fig 9). Compared to the approach of Christ et al. [7] where only one

axial 2D CNN was used, Liver-Net uses three orthogonal models, which allow our method to

exploit the 3D context information of volumetric MR images.

Study limitations

The test set size (21 images) should be taken into account when considering the conclusions of

this work, as the small sample size limits the accuracy of the statistical analysis.

Conclusion

We presented a validation of a fully automatic method dubbed Liver-Net for liver segmenta-

tion in MRI based on three orthogonal neural networks and its corrected masks. The

Fig 8. Most common error types of the Liver-Net approach. (a) Leakage into surrounding structure of similar image intensity. (b) FNs due to
lesions located near the organ boundary. (c) Liver underestimation caused by a big inhomogeneous lesion.

https://doi.org/10.1371/journal.pone.0217228.g008

Reducing inter-observer variability and interaction time of MR liver volumetry

PLOSONE | https://doi.org/10.1371/journal.pone.0217228 May 20, 2019 11 / 14

https://doi.org/10.1371/journal.pone.0217228.g008
https://doi.org/10.1371/journal.pone.0217228


comparison with manual routine segmentations provided by three clinical users showed that

Liver-Net produces liver masks of a comparable quality according to Dice index, relative vol-

ume error, mean surface distance, and Hausdorff distance. Error analysis of the Liver-Net

showed that, on average, 32% of slices had to be corrected, which required on average 2 min-

utes of interaction time. Corrected liver masks led to a significantly lower inter-observer vari-

ability when compared to manual segmentations from scratch (0.69% vs. 2.75% for mean per-

case absolute inter-observer RVE difference and 0.999 vs. 0.989 for the intra-class correlation

coefficient). We identified the following factors as sources of major errors of our method: con-

trast changes close to organ boundary, inhomogeneous lesions and similar appearance of sur-

rounding structures. Successful automated elimination of these errors would most probably

lead to a substantial improvement in segmentation quality. One possible solution to this may

be the extension of the training dataset with cases causing the above-mentioned errors. Addi-

tionally, a hard example mining strategy could be employed, which concentrates the learning

process on the most difficult cases.

Future research directions include usage of 3D neural networks exploiting the full volumet-

ric context information, GANmodels for generation of training data [21] and combination of

CNNs with statistical shape knowledge [22].
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Böhme for providing feedback and manual segmentations and Susanne Diekmann for the

help in the error analysis. The work was funded by the Fraunhofer-Gesellschaft. The Titan Xp

used for this research was donated by the NVIDIA Corporation.

Author Contributions

Conceptualization: Grzegorz Chlebus, Smita Thoduka.

Data curation: Grzegorz Chlebus, Smita Thoduka, Nasreddin Abolmaali.

Funding acquisition: Andrea Schenk.

Project administration: Andrea Schenk.

Fig 9. Resected liver case, where the Liver-Net method (black) produced segmentation consistent with the reference (white): 3% RVE and 0.95
DICE.

https://doi.org/10.1371/journal.pone.0217228.g009

Reducing inter-observer variability and interaction time of MR liver volumetry

PLOSONE | https://doi.org/10.1371/journal.pone.0217228 May 20, 2019 12 / 14

https://doi.org/10.1371/journal.pone.0217228.g009
https://doi.org/10.1371/journal.pone.0217228


Software: Grzegorz Chlebus, Hans Meine.

Supervision:Hans Meine, Bram van Ginneken, Horst Karl Hahn, Andrea Schenk.

Validation: Grzegorz Chlebus.

Writing – original draft: Grzegorz Chlebus.

References
1. Nakayama Y, Li Q, Katsuragawa S, Ikeda R, Hiai Y, Awai K, et al. Automated hepatic volumetry for liv-

ing related liver transplantation at multisection CT. Radiology. 2006; 240(3):743–748. https://doi.org/10.
1148/radiol.2403050850 PMID: 16857979

2. Kennedy A, Coldwell D, Sangro B, Wasan H, Salem R. Radioembolization for the treatment of liver
tumors: general principles. American journal of clinical oncology. 2012; 35(1):91–99. https://doi.org/10.
1097/COC.0b013e3181f47583 PMID: 22363944

3. Gotra A, Chartrand G, Vu KN, Vandenbroucke-Menu F, Massicotte-Tisluck K, de Guise JA, et al. Com-
parison of MRI-and CT-based semiautomated liver segmentation: a validation study. Abdominal Radiol-
ogy. 2017; 42(2):478–489. https://doi.org/10.1007/s00261-016-0912-7 PMID: 27680014

4. Bereciartua A, Picon A, Galdran A, Iriondo P. Automatic 3Dmodel-based method for liver segmentation
in MRI based on active contours and total variation minimization. Biomedical Signal Processing and
Control. 2015; 20:71–77. https://doi.org/10.1016/j.bspc.2015.04.005

5. Le TN, Huynh HT, et al. Fully automatic scheme for measuring liver volume in 3DMR images. Bio-medi-
cal materials and engineering. 2015; 26(s1):1361–1369. https://doi.org/10.3233/BME-151434

6. Huynh HT, Le-Trong N, Oto A, Suzuki K, et al. Fully automatedMR liver volumetry using watershed
segmentation coupled with active contouring. International journal of computer assisted radiology and
surgery. 2017; 12(2):235–243. https://doi.org/10.1007/s11548-016-1498-9 PMID: 27873147

7. Christ PF, Ettlinger F, Grün F, Elshaera MEA, Lipkova J, Schlecht S, et al. Automatic liver and tumor
segmentation of ct and mri volumes using cascaded fully convolutional neural networks. CoRR. 2017;
abs/1702.05970.

8. Bilic P, Christ PF, Vorontsov E, Chlebus G, Chen H, Dou Q, et al. The Liver Tumor Segmentation
Benchmark (LiTS). CoRR. 2019;abs/1901.04056.

9. Yuan Y. Hierarchical Convolutional-Deconvolutional Neural Networks for Automatic Liver and Tumor
Segmentation. CoRR. 2017;abs/1710.04540.

10. Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA. H-DenseUNet: Hybrid Densely Connected UNet for Liver
and Tumor Segmentation From CT Volumes. IEEE Transactions on Medical Imaging. 2018; 37:2663–
2674. https://doi.org/10.1109/TMI.2018.2845918 PMID: 29994201

11. Chlebus G, Schenk A, Moltz JH, van Ginneken B, Hahn HK, Meine H. Automatic liver tumor segmenta-
tion in CT with fully convolutional neural networks and object-based postprocessing. Scientific reports.
2018; 8(1):15497. https://doi.org/10.1038/s41598-018-33860-7 PMID: 30341319

12. He B, Huang C, Sharp G, Zhou S, Hu Q, Fang C, et al. Fast automatic 3D liver segmentation based on
a three-level AdaBoost-guided active shape model. Medical Physics. 2016; 43(5):2421–2434. https://
doi.org/10.1118/1.4946817 PMID: 27147353

13. Shi C, Cheng Y, Wang J, Wang Y, Mori K, Tamura S. Low-rank and sparse decomposition based
shapemodel and probabilistic atlas for automatic pathological organ segmentation. Medical image anal-
ysis. 2017; 38:30–49. https://doi.org/10.1016/j.media.2017.02.008 PMID: 28279915

14. Schenk A, Prause G, Peitgen HO. Efficient semiautomatic segmentation of 3D objects in medical
images. In: International Conference on Medical Image Computing and Computer-Assisted Interven-
tion. Springer; 2000. p. 186–195.

15. Prasoon A, Petersen K, Igel C, Lauze F, DamE, Nielsen M. Deep feature learning for knee cartilage
segmentation using a triplanar convolutional neural network. In: International conference on medical
image computing and computer-assisted intervention. Springer; 2013. p. 246–253.

16. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation.
In: International Conference on Medical image computing and computer-assisted intervention.
Springer; 2015. p. 234–241.

17. Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections in bio-
medical image segmentation. In: Deep Learning and Data Labeling for Medical Applications. Springer;
2016. p. 179–187.

18. Weiler F, Chlebus G, Rieder C, Moltz JH,Warning A, Brachmann C, et al. Building Blocks for Clinical
Research in Adaptive Radiotherapy. In: Proceedings of CURAC 2015; 2015. p. 139–144.

Reducing inter-observer variability and interaction time of MR liver volumetry

PLOSONE | https://doi.org/10.1371/journal.pone.0217228 May 20, 2019 13 / 14

https://doi.org/10.1148/radiol.2403050850
https://doi.org/10.1148/radiol.2403050850
http://www.ncbi.nlm.nih.gov/pubmed/16857979
https://doi.org/10.1097/COC.0b013e3181f47583
https://doi.org/10.1097/COC.0b013e3181f47583
http://www.ncbi.nlm.nih.gov/pubmed/22363944
https://doi.org/10.1007/s00261-016-0912-7
http://www.ncbi.nlm.nih.gov/pubmed/27680014
https://doi.org/10.1016/j.bspc.2015.04.005
https://doi.org/10.3233/BME-151434
https://doi.org/10.1007/s11548-016-1498-9
http://www.ncbi.nlm.nih.gov/pubmed/27873147
https://doi.org/10.1109/TMI.2018.2845918
http://www.ncbi.nlm.nih.gov/pubmed/29994201
https://doi.org/10.1038/s41598-018-33860-7
http://www.ncbi.nlm.nih.gov/pubmed/30341319
https://doi.org/10.1118/1.4946817
https://doi.org/10.1118/1.4946817
http://www.ncbi.nlm.nih.gov/pubmed/27147353
https://doi.org/10.1016/j.media.2017.02.008
http://www.ncbi.nlm.nih.gov/pubmed/28279915
https://doi.org/10.1371/journal.pone.0217228


19. Portney L, Watkins M. Foundations of clinical research: application to practice. Stamford, USA: Apple-
ton & Lange. 1993.

20. Sandrasegaran K, Kwo P, DiGirolamo D, Stockberger S Jr, Cummings O, Kopecky K. Measurement of
liver volume using spiral CT and the curved line and cubic spline algorithms: reproducibility and interob-
server variation. Abdominal imaging. 1999; 24(1):61–65. https://doi.org/10.1007/s002619900441
PMID: 9933675

21. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical
image augmentation for increased CNN performance in liver lesion classification. Neurocomputing.
2018; 321:321–331. https://doi.org/10.1016/j.neucom.2018.09.013

22. Milletari F, Rothberg A, Jia J, Sofka M. Integrating Statistical Prior Knowledge intoÂ Convolutional Neu-
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