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Reducing Interanalyst Variability in Photovoltaic
Degradation Rate Assessments

Dirk C. Jordan , Chris Deline , Michael G. Deceglie , Ambarish Nag, Gregory M. Kimball , Adam B. Shinn ,
Jim J. John, Aaesha A. Alnuaimi, Ammar B. A. Elnosh , Wei Luo , Anubhav Jain , Mashad U. Saleh ,

Heidi von Korff , Yang Hu, Jean-Nicolas Jaubert , and Fotis Mavromatakis

Abstract—The economic return on investment of a commercial
photovoltaic system depends greatly on its performance over the
long term and, hence, its degradation rate. Many methods have
been proposed for assessing system degradation rates from outdoor
performance data. However, comparing reported values from one
analyst and research group to another requires a common baseline
of performance; consistency between methods and analysts can
be a challenge. An interlaboratory study was conducted involving
different volunteer analysts reporting on the same photovoltaic
performance data using different methodologies. Initial variability
of the reported degradation rates was so high that analysts could
not come to a consensus whether a system degraded or not. More
consistent values are received when written guidance is provided
to each analyst. Further improvements in analyst variance was
accomplished by using the free open-source software RdTools,
allowing a reduction in variance between analysts by more than
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two orders of magnitude over the first round, where multiple anal-
ysis methods are allowed. This article highlights many pitfalls in
conducting “routine” degradation analysis, and it addresses some
of the factors that must be considered when comparing degradation
results reported by different analysts or methods.

Index Terms—Degradation rate, photovoltaics, RdTools,
round-robin.

I. INTRODUCTION

P
HOTOVOLTAIC (PV) costs have declined over the past
40 years due to a combination of market mechanisms (econ-

omy of scale, research, and development investment, public
subsidy) and technical improvement (increased cell efficiency,
module supply chain, and materials cost reductions) [1]. Con-
tinuous technological advances in cell efficiencies and module
materials can be expected; therefore, products installed currently
may differ from legacy systems and may not have a long his-
tory of field performance. The need exists, therefore, to assess
the long-term performance health of different PV technologies
quickly, accurately, and consistently. Degradation rates (Rd)
quantify the slow and gradual loss of performance and are
typically expressed relative to previous performance in %/year.
These rates are also known by less ambiguous terms such as
performance loss rates or rates of change [2], [3], and we take the
convention here of a negative value indicating performance loss.

Degradation rates (or, in more general terms, degradation
curves) have been aggregated from published reports and sum-
marized by some of the authors before [4] and in other studies.
Many technical factors have been found influencing PV system
degradation rates, including the cell technology, climate, and
mounting method [5]–[9]. However, the method and details of
the analysis itself can also introduce significant variation in
the result [10]. To be able to compare results across multiple
analysts and methods and to isolate intrinsic variations between
PV technologies, this interanalyst variability must be studied and
controlled. Further motivation includes an upcoming analysis
and comparison of performance loss rates under the auspices of
the International Energy Agency—Photovoltaic Power Systems
Programme Task 13 [11].

The need for a Rd performance benchmark is clear given the
many methods for calculating performance loss. This remains
a very active field of research, especially with the advent of
machine-learning algorithms [12], [13]. Because a detailed
review of degradation methods has been covered previously, this
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article highlights only some techniques that were known to have
been used for this effort [14]. The most direct method may be to
remove data that are not representative of the PV performance,
such as when the system or the irradiance sensor is shaded,
soiled, or covered in snow, followed by a standard least-squares
regression (SLS) to extract the long-term trend. Although
this is the most direct method, the regression approach has
disadvantages such as high leverage and sensitivity to outliers
[15]. The month-to-month approach uses a physical model to
evaluate the data in monthly increments and combines them
with a weighted regression to counter the disadvantages of
SLS [16]. The year-on-year methodology, which compares
the performance of the system at any given point in time
(e.g., day, month) with that same point the previous year,
is another way to eliminate regression disadvantages [17].
Some of the authors subsequently showed that the impact of
seasonal soiling and irradiance sensor drift could be minimized
when this approach was combined with clear-sky modeling
[18]. This combined methodology led to the introduction of
RdTools, a publicly available open-source software to determine
Rd [19].

The concept of an analyst intercomparison for PV perfor-
mance is not new, but previous efforts have focused on predictive
modeling of initial PV performance. One example was a blind
study in which different users were provided with system con-
figuration details and a year of meteorological data and asked
to predict the energy production of several PV systems [20]. No
equivalent study exists to date for long-term PV performance
and degradation rate extraction.

The motivation of this article is to, first, quantify the impact
that different analysts using different methods can have on degra-
dation assessment and, second, demonstrate the progress that has
been made in developing a consistent evaluation of fielded PV
systems using the methodology developed in [18]. This article is
organized as follows. Section II shows and discusses the results
of an interlaboratory study when a diverse range of PV analysts
examine the same datasets, and Section III describes specific
findings of the comparison, including identifying the areas in
which the different analysts may have differed, thus, introducing
scatter into the results.

II. INTERANALYST STUDY

The intent of this study is to evaluate the deviations encoun-
tered by different analysts on real-world systems containing
some challenges frequently encountered in fielded systems. An-
alysts were supplied with unprocessed data from three separate
systems ranging in duration from 4 to 10 years. This length
of time was previously found to be sufficient for determining
accurate Rd values [15]. The first two systems to be analyzed
are a 1-kW research system located at the National Renewable
Energy Laboratory (NREL) and a 6.3-kW system from Desert
Knowledge Center in Alice Springs, NT, Australia. Raw data
are available at [21] and [22], respectively. Both systems are
open-rack deployments of Sanyo 200–210 W HIT modules.
The final three systems are commercial-scale, ground-mount
installations located in central California, USA. These scaled
production data were provided anonymously by a commer-
cial partner, without identifying metadata. Therefore, certain

Fig. 1. DC power (left axis) of a small and relatively clean test system at
NREL that was used in the interlaboratory study. The right axis shows array
responsivity including the degradation rate trend.

operational details of the systems—including specific size, loca-
tion, and module technology—are unavailable, but anonymized
data may be made available.

The electrical and weather data were collected in either 1 or
15-min increments, shown as an example in Fig. 1 for the 1-kW
NREL system. Irradiance was measured by photodiode and
pyranometer both horizontally and in the plane of array (POA),
and wind speed, ambient temperature, and module temperatures
were supplied where available. Although the systems were rel-
atively well tended, measurement irregularities remained in the
raw data, which is often the case with typical field data. Examples
include data outages in the NREL data, visible in Fig. 1, accom-
panied by a change in data frequency from 15 to 1-min interval.
Some locations were characterized by a high-soiling environ-
ment whereas others, such as at NREL, had negligible soiling.
Additionally, the commercial systems in California contained
substantial inverter clipping, which could either be considered
or ignored, depending on analyst preference.

In the first round of the analyst intercomparison, six volunteer
analysts used their preferred method to assess the degradation of
the five systems. No specific guidance was provided regarding
which degradation methodology to use, how outliers or erro-
neous data should be handled, or whether system degradation
(including inverter clipping) or module degradation (excluding
clipped data) should be reported. Not surprisingly, no consensus
was reached among the analysts, with a high variability in the
annual degradation rate reported for each system. There was
not even consensus over whether the systems were improving
or degrading with time, with some analysts reporting large
increases in power, and others reporting substantial degradation
over time.

The results for this first round of analyst comparison are
shown in Fig. 2, where different analysts are indicated by color,
and different systems are indicated by symbol. Because systems
are changing at different rates, the actual reported performance
loss rate (e.g., –1%/year degradation or +0.5%/year improve-
ment) is normalized by the median value reported by all analysts.
In other words, the median reported rate of change for each
system coincides with 0%, and each analyst’s response is plotted
by its deviation from the median or the consensus value for each
system. In this first round of comparison, a substantial spread
exists in reported values, with an overall variance among analysts
being σ

2 = 0.745 [%/year absolute].
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Fig. 2. Deviations from the median result of all analyst of the round-robin
study. Different analysts are color-coded, and PV systems are symbol-coded.
The number of analysts and the variance of all results are given above the graph.
As a guide to the eye, tight intervals of ±0.1%/year are shown.

The causes for the wide spread in results are addressed in
more detail in Section III, but they fall generally into broad
categories: instrumentation errors (sensor drift, temperature
anomalies), methodological differences (regression techniques
more sensitive to outliers), and reporting conventions (report
module-only degradation or system degradation inclusive of
soiling and inverter clipping). The most common methodology
used by the analysts was a simple SLS regression approach
that can easily lead to different results, as further discussed in
Section III.

Mindful of the preventable causes of analyst variability, an
effort was undertaken to develop a written standard, intending
to define key terms and provide suggestions to the analyst [23].
The intent of this document is to provide guidance to some
aspects of the general decision process outlined in Section III.
However, the method relies heavily on the application of a
moving stability and an outlier filter in combination with an
uncertainty minimization process [10], [24]. In addition, because
the documented procedure also employs linear regression of
monthly temperature-corrected Performance Ratio (PR) values,
it fails to sufficiently address issues of sensor drift and soiling.
Lastly, it was the analyst’s responsibility to implement the
instructions into the preferred software, exposing it not only to
human error but also to differences in software algorithm, e.g.,
differences in optimization methods.

Results from the second round of analyst intercomparison,
where the draft standard was used to enforce more consistent
methodology, are shown in the second column of Fig. 2. Four
analysts from different organizations contributed their results
for three of the systems described above. It is clear that some
of the outliers were eliminated, reducing the overall variance
significantly to σ

2 = 0.093 [%/year absolute]. However, the
remaining results were still not as tight as desired, with an in-
terquartile range largely unchanged from the first round, leaving
an unacceptable uncertainty in the performance assessment.

Written documentation is a necessary first step for consistent
results; however, this strategy may be far more conducive to
indoor experiments in a controlled environment than to the
analysis of outdoor data that are “imperfect” in myriad ways.
Mistake-proofing (or poka-yoke) is a concept that seeks to re-
duce inadvertent human-induced errors in the 6-Sigma method-
ology [25], [26]. Mistake-proofing in this context consisted of
using the software algorithm, RdTools, to provide guidance
through the decision process and that uses an inherently more
robust methodology. The algorithm has been presented in more
detail previously [27], but is briefly summarized here.

1) Performance data are normalized by temperature and
irradiance. Either a local irradiance sensor or modeled
clear-sky irradiance (less susceptible to drift over time)
is used. Temperature is either ambient (Tamb) or module
(Tmod) temperature.

2) In a filtering step, nighttime, unphysical, and clipped
data due to high dc–ac ratio are removed. If clear-sky
irradiance is used, an additional filter removes nonnuclear
periods.

3) Hourly or minutely data are aggregated to daily irradiance-
weighted values.

4) A year-on-year degradation regression is conducted in
which a series of annual loss rates are calculated between
daily aggregated points separated by 365 days. The median
of this distribution is identified as the system’s Rd. This
method has been shown to be less susceptible to data
anomalies and seasonal soiling. It is also less susceptible
to outliers caused by nonseasonal soiling or other irregular
events compared to traditional regression-based methods
[15], [17].

Results from a third round of intercomparison involving
ten analysts and two systems are shown in the final column
of Fig. 2. The analysts’ expertise with the RdTools software
varied greatly. Some were familiar with the algorithm or had
helped with its development. Other analysts were unfamiliar
with RdTools prior to this article or had not analyzed PV field
data before but were at least familiar with Python programming
language in which RdTools is written. Finally, some analysts
had no background in either field performance data, RdTools,
or Python prior to this article. Despite these differences, the
analysts all achieved similar results that fell almost exclusively
within the very tight interval of 0.1%/year using RdTools. Two
slight deviations did result when analysts used only a subset of
the data instead of the complete dataset. Overall, the variance,
the squared deviation of all analysts, was reduced by more than
two orders of magnitude, which is an encouraging result for
consistent reproducible PV performance evaluations. This fact
has real-world consequences—the large Round-1 Rd analyst
variability when applied to a 25-year system lifetime represents
a 10% uncertainty in expected energy yield. By Round 3, the
uncertainty related to analyst variance is reduced to a negligible
factor. The entire evaluation period of this article took several
years to complete; thus, the number of analysts varied from
round to round for practical reasons despite an effort to keep it
consistent. However, we had several analysts that were available
for all evaluation rounds.
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In summary, we are not trying to claim that the methodol-
ogy used is the best or most accurate at identifying system
degradation rates. We merely state that without a method of
controlling or guiding the many decisions of a PV performance
analyst, a large range of possible outcomes could result. This is
investigated in more detail in the following section.

III. DECISION TREES

A thorough analysis of the initial intercomparison results
identified some of the difficulties encountered by analysts in
assessing long-term PV performance data. This can best be
captured in a series of decision-tree figures that will help explain
some of the results exhibited in the last figure.

Superficially, assessing long-term PV performance appears to
be a simple task of collecting data and determining the long-term
trend, often by means of a linear regression. However, “good-
quality” outdoor data may look like the graph of Fig. 1. A small
signal-to-noise ratio is caused by the diurnal and seasonal cycles,
as well as outliers and two outages. This dataset exemplifies a
relatively “clean” dataset because no unphysical and erroneous
data or stuck sensors can be seen. Nevertheless, the nontrivial
task is to distill a trend from this cloud of data and describe
it by a degradation curve with a single linear slope or other
nonlinear trend, and associated confidence interval [28]. To de-
termine this trend, the analyst is faced with a series of important
decisions, some of which may be subjective and may depend on
the ultimate interest of the analyst (e.g., module versus system
degradation). These choices may not have an equal impact on the
final result, but we will display several rudimentary flowcharts
to attempt to illustrate the complexity of the decision process.
In the following figures, red rounded rectangles indicate input
parameters such as data. Blue diamonds indicate decision points,
and green rectangles illustrate processes or process outputs.
Recommended default settings that were used in the Round
3 RdTools assessment are indicated by bold, underlined text
wherever applicable.

Before the data can be evaluated, an initial data-quality assess-
ment must be conducted, illustrated in Fig. 3. Some aspects of
data quality are relatively unambiguous, e.g., ensuring proper
time synchronization of separate data sources, or excluding
unphysical erroneous data. Other decisions are less straightfor-
ward, leading to differences in analyst preference. For instance,
nighttime data are often excluded, but this can be approached
in several ways. Additionally, systems with high dc-to-ac power
ratio can lead to “inverter clipping.” Clipping occurs during the
most productive days and times of the year, when the output is
limited by the inverter. Clipping can mask degradation and may
or may not be removed depending on the analyst’s interest.

Whether to evaluate the entire available dataset or just a subset
can depend on other choices in the decision tree. For example,
linear regression methods have high leverage, indicating that
they are sensitive to the beginning and ending of the seasonal
cycle and should be evaluated only in full-year increments of
data [10]. Missing data caused by maintenance events or sensor
replacements, for example, can pose a challenge for the analyst,
depending on the extent of the gap and the missing variables

Fig. 3. Initial data-quality decision tree. The red rounded rectangle indicates
the input parameter. The blue diamonds indicate decisions, and the green
rectangles illustrate processes or process outputs. Default settings in RdTools
are indicated by bold and underlined text.

Fig. 4. Decision tree for the irradiance input data. The red rounded rectangle
indicates the input parameter. The blue diamonds indicate decisions, and the
green rectangles illustrate processes or process outputs. Default settings in
RdTools are indicated by bold and underlined text.

in question [29]. Sections of missing data may be removed or
filled in with various interpolation methods. If the shift is readily
detectable, it can be corrected by an uncertainty minimization
procedure [30]. Other ways to handle a data shift include running
the analysis in two separate sections—before and after the
data shift—or to eliminate the shifted data from consideration,
particularly if the duration is short and is located at the end
or start of a dataset. Start-up issues that typically get resolved
within weeks or months of operation date are a common cause
of data shifts.

Following general data-quality assessment, the second branch
of the decision tree (see Fig. 4) pertains to how solar irradiance
resource data are incorporated. The accuracy of the collected
irradiance depends, in part, on the instrument and its calibration
[31]. An uncalibrated instrument fielded for several years can
bias the results substantially and is one of the most significant
contributors to Rd uncertainty [32]. Frequent calibration is an
accepted best practice, yet it often does not happen in practice. In
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Fig. 5. Decision tree using the temperature data. The red rounded rectangle
indicates the input parameter. The blue diamonds indicate decisions, and the
green rectangles illustrate processes or process outputs. Default settings in
RdTools are indicated by bold and underlined text.

the absence of calibrated ground-based local sensor data, other
sources may be used such as the national solar radiation database
(NSRDB), which uses a two-step physical model to calculate
solar radiation from satellite data in its latest version [33]. Other
strategies may encompass using empirical and semiempirical so-
lar radiation datasets, modeled clear-sky data, or nearby weather
stations [34]–[38]. Global horizontal irradiance measurements
require transposition into POA irradiance, but several such trans-
lation methods exist, potentially impacting the results [39].

Larger plants may also use several weather stations; thus, a
decision must be made on how to best use the different data
streams. Finally, the reference conditions must be selected,
which could be in accordance with standard test conditions
(STC),1 but alternative reference conditions may also be chosen
[40]. Each step along the analysis pathway provides an opportu-
nity for introducing errors and differences between analysts and
analysis procedures.

Fig. 5 shows a decision tree for incorporating temperature into
the analysis. Direct measurement of module temperature (Tmod)
is preferred for normalizing PV performance data. However,
Tmod measurements taken on the back of the module will
often experience a slightly different temperature than the PV
cell junction, leading to measurement offsets [41]. In addition,
collecting consistent Tmod over several years or decades is very
difficult because sensors often detach or malfunction after years
in the field. Tmod can also be modeled in a variety of ways,
typically by using Tamb and wind speed or in a clear-sky model
[42]–[44].

Tmod coefficients also require a decision by analysts: to trust
manufacturer-reported nameplate temperature coefficients, or to
determine the temperature response directly from the collected

1STC: Irradiance = 1000 W/m², Air mass = 1.5, Module temperature =

25 °C.

Fig. 6. Decision tree for the degradation rate calculations. The red rounded
rectangle indicates the input parameter. The blue diamonds indicate decisions,
and the green rectangles illustrate processes or process outputs. Default settings
in RdTools are indicated by bold and underlined text.

data, as was considered in [23]. Care must be taken that the
temperature coefficient is determined in the same filtered or
binned data window as for power evaluation, and a choice
must be made if multiple temperature channels are present.
The reference comparison temperature must also be selected,
often chosen at STC. However, STC conditions are a rather
infrequent yearly occurrence for most of the world; therefore, an
alternative temperature may be chosen more representative of the
average annual temperature [40]. Additional considerations not
discussed here may include corrections for angle of incidence
[45] or for spectral effects [46].

The final decision tree for Rd calculations is complex and
is only shown in its rudimentary form in Fig. 6. Typically
for degradation analysis, data are first corrected for irradiance
and temperature. Customarily, this may be the performance
index in its temperature-corrected or nontemperature-corrected
form [47]. Other methods such as the older PV for utility-scale
application (PVUSA) method or a variant of it may be used
[48]. If data are collected more frequently than daily (typical
at the time of the writing: 1 min, 15 min, or hourly), then raw
data may be aggregated into daily, weekly, or monthly intervals.
These aggregation intervals are not a necessity and do not have
to be adhered to, but they are commonly used. The decision
tree becomes more subjective for outages or tracker downtime.
If module degradation is the specified interest, then the downtime
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or outages are a temporary abnormality and may be removed to
determine the typical performance. On the other hand, if the
specified interest is system performance, then these temporary
occurrences represent the overall system performance and may
be included in the analysis—unless the interest is “nominal”
system performance, in which case these temporary events may
be excluded again. This discourse highlights the subjectivity
of some of these decisions that are best handled with clear
documentation of the goals and methods to be employed.

Soiling is very comparable in this respect, at least nonperma-
nent soiling. If the analyst’s interest is in module performance,
then seasonal soiling represents an intermittent state and may
be removed. However, soiling represents a real loss of perfor-
mance and should be included in calculations of overall system
yield. Other similar sources of outliers include snow or shade,
particularly if the system is affected while the sensor is not [49].

Finally, a method must be selected to extract a degradation rate
from the normalized data. Some examples were considered in
Section I, including linear regression, seasonal decomposition,
or the year-on-year approach. The options available to PV ana-
lysts are growing all the time, particularly with recent advances
in local regression, binning methods, and machine-learning al-
gorithms [2], [13], [50], [51].

The decision trees depicted here are not intended to be
comprehensive; yet, they provide a sense of the complexity
of the decisions that an analyst must make. As demonstrated
above, numerous opportunities exist for different analysts to
choose—intentionally or otherwise—different paths through the
performance and degradation analysis forest. Even neglecting
the possibility of erroneously implementing particular steps, it
is clear that without specific guidance for analysts, a wide range
of results should be expected. The question is not why calculated
degradation rates differ between analysts, but rather, why would
they ever be expected to be the same?

IV. CONCLUSION

An interlaboratory study was conducted focused on the vari-
ability between analysts when the same PV performance data
are evaluated. In the first round, no guidance was provided,
resulting in a dramatic spread of results equivalent to 10% of
lifetime energy yield. Providing written instructions, eliminated
some outliers, but variability remained high. Finally, in using the
free open-source software RdTools, we were able to reduce the
variance between analysts by more than two orders of magnitude
over their preferred but subjective methods. These encouraging
results of more consistent PV system evaluations may also
lead to increased confidence of investors in the performance of
their assets. A deeper dive into the causes of analyst variability
uncovered a great diversity of possible options available to the
PV analyst, resulting in differing degradation outcomes.
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