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ABSTRACT

Long queries frequently contain many extraneous terms that
hinder retrieval of relevant documents. We present tech-
niques to reduce long queries to more effective shorter ones
that lack those extraneous terms. Our work is motivated by
the observation that perfectly reducing long TREC descrip-
tion queries can lead to an average improvement of 30% in
mean average precision. Our approach involves transform-
ing the reduction problem into a problem of learning to rank
all sub-sets of the original query (sub-queries) based on their
predicted quality, and select the top sub-query. We use var-
ious measures of query quality described in the literature
as features to represent sub-queries, and train a classifier.
Replacing the original long query with the top-ranked sub-
query chosen by the ranking classifier results in a statisti-
cally significant average improvement of 8% on our test sets.
Analysis of the results shows that query reduction is well-
suited for moderately-performing long queries, and a small
set of query quality predictors are well-suited for the task of
ranking sub-queries.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query for-
mulation

General Terms

Algorithms, Experimentation, Performance

Keywords
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1. INTRODUCTION

While most queries presented to search engines vary be-
tween one to three terms in length, a gradual increase in
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the average length of queries has been observed!. These
longer queries are typically used to convey more sophisti-
cated information needs. Unfortunately, the performance
of most commercial and academic search engines deterio-
rates while handling longer queries. For example, a query
such as ideas for breakfast menu for a morning staff meet-
ing, while conveying the true information need of the user, is
better handled by most search engines when posed as break-
fast meeting menu ideas. This task of reducing the original
query to a shorter one in the course of a search session is
usually left to the user.

In this paper we present a way to automatically reduce
long queries to shorter, more effective ones. Long queries
lend themselves to such reduction as they invariably con-
tain extraneous terms (for, morning, and staff in our ex-
ample) that serve more to confuse the search engine than
support it in its task. In Section 2, we analyze and quan-
tify the potential improvement in mean average precision
(MAP, Section 4) that can obtained by selecting ideal terms
(or rejecting unnecessary terms) from long TREC descrip-
tion queries.

This potential for improvement motivated past work like
Bendersky and Croft [1] and Lease et al. [18] on automatic
techniques for query reduction. The former’s approach in-
volved learning to identify key concepts in long queries using
a variety of features while the latter focused on a regression-
based approach to re-weight all the terms in long queries.
An interactive technique that involved completely dropping
unnecessary terms from long queries was successfully demon-
strated by Kumaran and Allan [17]. However, the interac-
tion burdened the user with additional cognitive and physi-
cal effort.

Our technique for automatic query reduction involves ana-
lyzing all the subsets of terms from the original query (sub-
queries), and identifying the most promising sub-query to
replace the original long query. The technique involves rep-
resenting each sub-query by a set of query quality indicators,
and then learning effective ranking functions based on this
representation.

To find indicators or features to represent (the quality of)
each sub-query, we draw on the large body of previous work
on query quality prediction. These include predicting the
quality (or performance) of queries using either pre-retrieval
indicators like Query Scope [10], or post-retrieval indicators
like Query Clarity [7]. The ability to predict query perfor-
mance finds use in applications as diverse as resource selec-
tion in federated search [26], determining whether to invoke
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user interaction [16], and learning when to advertise [2]. We
used query-quality predictors as features to describe each
sub-query. In Section 3 we describe the entire set of query
quality predictors that we used.

Our approach to ranking sub-queries is reminiscent of
work related to learning to rank documents [13, 4, 22].
Learning to rank documents involves representing docu-
ments using features computed from properties associated
with them, and the query. A classifier is then trained to
rank relevant documents higher. In the paper we apply this
framework to the problem of learning to rank sub-queries,
with the specific goal of surfacing the best sub-query to
replace the original long query. The particular algorithm
we used is outlined in Section 4.2.

We performed query reduction experiments on several
combinations of TREC collections (Section 4), and observed
significant improvements in performance (Section 5). These
observations validated the utility of query reduction. The
analysis of the results, which is presented in Section 6,
revealed that query reduction is most useful for long queries
that originally exhibited moderate performance as measured
by MAP. Further, from among the thirty one features that
we used, we observed that a small subset of well-known
query quality predictors like query clarity provided most of
the predictive power in the models we learned for different
collections. All this points to query reduction as a promis-
ing avenue for future work, with emphasis on developing
better query quality predictors and effective strategies and
algorithms designed for ranking queries.

2. MOTIVATION

In this section, we provide an illustrative example showing
the utility of query reduction, and demonstrate the improve-
ment in performance that can be realized through the tech-
nique. We further show how the problem of query reduction
can be transformed into a ranking problem.

2.1 Utility of Reduction

TREC topics consist of a title, description, and narrative,
of progressively increasing length. While the title is usually
between one and four terms in length, the description is
longer, ranging from three to thirty terms in length. We use
the TREC description queries as surrogates for long queries
in our experiments.

Table 1 provides insight into the utility of query reduc-
tion for the description portion of TREC topic 333 from
the Robust 2004 data collection. The table contains the ac-
tual description query in the header, along with sample sub-
queries and their associated performance metrics in the first
two columns (Sub-query and Performance Metrics). We can
observe that some sub-queries achieve significantly better
performance compared to the original query. These queries
are the candidate targets for query reduction.

Table 2 shows the summary upper-bound performance
that can be achieved for a set of 200 TREC description
queries from the Robust 2004 track used for training (Sec-
tion 4). “Baseline” refers to a query-likelihood retrieval
model [20] run using the Indri search engine [21] using the
original long query. “Oracle” refers to the situation when
the best sub-query was selected to replace the original long
query. This gives us an upper bound on the performance
that can be realized through query reduction for this set of
queries. It is this statistically significant improvement in

| System | Pa@5 P@10 NDCGQl5 MAP |
Baseline | 0.452 0.398 0.373 0.241
Oracle 0.588 0.508 0.479 0.297
+30% +27.6% +28.4% +23.2%

Table 2: The utility of query reduction for 200 train-
ing queries from the TREC 2004 Robust collection.
A value in bold face implies statistically significant
improvement over the baseline. Statistical signifi-
cance was measured using the Wilcoxon matched-
pairs signed-ranks test, with a set to 0.05.
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Figure 1: Mean average precision at various ranks
when sub-queries are ranked using query quality
predictors. The sub-queries are from 172 Robust
2004 Track long description queries.

performance through query reduction that we target in our
work.

2.2 Sub-query selection as ranking

We now focus our attention on the third column of Ta-
ble 1 (Query Quality Predictors). This column contains the
values of some popular query quality predictors for each of
the sub-queries: Query Clarity [7], average inverse collec-
tion term frequency (AvICTF) [10], average inverse docu-
ment frequency (AvIDF), and query scope (QS) [10]. Also
included in the final row are the correlation coefficient values
of each of these query predictors with the AP of sub-queries.
The values imply a weak—positive to positive correlation be-
tween the predictors and AP. This means that if we were to
use these query quality predictors to rank the sub-queries,
then there is a reasonable chance that we can identify a
better-performing sub-query.

In Figure 1 we illustrate the effect of ranking sub-queries
of 172 long training® queries from the Robust 2004 track
using individual query quality predictors. The figure shows
the mean average precision (MAP) at ranks one to ten when

2We selected training queries that had ten or more sub-
queries to generate this graph. Our sub-query pruning pro-
cedure (Section 4.3) resulted in some queries having less then
ten sub-queries.



Determine the reasons why bacteria seems to be winning the

TREC Topic 333 war against antibiotics and rendering antibiotics now less
effective in treating diseases than they were in the past.
[ Sub-query Performance Metrics | Query Quality Predictors
P@5 P@l0 NDCGQl5 AP Clarity AvICTF AvIDF QS

effect bacteria antibiotic 0.800 0.900 0.880 0.395 4.950 14.615 15.161  1.858
bacteria antibiotic render 0.800 0.900 0.883 0.383 5.017 16.182 16.075  4.520
bacteria determine antibiotic 0.800 0.800 0.777 0.373 5.382 14.925 15.336  2.433
bacteria determine antibiotic treat 0.800 0.700 0.727 0.348 5.308 14.062 14.747  2.038
bacteria determine antibiotic disease 0.800 0.800 0.773 0.342 4.771 14.443 15.073  2.316
bacteria antibiotic disease war 0.800 0.800 0.785 0.337 3.692 14.415 15.098  2.397
effect bacteria antibiotic disease 0.600 0.800 0.737 0.336 4.233 14.211 14.941  1.803
effect bacteria antibiotic disease render 0.800 0.800 0.744 0.335 4.027 14.303 14.903 1.772
effect bacteria antibiotic treat 0.800  0.900 0.647 0.334 4.837 13.830 14.615 1.646
bacteria antibiotic past disease 0.800 0.800 0.731 0.334 4.508 14.390 14.997 2.019
bacteria antibiotic treat 0.800 0.700 0.646 0.332 4.725 15.116 15.484  2.904
bacteria antibiotic disease 0.800 0.800 0.744 0.332 4.338 15.624 15.918  4.167
bacteria antibiotic disease render 0.800 0.800 0.792 0.330 4.605 15.386 15.627  3.737
bacteria antibiotic treat render 0.800 0.800 0.725 0.328 4.424 15.005 15.301  2.776
reason bacteria antibiotic disease 0.800 0.800 0.643 0.322 3.846 14.369 15.000 2.038
bacteria antibiotic disease treat render 0.600 0.700 0.662 0.298 4.456 14.604 15.097  2.641
effect bacteria antibiotic disease treat render 0.600 0.700 0.527 0.293 4.110 13.832 14.583  1.589
effect bacteria antibiotic disease treat 0.600 0.600 0.512 0.286 4.143 13.664 14.549  1.613
antibiotic disease treat 0.200 0.300 0.327 0.208 3.457 13.897 14.723  2.757
bacteria disease treat 0.200 0.100 0.162 0.071 4.109 13.710 14.609 2.754

Correlation coefficient 0.507 0.473 0.446 0.020

Table 1: Sample sub-queries for the description portion of TREC Robust 2004 Topic 333. The baseline
query, which is the original query (provided in the header row) after stemming and stop word removal, had
an average precision (AP) of 0.327. The sub-queries have been sorted in the order of decreasing AP. We can
observe that there are fourteen sub-queries that have a higher AP than the original long query.

the sub-queries are ranked using each of the query quality
predictors, as well as the upper bound ranking for the 172
queries. We notice that none of the query quality predictors
is able to achieve the upper bound performance, or even the
baseline performance got by using the long queries without
any modifications. We hypothesize that by using a combi-
nation of the query quality predictors we can train a ranker
that beats the baseline performance.

This is the main idea of the paper: using query quality
predictors as features to learn a ranking function to target
the upper-bound ranking of sub-queries. Once the ranking is
completed, we can use the top sub-query in place of the cor-
responding long query. In the next section, we will describe
the set of features we considered for each sub-query, and
the machine learning algorithms we used to learn a ranking
function to bias better performing sub-queries higher up the
ranked list.

3. QUERY QUALITY PREDICTORS

For each of the O(2") sub-queries that a query of length n
can have, we calculated the following query quality predic-
tors to serve as descriptive features. While some of these fea-
tures such as mutual information (MI) are stand-alone, i.e.
they are calculated for the sub-query as a whole, other fea-
tures such as Average IDF (AvIDF) are derived from term
level statistics. Some of these features are pre-retrieval, i.e.
they are derived directly from query and corpus statistics.
Others like Query Clarity are post-retrieval, i.e. they involve
performing an initial retrieval and hence are more expensive
to compute. We now describe the set of query quality pre-
dictors we used, and include references to their sources.

3.1 Mutual Information (MI)

This feature was adopted from the work by Kumaran and
Allan [15] that was based on the observation by van Rijs-
bergen [23]. We represented each of the O(2") sub-queries
as a graph constructed with the constituent terms as ver-
tices, and the mutual information [5] between the terms as
edge weights. The mutual information was calculated using
Equation 1 [5]. The maximum spanning tree [6] was then
identified on each graph, and its average weight was used as
a predictor of the quality of the corresponding sub-query.

n(z,y)

T
n(z) n(y) (1)

T T

I(z,y) = log

where n(z,y) is the number of times terms = and y occurred
within a term window of 100 terms across the corpus, n(z)
and n(y) are the frequencies of x and y in the collection and
T is the number of term occurrences in the collection.

3.2 Sub-query Length (SQLen)

Drawing on work by He and Ounis [10] and the observa-
tion by Kumaran and Allan [17] that the best sub-queries
have lengths between two and six, we included SQLen as a
query quality predictor. SQLen for a sub-query is defined
as the number of terms in it.

3.3 Query Clarity (QC)

Developed by Cronen-Townsend et al. [7] this post-
retrieval predictor is the Kullback-Leibler divergence of the
query model from the collection model. The query model is
estimated from the top-ranked documents retrieved by the
original query. QC is computed as



P(w|Q)
Pc(w)

QC = Z P(w|Q) x log2

weEQR

where P(w|Q) is the probability of the occurrence of the
word w in the query model, and Pc(w) is the probability of
the occurrence of w in the collection.

3.4 Simplified Clarity Score (SCS)

To avoid the expensive computation of query clarity, He
and Ounis [10] proposed simplified clarity score as a com-
parable pre-retrieval performance predictor. It is calculated
as

_ P (w|Q)
SCS = U%Pml(’LU'Q) X lngW

where Py, (w|Q) is the probability of the occurrence of the
word w in the query.

3.5 |IDF-based features
We calculated the IDF of each query term w as

IDFw = 1o N+ 1)
where N,, is the document frequency of w and N is the
number of documents in the collection.

For each sub-query we calculated the (a) sum (b) standard
deviation [10] (¢) maximum/minimum [10] (d) maximum (e)
arithmetic mean (f) geometric mean (g) harmonic mean and
(h) coeflicient of variation of the IDF's of constituent terms.
These values served as additional query quality predictors
for each sub-query.

3.6 Query Scope (QS)

Query scope [10, 19] is a measure of the size of the re-
trieved document set relative to the size of the collection.
We can expect that high values of query scope are predic-
tive of poor-quality queries as they retrieve far too many
documents.

— _log™@
QS = logN

where ng is the number of documents containing at least
one query term.

3.7 Similarity Collection/Query-based fea-
tures (SCQ)

Proposed by Zhao et al. [28], this query quality predictor
is based on the hypothesis that queries that have higher sim-
ilarity to the collection as a whole will be of higher quality.
For each term w in the query

n(w) N
w=(1+In(——= In(1+4+ —
SCQ (1 + In( N )) x In( +Nw)
Based on the SCQ values of each term, we calculated ag-
gregate values similar to those for IDF (Section 3.5) as sub-

query quality predictors.

3.8 Inverse Collection Term Frequency-based

features (ICTF)

Inverse collection term frequency of a term w is defined
as

ICTF, = 1092%

Using the ICTF values, we calculated aggregate statistics
similar to those for IDF (Section 3.5).

3.9 Similarity Original Query (SOQ)

Guided by the notion that the reduced query should still
reflect the original query’s information need, we calculated
the cosine similarity between the TF-IDF vectors represent-
ing each sub-query and the original long query. We hypoth-
esized that a sub-query that was not radically different from
the original query was preferable to one that had drifted
away completely from the original query’s intent.

In summary, we represented each sub-query with a set of
thirty one features. In the following sections we will describe
the experimental setup as well as the results of learning to
rank sub-queries using these features.

4. EXPERIMENTAL SETUP

4.1 Collections

We used the indexing and retrieval capabilities of ver-
sion 2.6 of the Indri search engine, developed as part of
the Lemur® project. Our retrieval model was the query-
likelihood variant of statistical language modeling [20]. We
used Dirichlet smoothing [27] with p set to 1000. For ex-
perimentation, we used three collections®. The first, Robust
2004, was the 2004 Robust track collection that has 250°
queries and contains around half a million documents from
the Financial Times, the Federal Register, the LA Times,
and FBIS. The second collection, TREC123, was created by
combining existing TREC collections. It contained docu-
ments from TREC disks 1 and 2, and the 150 TREC top-
ics 51 to 200 as queries. We took advantage of the fact
that some TREC collections used the same sets of docu-
ments, and created this new collection with a larger num-
ber of queries. This enabled the creation of good train-
ing/test splits required for training classifiers. Each set of
queries was broken down into an 80%/20% split of train and
test queries. The Robust 2004 collection is known to con-
tain difficult queries, and thus provided a challenging data
set to test the utility of query reduction for hard queries.
TREC123 offered a collection of moderate difficulty. To fur-
ther test the ability to learn a ranking across collections, we
combined the training (200 4 120) and test (46 + 30) queries
from Robust 2004 and TREC123 to create a new collection
called Robust 2004 + TREC123.

All collections were stemmed using the Krovetz stem-
mer [14] provided as part of Indri. We used an extended set
of 418 stop words, also referred to as the INQUERY stop
word list [3]. To identify named entities in the queries, we

Shttp://www.lemurproject.org

4We refer to a set of documents and associated queries as a
collection.

SWe had to drop four queries that either did not have any
relevant documents in the collection, or were too long to be
handled by our system.



used the Stanford Named-Entity Recognizer [8], which can
identify Person, Location, and Organization entities.

As performance measures, we report precision at five
documents (P@5), precision at ten documents (P@10),
normalized discounted cumulative gain at 15 documents
(NDCG@15, as defined in [24]), and mean average precision
(MAP). P@5 and P@10 refer to the fraction of relevant
documents in the top five and ten documents retrieved re-
spectively. NDCG@15 is a measure similar to precision that
includes rank-based discounting. This means that systems
that return relevant documents higher up a ranked list will
receive higher scores compared to those that return them
lower. Average precision (AP) is a single value obtained
by averaging the precision values at each new relevant
document observed. MAP is the arithmetic mean of the
average precisions of a set of queries.

4.2 Ranking Algorithm and Training

Given as input a set of predictors for each sub-query,
our goal was to combine these inputs to produce an ef-
fective ranking function. To accomplish this we used
RankSVM [13], a learning-to-rank algorithm based on the
same framework as the well-established Support Vector
Machines (SVM) classification algorithm.

For each original query @, of length n, the set of all possi-
ble O(2"™) sub-queries SQ; = {sqi1, $¢i2, ..., Sqian } Was gen-
erated. Each sub-query was represented by its AP value y;;
and associated vector of k query quality predictors sg;; =
[Tij1, Tij2, -, Tije)- RankSVM works by utilizing a pair-
wise preference ranking framework in which instead of tak-
ing each sub-query in isolation, all possible sub-query pairs
(with different AP values) are used as instances in the learn-
ing process.

We used the RankSVM implementation available in the
SV M*E9ht [12] package. Both Linear and RBF kernels
were considered in our experiments. The regulariza-
tion parameter C (trade-off between training error and
margin) as well as the gamma parameter of the RBF
kernel were selected from a search within the discrete set
{10747 1073,1072,107%, 100} over the validation set®. For
the selection of parameter C, the default SVMLight value
was also considered.

Although the differences were not substantial, exper-
iments with the best RBF kernel parameters performed
slightly better than the best linear kernel parameters for
the majority of the validation experiments. Unless other-
wise noted, all results henceforth were obtained using an
RBF kernel, with gamma set to 0.001.

4.3 Pruning Sub-query Candidates

An exponential number (O(2")) of sub-queries can be
obtained from a query of length n. Further, training the
ranking classifier involved generation of pairwise preference
constraints from this exponential number. This 2" followed
by n? combinatorial explosion resulted in an extremely
large training set that was very expensive to train using
SV MT9ht  This necessitated the pruning of candidate
sub-queries. We used the following strategies to reduce the
number of candidate sub-queries.

e Select only sub-queries with length between three and

620% of the queries in the training set were randomly se-
lected and used to create a validation set.

six terms. Kumaran and Allan [17] showed that the
best sub-queries for most long queries had lengths in
the range mentioned.

e Select only the top twenty five sub-queries ranked by
the MI feature (Section 3.1) for consideration. Our
initial experiments suggested that this was one of the
most predictive features, and hence we decided to use
it in the first pass to identify strong candidates for
reduction.

e Select only sub-queries that contained named entities.
Again, following the results from Kumaran and Al-
lan [17] we considered only sub-queries that contained
at least one of the named entities from the original
query, if it contained any.

These simple pruning strategies resulted in a more man-
ageable set of candidate sub-queries. We acknowledge that
such pruning could hurt performance, but as we will show in
the next section, we still obtained significant improvements
in performance on our test queries.

5. RESULTS

Table 3 contains the results of ranking the sub-queries of
the test queries for each of the collections we considered. We
can observe that our ranking technique selects query reduc-
tions that result in a statistically significant improvement
over the baseline for all collections. Also included in the ta-
ble are the upper bound values for the performance metrics,
i.e. the performance when a hypothetical ranker achieves
perfect ranking of the test sub-queries. This provides an
indication of the scope for further improvement.

We notice that the rankers we have trained achieve 15 —
30% of the net gain in MAP possible for the three collec-
tions. The percentage improvement is greater for TREC123
than for Robust 2004, possibly indicative of the moderate
difficulty of the TREC123 queries. The improvement due to
query reduction for Robust 2004 + TREC123 is encouraging
as it implies that the ranking procedure is robust enough to
handle training and test instances containing feature values
computed from different collections.

6. ANALYSIS

Query Performance: Query reduction resulted in sta-
tistically significant improvements in MAP for all the test
collections. To understand the effect of query reduction on
long queries, we now analyze the results introduced above.
To make the task of analysis easier, we define three types of
long queries. The first, with an baseline MAP between 0 and
0.1, are considered poorly-performing queries. Queries with
a baseline MAP between 0.1 and 0.4 are labeled moderately-
performing queries. Finally, queries with a baseline MAP
greater than 0.4 are referred to as well-performing queries.
The distribution of queries of different types, as well as the
observations we make, are specific to the collections we have
experimented with. Additional collections need to be ana-
lyzed to check if the same trends carry over.

Figure 2 is a set of three scatter plots depicting the util-
ity of query reduction on all three collections. To provide
clarity, incomplete grid lines have been drawn to isolate the
areas corresponding to the queries of different types. The
line y = z is also included to convey whether a particular



| Collection | Query | P@5 P@l10 NDCGQ15 | MAP
TREC123 Original Long Query 0.527  0.487 0.493 0.219
Top-ranked Sub-query | 0.520 0.507 0.500 0.241 (+10.0%, p = 0.027)
30 test queries Oracle 0.647  0.620 0.614 0.282 (+28.7%)
Original Long Query 0.465 0.407 0.409 0.249
Robust 2004 Top-ranked Sub-query | 0.491  0.422 0.430 0.266 (+6.8%, p = 0.018)
46 test queries Oracle 0.587 0.474 0.514 0.318 (+27.7%)
Original Long Query 0.487 0.438 0.443 0.239
Robust 2004 + TRECI23 | " ked Sub-query | 0495 0.441 0445 0.253 (+5.8%, p = 0.007)
76 test queries Oracle 0.603 0.529 0.551 0.305 (4+27.6%)

Table 3: The results of ranking sub-queries and selecting the top-ranked sub-query to replace the original

long query.

Values in bold indicate that the performance improvement was statistically significant when

measured using the Wilcoxon matched-pairs signed-ranks test, with a set to 0.05. We can observe that the
improvements in PQ5, P@10, and NDCG@15 follow the trends for MAP.

Rank Robust 2004 TREC123 Robust 2004 + TREC123
1 Clarity Clarity Clarity
2 IDFraz/IDFpin Mutual Information Mutual Information
3 Total ICTF Coeff. Of Variation(SCQ) Max ICTF
4 Total IDF Total ICTF Total IDF
5 Mutual Information Max ICTF Total ICTF

Table 4: Scale-normalized ranking of the most important features in different collections.

query was improved by query reduction or not. A point
above the line corresponds to a query that was improved
by query reduction, while a point below the line refers to a
query that was hurt by query reduction.

Figure 2(a) is a scatter plot for the 30 test queries in
TREC123. The bottom left box contains queries that
are poorly-performing, the middle one contains queries
that are moderately-performing, and the rightmost one is
occupied by high-performing queries. Query reduction for
poorly-performing queries almost never results in significant
improvements in performance. An approximately equal
number of queries appear to be hurt and improved. In
the box for high-performing queries, where there are fewer
queries, we estimate that query reduction leads to much
larger gains or losses in performance. The bulk of the
overall improvement in performance that we see appears to
come from moderately-performing queries. The improve-
ments for this category are neither as pronounced as the
high-performing queries nor are they as minuscule as for
the poorly-performing ones. We notice similar trends in all
three query sets.

Another interesting point to note is that the queries ap-
pear to be “boxed-in”, i.e. very rarely do we see a query that
is drastically hurt or drastically improved to the extent that
is ends up outside the boxes. The size of the boxes increases
progressively from poorly-performing to high-performing
queries. This means that the effect of query reduction
is more pronounced as the quality of the original query
improves.

Robust 2004 + TREC123 (Figure 2(c)) contains a mix
of relatively easy TREC123 queries and hard Robust 2004
queries. We observe that the trends observed in Figures 2(a)
and 2(b) carry over to this collection as well, i.e. the ranker
trained on Robust 2004 + TREC123 performs better on
moderately performing TREC123 queries (marked with
symbol ‘0’) than on moderately performing Robust 2004
queries (marked with symbol ‘x’). Thus, the quality of the

original query plays a very important role in the impact of
query reduction. Increasing the amount of training data,
as in the case of Robust 2004 + TREC123, doesn’t seem
to result in a ranker more capable of improving poor and
moderately performing long queries.

Top Features: In Table 4 we present the list of five
top-ranked features for each collection. To identify these
features we used RankSVM with linear kernels since the rel-
ative feature weights are not available for models with RBF
kernels”. The table shows that the set of top features is
quite consistent across collections though their relative im-
portance depends on the collection. Clarity and features
based on term-coherence (MI), IDF and ICTF are clearly
the most important features.

7. RELATED WORK

Past work by Kumaran and Allan [15] set the stage for in-
teractive versions of query reduction. Using a single feature
namely mutual information (MI) they selected a set of ten
top-ranked sub-queries and presented them to the user to
choose from. By analyzing supplemental information in the
form of snippets of text from top-ranked documents corre-
sponding to sub-queries, users were able to select good sub-
queries. However, such selection required additional physi-
cal and cognitive effort from users, motivating the need for
automatic query reduction techniques.

Bendersky and Croft [1] approached the problem of query
reduction as a problem of finding key concepts in long
queries for preferential weighting. They used a number of
query and corpus-dependent and corpus-independent fea-
tures to learn to identify the key terms in long queries. Our
work differs from theirs as we did not assume that finding
key concepts will capitalize on the full potential for query

"In all collections, the linear kernel ranker performed slightly
worse than the RBF one, but the difference was not statis-
tically significant.
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Figure 2: Scatter plots of baseline long queries MAP
versus M AP of corresponding reduced queries.

reduction. With the exception of named entities, we treat
all terms as equally useful following the observation by Ku-
maran and Allan [15] that the best sub-queries sometimes
contained terms that could be considered ordinary, but help
with retrieval in more complex ways than imagined.

More recently, Lease et al. [18] proposed a regression
framework to re-weight the terms in long queries. They
introduced a set of secondary features that correlated with
the term weights, and then applied different types of regres-
sion techniques to learn appropriate feature-based ranking
functions. In contrast with our approach, Lease et al. did
not try to reduce long query terms directly, but instead
choose to re-weight them.

Numerous efforts have been made towards improving tech-
niques for predicting query quality. Cronen-Townsend et
al. [7] developed the Query Clarity measure, which was the
top-ranking feature in all our models, to serve as a predic-
tive measure for tracking MAP. He and Ounis [10] explored
a number of pre-retrieval features to determine query effec-
tiveness. Zhao et al. [28] explored pre-retrieval predictors
that were based on the similarity between a query and the
document collection as well as the variability in query term
distribution across documents. Features built on the query-
collection similarity-based predictors ranked high in the list
of important features identified by our rankers.

Hauff et al. [9] conducted a survey of 22 pre-retrieval query
quality predictors. They concluded that there wasn’t one
single predictor that performed best on all collections, and
the utility of different predictors was related to the collec-
tion in question. In contrast, our experiments used both pre
and post retrieval query quality predictors, and results re-
vealed that clarity was consistently the best feature for all
test collections.

Unlike MI, our query-term coherence measure, He et al.
experimented with the use of measures related to the co-
herence of documents in the ranked list [11]. While they
reported those measures as being correlated to MAP, we
choose not to use them because of the complexity involved
in calculating the measures’ values.

8. CONCLUSIONS

We have presented a new way of approaching the problem
of query reduction, an effective technique that is quite hard
to realize. By casting the query reduction problem as a sub-
query ranking problem we have been able to draw on work
in the areas of query quality prediction and learning to rank.
We have shown statistically significant improvements on all
our test collections, validating the utility of query reduction.
Our analysis of the results revealed some interesting prop-
erties of long queries such as the dependence of the utility
of query reduction on the quality of the original long query.
By analyzing the top features in the learned ranking models
we have identified a set of features well-suited for ranking
sub-queries. Our choice of query quality predictors is by no
means exhaustive. However, our choice of predictors was
deliberate - we avoided complex features like document and
ranked list perturbation [29, 25] would have been too expen-
sive to compute for the exponential number of sub-queries.
By showing significant improvement in performance using
easily computed features, we have paved the way for easy
adoption of query reduction.

The quality of a ranker is intimately connected to the
quality of the features used to represent training and test



instances. As future work we plan to work on developing
and incorporating more effective query quality predictors.
We plan to extend this work on TREC collections to queries
submited to web search engines. We also plan to optimize
the ranking of sub-queries to target other performance mea-
sures like PQ5, PQ10, and NDCG.
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