
Reducing Memory Latency via

Non-blocking and F%efetching Caches

Tien-Fu Chen and Jean-Loup Baer

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

Non-blocking caches and prefetehing caches are two tech-

niques for hiding memory latency by exploiting the over-

lap of processor computations with data accesses. A non-

blocking cache allows execution to proceed concurrently

with cache misses as long as dependency constraints are ob-

served, thus exploiting post-miss operations, A prefetching

cache generates prefetch requests to bring data in the cache

before it is actually needed, thus allowing overlap with pre-

miss computations.

In this paper, we evaluate the effectiveness of these two

hardware-based schemes. We propose a hybrid design

based on the combination of these approaches. We also

consider compiler-based optimization to enhance the ef-

fectiveness of non-blocking caches. Results from instruc-

tion level simulations on the SPEC benchmarks show that

the hardware prefetching caches generally outperform non-

blocking caches. Also, the relative effectiveness of non-

blocklng caches is more adversely affected by an increase

in memory latency than that of prefetching caches,, How-

ever, the performance of non-blocking caches can be im-

proved substantially by compiler optimizations such as in-

struction scheduling and register renaming. The hybrid de-

sign cm be very effective in reducing the memory latency

penalty for many applications.

1 Introduction

As the gap between processor cycle time and memory la-

tency increases, the cache miss penalty becomes more se-

vere and thus results in lower processor utilization. Sev-

eral enhancements to cache designs have been proposed to

reduce the miss penalty: Multi-level cache hierarchies [2]

lower the average memory access times in a cost-effective

way; hit ratios can be improved by complementing caches

with small buffers or specialized caching structures[3]; faSt

context-switching can hide the memory latency of a thread

or of a process [16]. The focus of this paper is on another

Permi9eion to copy without fee all or part of this materiel is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires e fee

andlor specific permission.

ASPLOS V - 101921MA,USA

e 1992 ACM 0-89791-535-6/92/0010/0051 ...$1.50

approach, namely how to exploit the overlap of proces-

sor computations with data accesses within one process by

using write buffers, non-blocking caches, and prefetching

caches.

Usually, a processor must stall on a cache miss until the

miss is resolved. In the case of write misses, this can

be avoided by the use of a write buffer. The basic idea

in non-blocking and prefetching caches is to hide the la-

tency of (read and write) data misses by the overlap of data

accesses and computations to the extent allowed by the

data dependencies and consistency requirements. A non-

Mocking (or lockup-free) cache [12, 15] allows execution

to proceed concurrently with cache misses until an instruc-

tion that actually needs a value to be returned is reached.

Such caches exploit the overlap of memory access time

with post-miss computations. Hardware and/or software

Prefetching [1,9, 11,13, 14] can eliminate the miss penalty

by generating memory requests to bring the data into the

cache before its actual use. These techniques exploit the

overlap of computations prior io a cache miss.

In this paper, we evaluate the effectiveness of these

hardware-based techniques on reducing the memory la-

tency. We consider ways to improve the approaches

by compiler-based optimizations (e.g., code rescheduling,

software register renaming). We also propose a hybrid

design combining non-blocking and prefetching caches.

Our results confirm previous studies [6] indicating that

buffering writes can remove most of the write miss penalty

when reads are allowed to bypass writes. Our experiments

show that prefetching caches, which require extra hardware

complexity, generally outperform non-blocking caches and

that they are less sensitive to the increase in memory la-

tency. However, the compiler optimization that we pro-

pose can significantly improve the effectiveness of non-

blocking caches.

The rest of the paper is organized as follows: Section 2

gives some background information on non-blocking and

prefetching caches, Section 3 describes the processor and

memory architectures under study as well as the evalurt-

tion methodology. Simulation results are presented in Sec-

tion 4. Section 5 describes the compiler optimization algo-

rithms and discusses the results. In Section 6, we propose

and evaluate a hybrid design. Finally, we conclude in Sec-

tion 7.

51

g--------------- ------------------------------ --------------------,
i
I * I

LA-PC
I
I Reference

stride

I ~ I ‘F “

I Predction
t Table

prev

I
I

#—
:
I I

ORL
1 ------ -----, .- - - - --- - - - ---- - - -- - ------- - - - --- . ----

#l$3T—

exeeution brarrchtarget

CDw!e
unit

--- ------
Pc

1
I
I
I
1
I
I
I
I
I
1
I
1--

Figttrel: Overall stmctttre ofdataprefetching
\

2 Background and Performance Issues

We start this section with a brief description of non-

blocking caches, write buffers, and prefetching caches. We

then discuss performance issues and the extra hardware

support required for the additionzd features.

2.1 Non-blocking Caches

Lockup-free caches were originally proposed by Kroft

[12]. In his design, the following are included: (i) load

operations are non-blocking, (ii) write operations are non-

bloeking, and (iii) the cache is capable of servicing multiple

cache miss requests.

In order to allow non-blocking operations and multiple

misses, Kroft introduced Miss Information/Status Holding

Registers (MSHRS) that are used to record the information

pertaining to the outstanding requests. Each MSHR entry

includes the data block address, the cache line for the block,

the word in the block which caused the miss, and the func-

tion unit or register to which the data is to be routed. Subse-

quently, loekttp-free caches have been mentioned often in

the literature [6] but there is some confusion on what part

of the processor-cache-memoty interface should support a

given feature. Our view is that non-blocking loads are fea-

tures specified in the processor, non-blocking writes are

supported by buffering writes, whereas whether the cache

allows multiple pending accesses or not depends not only

on the presence of MSHRS, but also on the available cache

bandwidth as defined by the interface between caches and

memory modules. In the remainder of this paper, a non-

blocklng cache will be a cache supporting non-blocking

reads and non-bloeklng writes, and possibly servicing mul-

tiple requests.

Non-blocking loads require extra support in the execution

unit of the processor in addition to the MSHRS associated

with a non-blocking cache. If static instruction scheduling

in pipelines is used in the processor, some form of register

interlock (like a full/empty bit for each register) is needed

for preserving correct data dependencies. Under dynamic

instruction scheduling, introducing out-of-order execution,

some scoreboarding mechanism is required. Both schedul-

ing strategies need interrupt handling routines that can deal

with interrupts generated by the non-blocking operations.

52

Write buffers are used to eliminate stalls on write oper-

ations. They permit the processor to continue executing

even though there may be outstanding writes. Write buffers

in conjunction with write-through caches are especially

useful in reducing the write penalty. For write-back caches

(with write-allocate), write buffers are used to temporarily

store the written value until the data line is returned and for

temporary storage of replaced dirty blocks. Some imple-

mentations [3] allow multiple writes on the same line to be

combined, thus reducing the total number of writes to the

next level of the memory hierarchy.

A consistency problem cam arise when the processor al-

lows non-bloeklng writes since a later (in program order)

read may be needed before a previous buffered write is per-

formed. If these two operations are on the same data block,

an associative check in the write buffer or the MSHRS must

be done to provide the correct value to the following read.

2.2 Prefetching Caches

Prefetching hides, or at least reduces, memory latency by

bringing data in advance rather than on demand. Prefetch-

ing can be hardware-based [1], software-directed [9, 11,13,

14], or a combination of both. The main advantages of

the hardware-based approach are that prefetches are han-

dled dynamically without compiler intervention and that

code compatibility is preserved. However, extra hard-

ware resources are required and unwanted data coutd be

prefetched. In contrast, software-dwected approaches rely

on data access patterns detected by static program analysis

and allow the prefetching to be done selectively. The draw-

backs are that some useful prefetching cannot be uncovered

and that the prefetch instructions generate execution over-

head.

The hardware-based prefetching scheme used in this paper

is derived from the one proposed in [1]. It consists of a

support unit (cf. Figure 1) for a conventional data cache

whose design is based on the prediction of the execution

of the instruction stream and associated operand references

in load/store instructions. The latter, and their referenc-

ing patterns, are kept in a reference prediction table (RPT)

which is organized as a regular cache. An entry in the RPT

consists of the instruction address (used as the cache tag),

the effective address of the operand generated at the last ac-

cess, the stride (updated at each access), and two state bits

for the encoding of a finite state machine to record the ac-

cess patterns and to decide whether subsequent prefetches

should deactivated orprevented. The RPTwillbeaccessed

ahead of the regular program counter (PC) by a look-ahead

program counter (LA-PC). The LA-PC is incremented and

maintained in the same fashion as the PC with the help of a

dynamic branch prediction mechanism. The LA-PC/RPT

combination is used to detect regular data accesses in the

RPT and to generate prefetching requests. The prefetched

data blocks will be put in the data cache. Data pollution

resulting from erroneous prefetches can be ahnost totally

avoided by the fine tuning of the RPT finite state machines.

The supporting unit is not on the critical path. Its presence

should not increase the cycle time or data access latency

except for an increase in bus traffic.

The key to hiding memory latency is to keep enou@ dis-

tance between PC and LA-PC so that the prefetched data

arrives “just before” it is needed. The LA-PC, which ini-

tially points to the instruction following the current PC,

moves ahead of the PC when the execution statls on real

misses. Incorrect branch predictions and other mechanisms

limit the distance from growing too large. Note that if the

(prefetched) data is not resident in the cache in time when

it is accessed by the PC, or if it has not been predicted, then

the processor will always wait until the cache miss is com-

pleted, i.e., cache miss operations are blocking.

2.3 Performances Issues

As we mentioned previously, the non-blocking operations

exploit the post-miss overlap of computation and memory

access while prefetching exploits the pre-miss overlap. We

give now a brief qualitative view of the expected benefits

for both types of overlap.

Non-blocking loads delay processor stalls until the neces-

sary data dependence is encountered. They will become

necessary for processors capable of issuing multilple in-

structions per cycle [15]. However, the non-blocking &-

tance, which is the number of instructions that can be over-

lapped with the memory access, is likely to be small in

the case of static scheduling. It can be increased when

compilers produce code optimized for this potential over-

lap (see Section 5). A larger non-blocking distance cart be

obtained with dynamic scheduling and out-of-order exe-

cution. However, the effectiveness is still subject lto data

dependence effects, branch prediction, and the size of the

lookahead window provided by the architecture [7].

By comparison, non-blocking writes can be more adk’anta-

geous in reducing the write miss penalty because the non-

blockmg distance is usually equal to the memory access

timel. Moreover, the write buffer, a FIFO queue lbuffer-

ing pending writes, does not need a supporting unit in the

processor. On the other hand, the write miss penalty may

not be a large fraction of the total data access penalty,

even without a write buffer. We will consider write buffers

1In other words, the processordoes not statl on most write misses.

A stall would occur only if a write miss is followed by a read miss on a

different word in the same block. In that case, the stall is attributed to

the read miss.

both with read bypuss (i.e., read misses have priority over

writes) and with no-bypuss,

In contrast with the non-blocking distance, the lookdteud

distunce, the number of cycles which a prefetch request is

generated ahead of the reference instruction, can be tuned

by the designer and be as large as a small multiple of the

memory latency. In our scheme, its magnitude is con-

strained by effects such as the capacity of the RPT, the

amount of regular data access patterns, and the success of

brrmch prediction techniques. The implementation costs

of prefetching caches, additional on-chip support units and

more hardwaxe complexity, are substantially higher than

those of non-blocking caches.

A finat point to mention is that in the case of non-blocking

loads, the binding of a register with a certain vatue starts at

the moment the non-blocking load is initiated. In contrast,

the prefetch request is non-binding; it is only a hint to bring

a data line in a cache closer to the processor.

3 Architectural Models and Evaluation

Methodology

In this section, we first describe our architectural models

for non-blocking and prefetching caches. We then present

our simulation methodology and the benchmarks used in

the evaluation.

3.1 Processor-cache Models

Our baseline system consists of a CPU with a load/store ar-

chitecture similar to the MIPS R300CI and am ideal instruc-

tion cache (no I-cache misses). The CPU has an instruction

decoding unit, a fixed point unit (FXU), a floating point unit

(FPU), and a cache interface. The decoding unit issues an

instruction per clock cycle and the FXU can execute an in-

teger operation in one cycle (perfect pipelining).

The FPU, which behaves like a co-processor, can accept

one floating-point operation at every cycle until a data de-

pendency on an unfinished instruction occurs. In this case,

the dependent instruction needs to wait until the conflicting

operation terminates. The FPU will handle FP operations in

a multicycle pipeline with execution times similar to those

of the MIPS processor.

The cache interface can handle one data access at each cy-

cle and, in case of a hit, the load latency is one cycle (i.e.,

delayed load with one delay slot). In the case of a write

hit, an extra cycle is required to modify the data block in

the cache. A real read miss will be given priority over

buffered prefetch requests or writes and the allocation due

to write miss has priority over prefetches. However, a fetch

in progress cannot be aborted.

All caches used in this study are 32K bytes, direct-mapped,

have 16 bytes block size, and use a write-back, write-

atlocate policy unless otherwise specified. In the baseline

architecture a cache operation is atways blocking.

When studying non-blocking loads, we assume a static

scheduling of the pipeline. A status bit is associated with

each register. On a cache miss, the target register status bit

53

fetch A

$ t fetch B

(a) t
req B xfer B

4

m ‘l~fi%’? k,f,, A

Overlapped ~-
. . . . ---- 1

w--------------l ‘fe’B {

q +xfer A

(c) I
req + xfer B

{

P@elined I i

............................
!

F
CPu

C1 ORL

..

..............................i

b!’
CPU !

cl ORL :

:0 ❑ :
..

+
bus

...............................

‘bid
CPU !

ORL ;
cl

-;

...+i

lNTERCONNECf

@El Wkml m
Non-overla@(l) Overlapped(C,N) Pipdined~

ORL of cachesfor eachmemory models

Timiog of data acceasfor memoq models

Figure 2: Three memory models

is reset and the outstanding information is recorded. When

the miss is resolved, the register status bit is set. An instruc-

tion needing the value from a register with its status bit reset

will cause the processor to stall until the value is returned

from memory. If a cache miss occurs when a request is in

progress, the cache controller will check to ascertain that

the same block is not requested twice.

When studying non-blocking writes, we assume an 8-entry

write buffer. A write miss will allocate an entry in the write

buffer, update the word in the entry, set the corresponding

valid bit in a “valid bitmap”, and then initiate a data ac-

cess to memory whenever the memory interface is avail-

able. Subsequent misses check the write buffer. A read

miss finding a matched valid word in the write buffer is

treated as a cache hit. A write miss that finds a matched

entry in the write buffer can be merged by writing the data

in the buffer and setting the corresponding valid bit. When

the block is returned from memory, those words with valid

bits set in the buffer entry replace the corresponding ones

returned from memory before the entire block is written

into the cache.

A 256-entry reference prediction table is used to record and

generate data prediction streams in the case of prefetching

caches. This RPT and its associated complexity require

roughly as much real estate on the chip as a 2K bytes data

cache[l]. Branch prediction is performed through a two-

bit state transition Branch Target Buffer. Like the baseline

caches, the prefetching caches will cause the processor to

stall on each cache miss.

The various architectural choices that we experimented

with are shown in Table 1. Each simulated architecture is

based on the combination of components described earlier

that are not mutually exclusive. This allows us to study the

effect and contributed performance gain of various tech-

niques, including prefetching caches (PREFETCH), write

buffer (WB), prefetching caches coupled with write buffer

(PREFETCH/WB), non-blocking caches (NBC), and by-

pass of writes by reads.

3.2 Memory Models

Data bandwidth is an important consideration in the design

of an architecture that allows overlap of computation and

data access since several data requests can be present si-

multaneously. We present three memory interfaces with in-

54

~

cache fetch wrt read bypass bypass

WB x x x

PREFETCHAVB x x x x

NBC x x x x

WB x x x

PREFETCHAVB x x x x

NBC x x x x

HYBRID x x x x x

creasing capabilities of concurrency. Since several requests

can be present, either in process or waiting to be processed,

we associate an Outstanding Request List (OIU) with the

prefetching and non-blocking caches (in this latter case, the

ORL and MSHRS are similar). A requirement for this list

is that it can be searched associatively. The three memory

interfaces are as follows (cf. Figure 2 for timing charts and

block diagrams).

●

●

●

Non-overlapped(l) : As soon as a request is sent to

the next level, no other request can be initiated until

the (sole) request in progress is completed, This model

is typical of an on-chip cache backed up by a second

level cache.

Overlapped(Cm): The access time for a memory re-

quest can be decomposed into three parts: request is-

sue cycle, memory latency, and transfer cycles. We
assume that during the period of memory latency other

requests can be in their issue or transfer phases. How-

ever, no more than one issue or transfer can take place

at the same time. This model represents split busses

and a bank of C interleaved membry modules or sec-

ondary caches. An ORL with N entries is associated

with each module.

Pipeline: A request can be issued at every cycle.

This model is representative of processor-cache pairs

being linked to memory modules through a pipelined

packet-switched interconnection network. We assume

a loud lhrough mechanism, i.e., the desired word is

available as soon as the first data response arrives. An

N-entry ORL is associated with the cache.

In our experiments, the default value for the memory la-

tency 6 is 30 cycles. The configurations of the ORLS that

we used are Non-overlapped(l), 0verlapped(8,2), and

Pipeline,

Note that a non-blocking cache with a Non-overlapped in-

terface model can only service one request a time while the

Overlapped and Pipelined models are capable of handling

multiple misses.

3.3 Simulation Method

We evaluated our proposed architectures using cycle-by-

cycle trace generation combined with on-the-fly simula-

tion. Benchmark programs were instrumented on a DEC-

station 5000 using the pixie facility. To simulate the in-

terlock mechanism for non-blocking reads, the simulator

reads the object code of the benchmark program and de-

codes instructions so that it is aware of which registers are

involved in each instruction as well as boundary informa-

tion on basic blocks. The experiment results are collected

at the clock cycle level from the individual configurations.

The traces captured at the beginning of the execution phase

of the benchmarks were discarded because they are traces

of initial routines that generate the test data for the bench-

marks. No statistical data was recorded while the system

simulated the first 500,000 data accesses. However, these

references were used to fill up the cache, the Branch Pre-

diction Table, and the Reference Prediction Table in order

to simulate a warm start. After the initialization phase and

the warm-start period, simulations results are collected for

the first 100 million instructions or for the entire execution,

whichever finishes first.

3.4 Benchmarks and Metrics

We use the SPEC2 Benchmarks (see Table 2), which are

compiled by the MIPS C and the MIPS F77 compilers, both

with default options. Table 2 shows some reference char-

acteristics for the applications. The data is collected based

on the simulation of our baseline cache. As usual, reads are

much more frequent than writes and the proportion of write

misses is considerably smaller than the proportion of read

misses.

In the following sections, we will present the results of our

experiments by using the CPI due to the data access penalty

as the main metric. This contribution is defined as:

cphta .,...,=
total data access penalty

number of instructions executed

when an average reduction of CP&a acce,, is summa-

rized, a geometric mean is used to average the percentages

of the penalty reduction for the benchmarks. In the figures,

we present a breakdown of the data access penalty as fol-

lows: the bottom section (light grey area) of each bar repre-

sents the stalls for reads, the black section shows the write

ZSPEC is a trtiernwk of the Standard Performance Evaluation

Corporation.

55

Table 2: Statistics of benchmarks (for first 100 million in-

tmctions

Name

lFfZEF

Tomcatv

Spice

Espressc

Doduc

Nasa

Fpppp

Gcc

Xlisp

Eqntott

] 32K baseline cache)

ratio over total instrs miss

-a-ia-
mm-
0.418

0.258

0.182

0.301

0.303

0.567

0.338

0.467

0.299

iZXi_ write ratio

w 0.154 0.087

0.326

0.209

0.167

0.223

0.152

0.449

0.223

0.315

0.265

0.092 II 0.063

1
0.049 0.116

0.015 0,184

0.078 0.017

0.151 0.281

0.118 0.004

0.115 0.018

0.151 0.014

0.035 0.033

$%0 of cache

*
m-i-
82.4

98.7

99.5

58.7

84.9

62.2

65.3

65.5

79.2

write

--W9---

17.6

1.3

0.5

41.3

15.1

37.8

34.7

34.5

20.8

miss penalty, and the section on top of tha (grey area) rep-

resents the stalls due to the memory interface being busy or

waiting due to the ORL or the write buffer being full.

4 Simulation Results

In this section, we present a comparative analysis of the

performance achieved by the various architectural choices

and show the impact of the memory models.

4.1 Effect of Architectural Variations

Figure 3 shows the results for the benchmarks when sim-

ulated on the various architectures. In this first set of ex-

periments, we used the Pipelined memory model so that

we could temporarily ignore bandwidth limitations. Thus,

there is no busy time penalty. We examine the data of Fig-

ure 3 according to three groups of architectures: (i) proces-

sors always stalling on a miss (blocking caches: BASE and

PREFETCH), (ii) architectures with non-blocking writes

and no bypass, and (iii) architectures with non-blocking

writes and bypass of writes by reads. In the last two cat-

egories, we consider a baseline cache with non-blocking

writes (WB), a prefetching cache with non-blocking writes

(PREFETCHAVB), and a non-blocking cache (NBC) (cf.

Table 1).

A comparison between the baseline and the prefetching

cache (the first two bars in the figures) shows a moder-

ate to very significant reduction in the penalty for data ac-

cess when the prefetching facility is added to the baseline

cache. The access penalty is reduced by 9690 for Matrix,

95% for Tomcatv, 19% for Spice, 27% for Espresso, 12%

for Doduc, 36% for Nasa, 4% for Fpppp and Gee, 41% for

Xlisp, and 19% for Eqntott (geometric mean is 21%). The

prefetching scheme can achieve reasonable gains at the cost

of the RPT and the additional logic. The effectiveness of

the prefetching technique relies mostly on the presence of

regular data access patterns, hence the large gains in Matrix

and Tomcatv.

The effect of non-blocking writes on the baseline archi-

tecture is shown by the difference between the fist, third

(no-bypass), and sixth (bypass) bars in the figures. In the

BASE PEBFEP2H m “t%’+ ‘c “’ ‘w ‘c
No-bypass Bwass

Sj

1
Doduc

BASE w.mmtx m Fq&d+ NBc ?/B Pq#t NBc

No-bypass Bypass

BASE —H W PI fd.h+ NBC W 1% etch+ NBC

No-&pass
$/3

Bypass

BASE W.@5FIW w R 4+ NBc
i%

V/n BT: .,

No-bypass

Espresso
~1

BASE Pmn V/B h, .h+ NBc w% %0 din+ NBcWEI
No-bypass

in
Bypass

BASH P— WI q.~b+ NW w Fly&cbt NBc

No-bypass Bypass

BASE — W tie~~h+ NBC Q/B Pm&t+ NBC

No-bypass Bpass

BASE P-H
~N:@;w”’

m F7z debt NBc
b

B~a6s

Figure 3: Simulation Results for 6 = 30 (Pipelined)

baseline architecture, the processor stalls on a write miss

until the write completes. In the non-blocking writes (WB)

implementations, the write is put in the write buffer. The

processor will stall at the next read operation in the case of

no-bypass and only on a read miss – and the read will have

priority over buffered writes – or if the write buffer is full in

the case of bypass. As can be seen, the WB with no-bypass

has almost no effect on the write penalty (Nasa has a small

gain). This is because the writes are most often followed

by a read within a very small number of instructions. When

the restriction of stalling on a subsequent read is lifted,

i.e., WB with bypass, the penalty due to write misses is

in essence totally avoided (cf. Tomcatv, Doduc, and Nasa).

However, such a reduction by the WB may not contribute

to a significant overall performance improvement over the

total penalty when the fraction of write miss is very small

56

mfi!wt,w?iMfK&

4545,2

27.9
31.4

23,5 ,.,.,.

79 ‘6:118 ‘39,,*.:.,., ~32 ~
XII,~

Matrix Tomcatv Spice Espresso Doduc Nasa Xlisp Eqntott

Figure 4 Effect of a larger latency (for 6 = 30 vs 6 = 100 Pipelined)

(cf. Table 2). A surprising but subtle result is that a write

buffer may even reduce slightly the read miss penalty (e.g.,

12% reduction for Nasa). This reduction is a consequence

of forwarding data from a write to subsequent reads.

We now look at the performance of WB in conjunction with

prefetching (PREFETCWWB, fourth and seventh bars)

and non-blocking caches (NBC, fifth and eight bars). The

purpose of showing PREFETCWWB is to give a fair base

of comparison to contrast the effect of the read penalty re-

duction between the pre-miss overlap and the post-miss

overlap. We focus only on WB with bypass. The results

for no-bypass are qualitatively similar. The relative per-

formances of NBC and PREFETCWWB can be &lvided

into three groups: (i) PREFETCWWB performs extremely

well, (ii) PREFETCWWB has moderate improvement and

also outperforms NBC, and (iii) the performance of NBC

is better than that of PREFETCI-UWB.

The Matrix and Tomcatv benchmarks belong to the first

group. These programs have very good reference pre-

dictability. Although a non-blocking cache contributes to

some penalty reduction (12% for Matrix and 28% few Tom-

catv), prefetching still significantly outperforms N13C.

Spice, Espresso, Xlisp and Eqntott are the benchmarks in

the second group. The effectiveness of NBC is even less

than that in the first group (reductions of 10%, 3%,8% and

12% respectively) but so is PREFETCWWB ‘s. The aver-

age size of the basic blocks in these two programs is smatler

than that of basic blocks in the other programs [4]. The

small size usually restricts the prediction of references and

of branches for PREFETCWWB and also implies a limited

non-blocking distance. Therefore, for Spice and Espresso,

PREFETCH/WB has some moderate gains over the base-

line WB, and NBC is only slightly better than W13. Also,

WB does not help much since the fraction of write misses

is fairly low.

Doduc and Nasa form the third group where NBC becomes

more attractive than PREFETCWWB. NBC is quite effi-

cient for these two programs. The weak performance of
PREFETCWWB in Doduc can be related to the size (or

associativity) of the reference prediction table. Doubling

the size of the table, or makhtg it of larger associativity,

would remove the large number of conflicts (35Y0 with a

256-entry direct-mapped RPT). In the case of Nasa, both

schemes lead to a fair amount of performance gain, with

NBC showing an advantage.

57

PREFETCH/WB and NBC have little improvement over

WB on the performance of Fpppp and Gee. Since Fpppp

has already a low miss ratio and a large loop size (a 256-

entry RPT is too smatl), the improvement due to a prefetch-

ing scheme is very marginal. Gcc is a big program with

many conditional branches. Since its predictability is very

poor and the basic block size is small, prefetching will oc-

cur rarely.

4.2 Effect of Large Latency

Figure 4 shows the results for eight benchmarks when the

memory latency 6 is larger. The figure plots percentages of

reduction in data access penalty of PREFETCH/WB and

NBC over WB with bypass with 6 = 30 (left bars) and

6 = 100 cycles (right bars). In general, the effective-

ness of PREFETCH/WB is fairly insensitive to the (large)

memory latency (except for Espresso, see below) and is

more stable than NBC’S. This is because the lookahead

distance of the prefetching can be dynamically as large as

the memory latency so that data may be prefetched early

enough to hide the latency. In contrast, the non-blocking

distance, which is statically determined by the programs,

becomes relatively small when the latency increases. Thus

NBC’s relative effectiveness is reduced significantly (al-

most a factor of 6 in Doduc). Note, however, that the pre-

dictability will decrease as the latency increases mostly be-

cause branch prediction becomes less reliable. The pro-

gram Espresso, where the average size of basic blocks is 5.6

instructions, is an example with poor reference predictabil-

ity . PREFETCI-UWB’s effectiveness in this case is cut in

half when 6 increases from 30 to 100.

4.3 Impact of Memory Models

Figure 5 presents the data access penalties of some of the ar-

chitectural choices with respect to the three memory mod-

els (WI3 is with bypass). The Overlapped model takes 2

cycles for the request, 20 for the memory latency, and 8 for

the transfer. In the Overlapped and Non-overlapped mod-

els the interface cannot always forward a request at the next

cycle as in the Pipelined case. Therefore some busy time

can now become part of the access penalty. As could be

expected, the stall penalty increases when memory band-

width is restricted. This is especially noticeable in three of

3 FPPPP ~d Gm we not shown because comparisonsWhh rn@n~

improvementscould be misleading.

Nonoverlappsd Overlapped Pipelined

Nasa

Pm fet.h W R ch+ NBC Fwfetda W R. eta+ NBC
% LB

,.tcwh m W&&A+ NBc rlcr..h m r%p+ l?sc Ref?f& m Re&&b+ NBc R,,.* w F?.$&&+ NBc

Nonoverlapped Overlapped Pipelined Nonoverlap~d Overlapped Pipelined

Figure 5: Effect of memory models for 6 = 30

the benchmarks: Espresso, Xlisp, and Nasa. It indicates

that an adequate interface is necessary to meet the memory

bandwidth demand (concurrent requests) of the prefetch-

ing and non-blocking techniques. In particular, for Nasa,

a large portion of busy time is eliminated when passing

from the Non-overlapped model to the Overlapped and to

the Pipelined models. The primary reason is that the av-

erage interval of time between (data) cache misses is 12

cycles. Clearly, the bandwidth of an interface like the Non-

overlapped model with 6 = 30 is insufficient.

One interesting observation regarding the comparison be-

tween PREFETCH and NBC is that when moving to a

larger bandwidth, both the read miss and busy time por-

tions of the penalty in Prefetch are reduced, whereas, in

NBC, only the busy time portion diminishes. The reason is

that when the bandwidth is sufficient, the prefetching will

bring some blocks in the cache sufficiently ahead of time

and thus avoid some of the misses that would be generated

otherwise.

5 Compiler Assistance for Non-blocking

Loads

In this section, we consider code generation optimization

for non-blocking loads. We examine two kinds of opti-

mization: instruction scheduling for exploiting a possibly

large non-blocking distance within a basic block and reg-

ister renaming for removing false dependencies before the

instruction scheduling is applied.

5.1 Instruction Scheduling

The instruction scheduling that we study here, based on the

scheme given by Gibbons and Muchnick [8], is performed

after register allocation. The goal of the algorithm is to cre-

ate as much distance as possible between a load and the first

58

instruction dependent on it. At the same time, we want to

intersperse the loads so that the lack of memory bandwidth

does not become too much of a constraint. The algorithm

schedules instructions only within basic blocks. Instruc-

tions within the block are the nodes of a weighted directed

acyclic graph (DAG), Edges represent dependencies and

are labeled with latencies. The latency of an edge between

two dependent nodes is one except when the first instruc-

tion is a load. To achieve non-blocking distances as large

as possible and to avoid the clustering of loads at the begin-

ning of the block, we estimate the latency of a load edge as

the minimum of either the size (in number of instructions)

of the basic block size divided by the number of loads in

the basic block, or the actual memory latency. Once the la-

tencies of the edges have been determined, we can assign

weights to the nodes of the DAG, with the weight of a node

being the number of child nodes plus the maximum (over

its children) of the sum of the weight of a child and of the

weight of the edge leading to the child. After the weighted

DAG is built, we apply a list scheduling algorithm to derive

the final schedule (see Appendix A).

With more information on program behavior, the estimates

of latencies could be improved. For instance, a load of an

array element with a large stride is likely to be a cache miss

while accesses to the stack area will most often result in

cache hits. An intelligent compiler could take this into ac-

count when assigning edge latencies.

Register renaming at compile time has been used in con-

junction with software pipelining [10]. The purpose of

register renaming is to remove write-after-read (WAR)

and write-after-write (WAVV) dependencies, thus allowing

greater freedom in moving instructions around. The algo-

rithm we use first identifies the live ranges (from a new

definition to the last use before the next definition) for each

register to be renamed (local registers). Then, for the live

ranges entirely falling within the basic block, except the

last live range, the destination register used in a load oper-

ation is replaced by a new register. This renaming is carried

on for those instructions using the same register within the

live range. Since the scheduling is performed after register

allocation, we assume that there is a set of “spare” registers

available. This is in order to keep the atgorithm simple.

Otherwise, we would have to identify temporary registers

and unused registers in the basic block and our algorithm

woutd become global rather than being restricted to the ba-

sic block level. After the register renaming process, we ap-

ply the instruction scheduling described above on the new

DAG from which some false dependence edges have been

removed.

A potential criticism of our study is that we adversely in-

crease the register pressure in a basic block. A compensat-

ing factor is that WB may help the extra spilling store/load

instructions that could be generated by buffering writes.

Our point is that we give priority for register use to a load

operation with a large latency, even at the cost of adding

spill code. Although the results of ottr register renaming

procedure are optimistic since we do not limit the number

of registers, the approach is still feasible if the compiler

identifies the unused registers or performs a priority-based

register allocation [5] by taking into account the cost of data

access penalty.

5.2 Effect of Instruction Scheduling

In general, the non-blocking dkxance based on the original

code is fairly small. The instruction scheduling algorithm

is very effective for increasing the non-blocking distance

for Matrix and Tomcatv (increased from 2.23 to 8.33 for

Matrix and from 3.38 to 10 for Tomcatv) [4]. This indi-

cates that in these two benchmarks there are severat data

loading phases followed by computations on that data. The

scheduling algorithm reorganizes the instructions to atlow

more overlap between the independent loading phases. For

the other benchmarks that do not have this characteristic,

the distance is moderately increased.

When register renaming is added to instruction scheduling,

the compiler has more flexibility to optimize the code re-

ordering. A significant increase in non-blocking distance is

achieved in Doduc and Nasa with the use of a small number

of extra registers (less than one per block on the average)

[4]. On the other hand Matrix and Tomcatv need more reg-

isters with not much improvement for the latter. Note that

the number of registers required for renaming is cweresti-

mated, since two live ranges, which are originally far apart,

are less likely to be live at the same time after renaming

because of other dependence chaining between them, This

was not taken into account in our algorithm but could be

checked out by the compiler.

Figure 6 shows the relative performance of the optimiza-

tion for the NBC architecture under the Non-overlapped

model. The data access penatty for the two code optimiza-

tion algorithms is normalized to the penalty of the originat

4In the following discussion, we omit the results of Xlisp and Eqntott

because of their small average block size (4.97 and 3.S4 respectively)

similar to those of Espresso and Spice.

Makix Tomcatv Spice Eqxe.sso Doduc. Nasa

Figure 6: Effect of instruction scheduling on NBC for 6 =

30 (Non-overlapped)

code. Only those programs with low miss ratios (Matrix,

Tomcatv, and Doduc) can benefit from instruction schedul-

ing. This is not surprising because the Non-overlapped

model does not provide sufficient bandwidth to fully ex-

ploit the advantage of the overlap. Also, register renaming

does not contribute much performance gain to the NBC and

it might even degrade the performance slightly (cf. Ma-

trix). Instruction scheduling tends to increase the cluster-

ing of read accesses. Scheduling instructions which have

no false dependencies by applying register renaming causes

the read accesses to be more clustered.

Matrix Torncatv Spice Espresso Do&c Nasa

F@ure 7: Effect of instruction scheduling on NBC for 6 =

30 (Pipelined)

When the Pipelined model is assumed (shown in Figure

7), the clustering of reads becomes an advantage that can

be exploited by the NBC. In all cases, except Espresso

and Spice, the experiments show significant gains from

instruction scheduling (improvement varies from 2% for

Espresso to 35% for Tomcatv). Even better results are

achieved when register renaming is applied before instruc-

tion scheduling (improvement varies from 3% for Espresso

to 67% for Matrix but recall that the results are optimistic).

The geometric mean of penalty reduction by instruction

scheduling for those benchmarks is 9.590 over the original

code and when register renaming is added, this geometric

mean is up to 24% over the original code. This illustrates

that instruction scheduling and register renaming provide

an inexpensive solution to help hide the large memory la-

tency for non-blocking loads in processors whose design

is based on static instruction scheduling. By extending in-

struction scheduling across basic block boundaries further

improvements should be achieved.

6 A Hybrid Design

Since prefetching and non-blocking caches are not mutu-

atly exclusive, a further enhancement would be to combine

the two schemes: a prefetch hint is provided prior to the

load instruction and the binding of a loaded value with a

59

register is delayed until the value is actually used. This

hybrid design is attractive since the combined scheme can

tolerate the drawbacks of poor predictability and of short

non-blocking distance. However, the cost to be paid is that

of an RPT and associated logic for prefetching, an ORL (or

MSHRS) that can be searched associatively, and register in-

terlocks for the non-blocking caches.

Tomcatv

1.22

0.92

CM

(dStS) (361

0.31

I

-+- Basetine cache

-+ Prefetch

\

+ NBC (bypsSS)

+ Hybrid (bypsSS)

-+ Hybrid+scheduled (bypsss)

0.00
4

I I I I I
8 16 ’32 64 128

Csche size (K)

Nasa

CP1 I \

*
0.00

+ ---*---4-.-..-+. --_*

I I I I I I I

8 16 32 64 128

Cachesize (K)

Figure 8: Hybrid design on varying cache size 6 = 30

(Pipelined)

In Figure 8, we present the results of the simulation of such

an hybrid scheme with and without instruction reschedul-

ing when compared to the baseline cache, a prefetching

only scheme, and a non-blocking cache with bypass. We

vary the cache size from 8K bytes to 128K bytes and show

only two benchmarks: Tomcatv where prefetching was per-

forming much better than NBC, and Nasa where the con-

verse was true. In Tomcatv, the prefetch scheme already

had reduced the data access penalty to only a few hun-

dredths of a cycle. The hybrid design has now nearly ideal

performance. The performance of the hybrid scheme has

more dramatic effects in Nasa. The data access penalty

that was far from being negligible if either prefetching or

NBC was applied alone becomes small even at the smallest

cache size. Code optimization helps the hybrid combina-

tion further so that only 4% of the initial penalty incurred

with a baseline cache remains. These results indicate that

the length of the overlap from pre-miss to post-miss can be

large enough to cover the memory latency to a great extent.

The additional cost paid for the hybrid design is justified by

the significant performance improvement.

7 Conclusion

In this paper, we have compared the effectiveness of

prefetching caches, write buffers, and non-blocking caches

in exploiting the overlap of data accesses with computa-

tion. These comparisons were made using the SPEC bench-

marks and simulations were performed on a cycle by cy-

cle basis. Three models of memory interface were used

with each model showing an increasing possibility of con-

currency of access to the next level of the memoxy hierar-

chy. The results show that a prefetching cache can elim-

inate significantly and, in some cases, ahnost entirely the

data access penalty. We confirmed previous stndles show-

ing that buffering writes while allowing bypass of reads can

eliminate entirely the write miss penalty. When the non-

blocklng write with bypass is used as a basis, the average

percentage of read penatty reduction by prefetching caches

was 35%, whereas the average percentage of read penatty

reduction by non-blocking caches was 16%. Also, the ef-

fectiveness of prefetching caches is less sensitive to a large

memory latency than that of non-blocking caches.

Code optimization via instruction scheduling can reduce

prominently the data access penalty in the case of non-

blocking caches. We have presented a local (at the basic

block level) algorithm that, on the average, reduced the

penatty by 9.5%. With the addition of an (optimistic) re-

naming scheme, this reduction went up to 24%. These re-

sults illustrate that anon-blocking cache assisted by a good

code optimizer and associated with a statically scheduled

processor can achieve remarkable gains at a cost of less

complicated hardware complexity than what is needed for

a dynamically scheduled processor.

Finally, we have proposed a hybrid design incorporating

features from both prefetching and non-blocking caches.

We have showed that the combination of pre-miss overlap

and post-miss overlap present in such a scheme can be very

effective in hiding large memory latencies.

Acknowledgments

We would like to thank Craig Anderson and Richard

Zucker for their helpful comments on an earlier version of

this paper. This work was supported by NSF Grants CCR-

9101541 and CCR-8904190, and by Apple Computer.

References

[1]

[2]

[3]

J.-L. Baer and T.-F. Chen. An effective on-chip

preloading scheme to reduce data access penalty. In

Supercomputing ’91, pages 176-186, 1991. Also TR

91-03-07, Department of Computer Science and En-

gineering, University of Washington.

J.-L. Baer and W.-H. Wang. Multi-level cache

hierarchies: Organizations, protocols and perfor-

mance. Journal of Parallel and Distributed comput-

ing, 6(3):45 1-476, 1989.

B. K. Bray and M. J. Flynn. Writes caches as an al-

ternative to write buffers. Technicat Report CSL-TR-

91-470, Stanford University, April 1991.

60

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T.-F. Chen and J.-L. Baer. Reducing memory latency

via non-blocking and prefetching caches. Technical

Report 92-06-03, Department of Computer Science,

University of Washington, Seattle WA, June 1992.

F. C. Chow and J. L. Hennessy. The priority-based

coloring approach to register allocation. ACM Trans-

actions on Programming Lunguages and Systems,

12(4):501–536, October 1990.

K. Gharachorloo, A. Gupta, and H. Hemessy. Perfor-

mance evaluation of memory consistency models for

shared-memory multiprocessors. In Proc. ASPLOS-

IV, pages 245-259, 1991.

K, Gharachorloo, A. Gupta, and H, Hennessy. Hiding

memory latency using dynamic scheduling in shared-

memory multiprocessors. In Proc. of the 19th Annual

Znt. Symp. on Computer Architecture, 1992.

P. B. Gibbons and S. S. Muchnick. Efficient instruc-

tion scheduling for a pipelined architecture. In Proc.

of SIGPLAN Symp. on Compiler Construction, July

1986.

E, Gomish, E. Granston, and A. Veidenbaum.

Compiler-directed data prefetching in multiprocessor

with memory hierarchies. In Proc. 1990 Int. Conjl on

Supercomputing, pages 354-368, 1990.

S. Jain. Circular scheduling: a new technique to per-

form software pipelining. In Proc. SIGPLAN Conf on

Programming Language Design and Implementation,

pages 219-228, 1991,

A. C. Klaiber and H. M. Levy. An architecture for

software-controlled data prefetching, In Proc. of Ihe

18th Annual Int. Symp. on Computer Architecture,

pages 43-53, 1991.

D. Kroft. Lockup-free instruction fetch/prefetch

cache organization. In Proc. of the 8th Annual Int.

Symp. on Computer Architecture, pages 81-87,1981.

T. Mowry and A. Gupta. Tolerating latency through

software-controlled prefetching in shared-memory

multiprocessor. Journal of Parallel and Distributed

computing, 12(2):87–106, June 1991.

A. K. Porterfield. Software methods for improvement

of cache performance on supercomputer application.

Technical Report COMP TR 89-93, Rice University,

May 1989.

G. S. Sohi and M. Franklin. High-bandwidth data
memory systems for superscalar processor. In Proc.

ASPLOS-IV, pages 53-62, April 1991.

W.-D. Weber and A. Gupta. Exploring the benefits of

multiple hardware contexts in a multiprocessor archi-

tecture: Preliminary results. In Proc. 1989 M, Con?

on Supercomputing, pages 273–280, 1989.

A

1,

2.

3.

Instruction Scheduling Algorithm

Build DAG G(V, E) for a basic block

Each instruction is a vertex vi E V; an edge

e(vi, vj) c E if Vj depends on vi.

/(vi, Vj) is the estimated latency between nodes vi and Vj:

/(’Vi, Vj) =

{

Vi Vj if f3(Vi, Vj)

BB size
#of oads

1

load other” true dependency

other any true dependency

1 any any false dependency

1 leaf branch control dependency

oAny instruction node other than load

Define ~eight(vi):

~eight(vi) =

{

o if ?)i is a leaf node

n – 1 + ~<~<~ {l(VI, Vj~) + Wt@M(Vjk)}

where v; h–asn child nodes Vj ~, . . . , Vj.

Schedule the instructions based on DAG

The scheduling algorithm is a variation on list schedul-

ing. Several sets of nodes are maintained. Sready (a

set of vertices that have all their predecessors already

scheduled) and S~/Ot[i] where i varies from 1 to the

largest estimated latency. Whenever a node vi from

S,ea~Y is scheduled, if it was the only unscheduled

predecessor of its child node Vj, the latter is included
in the set S’~lOt[l(U~,.j)], When an instruction k sched-
uled, all of S~/O$[i] sets are shifted “left” by one slot

with fi’s/O~[l] joining Sready. when there is no inS~C-

tion available in Sready, we do not insert a NOp, but

simply keep moving S,~~t[,l Until Sempty is not emptyo

procedure reorder (G)

initialize SsrO1[qwith empty pointer
S~~@ = {vi l~j has no parent node in DAG}

new-order = 1

while newmder < length of BB

while &ady is empty

Sreadg+ S,b$[l]-e .. . * 5,1+]

choose a node vi in Sready,

where weight (vi) is largest.

order(vi) = new-order++

for each child Vj of vi (with an edge latency ~)

if Vj has no other unscheduled parent then

s,,o,[q= Sqq U{vj}
S,..dv=Sready IJ %ot[i]

S./ot[l]e ...e Sdot[n]
end

end

61.

