
Reducing Model Checking of the Many
to the Few

E. Allen Emerson and Vineet Kahlon

Department of Computer Sciences,
The University of Texas at Austin, Austin TX-78712, USA,�

emerson,kahlon � @cs.utexas.edu,
http://www.cs.utexas.edu/users/

�
emerson,kahlon �

Abstract. Systems with an arbitrary number of homogeneous processes occur in
many applications. The Parametrized Model Checking Problem (PMCP) is to de-
termine whether a temporal property is true for every size instance of the system.
Unfortunately, it is undecidable in general. We are able to establish, nonetheless,
decidability of the PMCP in quite a broad framework. We consider asynchronous
systems comprised of an arbitrary number � of homogeneous copies of a generic
process template. The process template is represented as a synchronization skele-
ton while correctness properties are expressed using Indexed CTL* � X. We re-
duce model checking for systems of arbitrary size � to model checking for sys-
tems of size (up to) a small cutoff size � . This establishes decidability of PMCP
as it is only necessary model check a finite number of relatively small systems.
The results generalize to systems comprised of multiple heterogeneous classes of
processes, where each class is instantiated by many homogenous copies of the
class template (e.g., � readers and � writers).

1 Introduction

Systems with an arbitrary number of homogeneous processes can be used to model
many important applications. These include classical problems such as mutual exclu-
sion, readers and writers, as well as protocols for cache coherence and data commu-
nication among others. It is often the case that correctness properties are expected to
hold irrespective of the size of the system, as measured by the number of processes in
the system. However, time and space constraints permit us to verify correctness only
for instances with a small number of processes. This makes it impossible to guarantee
correctness in general and thus motivates consideration of automated methods to permit
verification for arbitrary size instances. The general problem, known in the literature as
the Parametrized Model Checking Problem (PMCP) is the following: to decide whether
a temporal property is true of every size instance of a given system. This problem is
known to be undecidable in general [AK86,Suz88]. However, by imposing certain stip-
ulations on the organization of the processess we can get a useful framework with a
decidable PMCP.

In our framework, processes are modeled as Synchronization Skeletons (cf. [CE81])
which are abstractions of concurrent programs where details irrelevant to synchroniza-
tion are suppressed. This is because for most actual concurrent programs the portions

of each process responsible for interprocess synchronization can be cleanly separated
from the sequential application-oriented computations performed by the process. The
synchronization skeleton of each process � may then be viewed as a state transition
graph where each state represents a region of sequential code intended to perform some

serial computation, and each arc—of the form � ������	��
 , where � is an enabling con-
dition and
 is the action to be performed—represents a conditional transition used to
enforce synchronization constraints.

Given a family ��������������������� of � process classes and a k-tuple ��� �!���������"�#�$� of nat-
ural numbers, we let ���%���&���������'�$��(�)+*�,.-.-.-.,)0/21 denote the concrete system comprised of�3� copies or instances of �%� through �3� copies or instances of ��� running in paral-
lel asynchronously (i.e., with interleaving semantics). By abuse of notation, we also
write ��� � ���������4� � � (�) * ,.-.-.-.,) / 1 for the associated state graph, where each process starts in
its designated initial state.

Correctness properties are expressed using the following two basic formats (i) “for
all processes 5�6 ,” and (ii) “for all processes 786 ,” where 6 is an LTL 9 X formula (built
using : “sometimes,” ; “always,” < , “until,” but without = “next-time”) over proposi-
tions indexed just by the processes being quantified over, and 5 “for all futures,” and7 “for some future” are the usual path quantifiers. Use of such an indexed, stuttering-
insensitive logic is natural for parameterized systems. Moreover, allowing the next-time
operator X in formulas specifying correctness properties often gives us the ability to
‘count’ leading to undecidability of the PMCP [EK03]. Specifically, we consider cor-
rectness properties of the following types:

1. Over all individual processes of a single class ��> :?A@�B 5�6#�DC > � and
?A@�B 786#�DC > � , where C > ranges over (indices of) individual processes

in � > .
2. Over pairs of different processes of a single class ��> :? @�BFEGIH B 5�63��CJ>J�JK&>L� and

? @�BFEGMH B 7863��CJ>J�NK�>D� , where CN>J�JK&> range over pairs of distinct
processes in �O> .

3. Over one process from each of two different classes � > , �OP :?A@�B
, HNQ 5�6#�DC�>F�JK P � and

?R@SB
, HJQ 7863��CJ>J�JK P � , where CJ> ranges over �O> and K P ranges

over � P .

We say that the � -tuple �LTU�U�&��������T��$� of natural numbers is a cutoff for the family�������������������$� of process classes for formula V iff : WX��� �U�&���������#�$�ZY[�������������������$� (�)+*�,.-.-.-.,)\/S1] ^ V iff W �D_`�U���������"_`�$�bac�DT&�!����������T&���dYe�����U���������4�'�$� (P *�,.-.-.-., P /�1] ^ V , where we write��_f�U����������_g���eah�DTU�U���������$T���� to mean ��_f�!���������"_`�$� is component-wise less than or equal
to �DT � ����������T � � and ��_ � ���������"_ � �'ij�LT � �&��������T � � to mean �LT � ���������$T � �'ak�D_ � ���������"_ � � .

In this chapter, we show that for systems in the synchronization skeleton frame-
work with transition guards of a particular Disjunctive or Conjunctive form, there exists
a small cutoff. This, in effect, reduces the PMCP to standard model checking over a rel-
atively few small, finite-sized systems. In some cases, depending on the kind of property
and guards, we can get an efficient solution to the PMCP.

Each process class is described by a generic process—a process template for the
class. A system with � classes is given by the family of templates �J�e�U�&���������'�$� . For
such a system, define T @ ^mln] � @]porq

and s @ ^t] � @]uowv
, where

] � @] is the size of

� @ as given by the number of local states of � @ . Then, for conjunctive and disjunctive
guards, cutoffs of �DTU�!����������T&��� and �Dsp���&��������su��� , respectively, suffice for all three types
of formulas described above. These results give decision procedures for the PMCP for
conjunctive and for disjunctive guards. Since these are broad frameworks and the PMCP
is undecidable in general, we view this as quite a positive result.

However, the decision procedures are not necessarily efficient ones, although they
may certainly be usable on small examples. Because the cutoff is proportional to the
sizes of the template processes, the global state graph of the cutoff system is of size
exponential in the template sizes, resulting in exponential time decision procedures. In
the case of disjunctive guards, it turns out that if we restrict ourselves to formulas with
the 5 path quantifier, but still permit all three type of properties, then the cutoff can
be reduced, in quadratic time in the size of the template processes, to � q �&������� l �&������� q �
or � q ��������� v ��������� q � . In fact, depending on the type of property, we can show that it is
possible to simplify the guards to ensure that only two or three classes need be retained.
On the other hand, for conjunctive guards, if we restrict ourselves to model checking
purely over infinite paths or purely over finite paths, then sharper cutoffs of the form
(1,...,3,...,1), (1,...,2,...,1) or even (1,...,1) can, in some cases, be obtained.

The rest of the chapter is organized as follows. Section 2 defines the system model.
We show how to exploit symmetry inherent in the model and correctness properties in
section 3. Cutoff results pertaining to disjunctive and conjunctive guards are given in
sections 4 and 5, respectively. Applications are considered in section 6 and we conclude
with some remarks in section 7.

2 The System Model

We focus on systems comprised of multiple heterogeneous classes of processes mod-
eled as synchronization skeletons (cf. [CE81]). Here, an individual concrete process has
a transition of the form � ��
 indicating that the process can transit from local state �
to local state
 , provided the guard � is true. Each class is specified by giving a generic
process template. If

�
is (an) index set � q �&�������"��� , then we use ��� , or ��� � (�)\1 , for short,

to denote the concurrent system � ��� ����� � �) comprised of the � isomorphic (up to re-
indexing) processes �

@
running in parallel asynchronously. For a system with � classes

associated with the given templates � � �&��������� � , we have corresponding (disjoint) index
sets

� � ���&��� �
	 . Each index set
� H is (a copy of) an interval � q ���&�����"_�� of natural num-

bers, denoted � q H ���&���4��_ H � for emphasis1. In practice, we assume the � index sets are
specified by giving a � -tuple ��� � �&�������"� � � of natural numbers, corresponding to

� � being
(a copy of) interval � q �����&�4�"� � � through

� � being (a copy of) interval � q �&���&���"� � � .
Given a family �J���U�&�������4�'�$� of � template processes and a � -tuple ��� �U�&���������#��� of

natural numbers, we let ���%�U�&���������'�$� (�) * ,.-.-.-.,) / 1 denote the concrete system comprised of�3� copies of ��� through �#� copies of ��� running in parallel asynchronously (i.e., with
interleaving semantics). A template process �'> ^ �
�M>J��� >F��� >D� for class � , is comprised
of a finite non-empty set �[> of (local) states, a set of transition edges �Z> , and an initial

1 e.g., if ��� is a copy of
����������� � , the said copy is denoted

��� � ��� � ��� � � . Informally, subscripted
index

� � means process 3 of class 1; formally, it is the ordered pair � � �!�
" as is usual with
indexed logics.

(local) state � > . Each transition in � > is labeled with a guard which is a boolean expres-
sion over atomic propositions corresponding to local states of other template processes.
Then given template process �'> and index C���� q Y'� >�� , we use �

@
> ^ � �

@
> ���

@
> � �
@
> � to

denote the C th copy of the template process � > . Here �
@
> , the state set of �

@
> , �

@
> its

transition relation and �
@
> its initial state are obtained from � > , � > and � > , respectively,

by uniformly superscripting the states of � > with C . Thus, for local states � > and
 > of
template process � > , �

@
> and

@
> denote concrete local states of �

@
> , and �

@
> �
 @> � �

@
> iff� > �m
 > � � > .

From the guards labeling the transitions of a given template process ��> , we now
describe how to get the guards for the concrete process �

@
> of �J�����������������$� (�) * ,.-.-.-.,) / 1 . We

consider the following two types of guards.

– Disjunctive guards—of the general form ��� �	� ����� ��
�� �
� ������� ��� 	 � ����� ��
4� � —label
transition � � > �
 > ��� � > , where �uP �&�������
 P are (propositions identified with) the local
states of template � P . In concrete process �

@
> of the system ��������������������� (�) * ,.-.-.-.,) / 1 ,

the corresponding transition � �
@
> �

@
> ��� �

@
> is then labeled by the guard ��� EG @ ��� �> ������ ��
 �> � � � H EG > ��� 	���� ���)���� ���

	H � ����� �
 	H � � , where, for T H � � H , proposition T 	H is

understood to be true when process ! in class � H , i.e., � 	H , is in local state T H for
template process � H .

– Conjunctive guards with initial state—of the general form � � �"� � �#� ����� �$
�� � ? �����? � � 	 � � 	 � ����� �%
 	 � . In concrete process C of class � , �
@
> , the corresponding transition

is then labeled by the guard
? � EG @ � � �> � � �> � ����� �$
 �> �'& ? H EG > � ? 	���� �(�))��� � �

	H � � 	H �
����� �*
 	H �"� .

Note that the initial local states of processes must be present in the expressions for the
conjunctive guards. Thus, the initial state of each process has a neutral or non-blocking
character so that when a process is in its initial state, it does not prevent progress by
another process distinct from it. This natural condition permits modeling a broad range
of applications (and is helpful technically).

We now formalize the asynchronous concurrent (interleaving) semantics. A pro-
cess transition labeled with guard � is enabled in global state + iff +] ^ � , i.e., �
is true when evaluated over the local states in + . The global state transition diagram,�������������������$� (�)+*�,.-.-.-.,) / 1 , of the system instance corresponding to the tuple ��� �����������"�#�$� is
given by the tuple �J���U�&���������'�$� (�)+*�,.-.-.-.,) / 1 ^ � � (�)+*$,.-.-.-.,) / 1 �!� (�) *�,.-.-.-.,) / 1 ��� (�)+*�,.-.-.-.,) / 1 � . A state
+,��� (�)+*$,.-.-.-.,)\/S1 is written as a ���3� o ����� o �#�$� -tuple ��- �� ����������-) *� �(- �. ����������-) /� � , where the
projection of + onto process C of class � , denoted +/� �N�"C�� , equals -

@
> , the local state in +

of the C th copy of the template process �'> . The initial state � (�) *�,.-.-.-.,)\/S1 ^ � � �� ��������� �) /� � . A
global transition + �I�10 � � (�) * ,.-.-.-.,) / 1 iff 0 results from + by firing an enabled transition
of some process, i.e., there exist C��!� such that the guard labeling �

@
> �
 @> � �

@
> is en-

abled at +0�2+/� �N�"C�� ^ �
@
> � 0 � �N��C�� ^
 @> , and for all ��K0��!8�,3^ ��C��!��� , +/� !I�JK4� ^ 0 � !I�JK4� . We write��� � ����������� � � (�) * ,.-.-.-.,) / 1] ^ V to indicate that the global state graph of ��� � ����������� � � (�) * ,.-.-.-.,) / 1

satisfies V at initial state � (�) * ,.-.-.-.,) / 1 .
For global state + , let Set(s) denote the set �)�] + contains an indexed local copy

of � � . For computation path 5 ^ 5760�25I�U�&����� we define �,� 0 6 �98 0 ��5I� ^;: @ �98 0 ��5 @ � .
The definition of projection is extended to include computation sequences as follows:
for computation path 5 ^ 5
6+��5M�U�&����� and C<�=� q Y � >�� , the sequence of local states

5 6 � �F�"C��L�25I� � �N��C��L�&����� is denoted by 5 � �F�"C�� . We say that the sequence of global states �
^

� 6\� � �U�&����� is a stuttering of computation path 5 iff there exists a parsing �96U�O�U����� of �
such that for all K���� there is some ���	� with � H ^ ��5 H � � (cf. [BCG89]).

3 Appeal to Symmetry

We can exploit symmetry inherent in the system model and the correctness proper-
ties in the spirit of “state symmetry” as codified by [ES93] (cf. [ID96], [McM99])
to simplify our proof obligation. For formulas of types

? @�B V ��C > �$� ? @SBNEGIH B V ��C > �JK > � and?�@SB
, HJQ V ��CJ>J�NK P � , it suffices to show the results with the formulas replaced by V � q >D�$�V � q >J� l >D� and V � q >�� q P � , respectively. The basic idea is that in a system comprised of

fully interchangeable processes 1 through � of a given class, symmetry considerations
dictate that process 1 satisfies a property iff each process C � � q Yu� � satisfies the prop-
erty.

4 Systems with Disjunctive Guards

In this section, we consider the PMCP for systems with Disjunctive Guards. As defined
before, these guards can be used to test whether there exists another process in one of a
specified set of local states. Disjunctive Guards are used, for example, in cache coher-
ence protocols when a processor cache wants to check whether another cache has the
memory block it needs and based on that decide from where to fetch the required block.
For such systems, we show how to reduce the model checking problem for systems with
an arbitrary number of copies of each process class to systems with up to a cutoff num-
ber of copies in each class. The size of the cutoff for each class is essentially the number
of local states of individual process template for the class. This yields decidability for
this formulation of the PMCP, a pleasant result since the PMCP is undecidable in full
generality. We go on to show that in the case of universal path quantified specification
formulas 5�6 , small constant-size cutoffs can be obtained yielding provably efficient—
polynomial time—decision procedures.

4.1 Properties ranging over all processes in a single class

For the sake of notational simplicity, we consider systems with just the two process
classes
 � and
 . . We begin by proving the Disjunctive Monotonicity and Disjunctive
Bounding lemmas which allow us to, respectively, increase and decrease the system
size one coordinate at a time while preserving properties of the from 786 for process
index 1 from each class.

Lemma 1 (Disjunctive Monotonicity Lemma).

(i) WM��� q Y	��
M���

 . � (� ,)\1] ^ 7863� q . � implies ��
M���

 . � (� ,)�� � 1] ^ 7863� q . � .
(ii) WI��� q Y	��
I�!��
 . � (� ,)\1] ^ 7863� q �4� implies ��
I�!��
 . � (� ,)�� � 1] ^ 786#� q ��� .

Proof
(i) For any computation 5 of ��
M�!��
 . � (� ,)\1 , there exists an analogous computation

� of ��
M���

 . � (� ,)�� � 1 wherein the ��� ohq � st copy of template process
 . stutters in its
initial state and the rest of the processes behave as along 5 . Note that from the semantics
of disjunctive guards, it follows that having the ‘extra’ process
)�� �. in its initial state
does not disable any of the transitions of processes distinct from it that were fired along
5 . Thus � is a valid computation sequence.

(ii) This part follows by using a similar argument. ��

Lemma 2 (Disjunctive Bounding Lemma).

(i) WI� �
]

 .]uowl Y ��
M�!��
 . �$(� ,)\1] ^ 786#� q . � iff ��
M�!��
 . �$(� , ����1] ^ 7863� q . � , whereT . ^]

 .]�odl
.

(ii) WI���]

 .]&okq Y	��
 � ��
 . � (� ,)01] ^ 786#� q � � iff ��
 � �

 . � (� , � � � � � � 1] ^ 7863� q � � .

Proof
(i) Given a computation 5 of ��
 � �

 . � (� ,)\1 , we construct a computation � of the

system ��
 � �

 . � (� , � � 1 such that 5 � l � q � , i.e., the local computation in 5 of process 1 of
template class
 . , is a stuttering of � � l � q � ; and vice versa.���d� Let 5 = 5 6 �25 � �&����� be a computation sequence of ��
 � �

 . � (� ,)\1 . We construct
a formal sequence �

^ � 6 � � � ������� of global states of ��
 � ��
 . � (� , � � 1 from 5 as described
below.

1. Set � � q � q � ^ 5 � q � q � and � � l � q � ^ 5 � l � q � , i.e., the local computation paths in 5 of
process index 1 of each of the classes
 � and
 . is preserved. This ensures that 5 � l � q �
and � � l � q � are stuttering equivalent, as desired.

2. If 5 is an infinite computation, then we need to make sure that � is also an infinite
computation. Towards that end, note that if any one of 5 � q � q � or 5 � l � q � is an infinite
local computation, then we are already done. Otherwise, let 	 be an infinite local com-
putation of 5 , in case 5 is an infinite computation; else, if 5 is finite, let 	 ^ � � . � �
�� ,
where

] 5] denotes the length of 5 . Set � � l ��T . � ^ 	 .
3. In order for � to be a valid computation, we still need to ensure that the guard

labeling each transition of 5 mimicked along � is enabled in � . This is accomplished
by ‘flooding’ each local state of template
 . occurring along 5 , as described below.
Let � 8 �uT�6 ^ ���8�U���������2�+>
� be the set of all local states of template process
 . occur-
ring along 5 . Consider � H � � 8 �uT�6 . Let
 �����������
 P , where
 P ^ � H , be the finite
local computation of minimum length in 5 leading to local state � H . We denote _ by� C���
#8U�'��� H � . Furthermore, if 5 is an infinite computation we use

� CJ������_R�3��� H � to
denote the sequence
U� ���������
 P�� � ���
 P ��� , else if 5 is an finite computation, then we use
it denote a sequence of the form
&� ���������
 P�� � �U�
 PZ��� , where local state
 P stutters suffi-
ciently many times to ensure that

� CJ������_R�3��� H � is of length
] 5] . Then, for each state

� H � � 8 �uT�6 , we set � � l �NK okq � ^ � CJ������_A� ��� H � , i.e., we let the ��K okq � st copy of
 .
execute the local computation of minimum length in 5 leading to � H and subsequently
let it stutter in � H . Thus each state in Reach is now flooded. This has the implication
that each local transition of 5 mimicked along � is enabled. Indeed let global transition
� @ �I� � @

� � result by firing local transition 0 �AY+T � s of template
 . . Let 0 � be labeled
with guard � . By our construction, global state 5 @ � � also results from 5 @ by the firing of

local transition 0 � . Since � is disjunctive in nature, in global state 5 @ , there exits a process

 in local state 8 , say, that enables guard � . If

^

[� , then �

@ � q � q � ^ 5 @ � q � q � ^ 8!� .
Else if
 is a copy of
 . , then 8 ^ � 	 , for some � 	 � � 8 �uT�6 . In that case, we have� C���
#8U�M� 0 63��� 	 ���kC and so, by our construction, �

@ � l �2! ojq � ^ 8 	 � � . Thus in either
case there is a process other than the one firing 0 � that is in local state 8 thereby ensuring
that guard � is enabled in �

@
.

However, it might be the case that sequence � violates the interleaving semantics
requirement. Indeed, consider the following scenario. Let states � @ �2� H � � 8 �uT�6 , be
such that

� CJ������_R�3��� @ � and
� CJ������_A� ��� H � are realized by the same local compu-

tation of 5 and suppose that
� CJ��
%8U�'��� @ ��� � CJ��
#8&�'��� H � . If for !�� � CJ��
%8U�'��� @ � ,

 	 �
 	 � � is a transition of
� CJ������_R�3��� @ � , then � 	 � l ��C ohq � � � 	

� � � l �"C o q � and
� 	 � l �JK oXq � � � 	

� � � l �NK oXq � are both local transitions driving � 	 to � 	 � � . This violates
the interleaving semantics condition requiring that there be at most one local transition
driving each global transition. There are two things to note here. First, for a transition
� 	�� � � 	��

� � , the violation occurs only for values of !�� less than or equal to the max-
imum of

� CJ��
#8&�'��� H � � over all K � � � �`Y � � . Secondly, for a fixed C � , all violations are
caused by a unique template transition T � s of
 . , namely one responsible for firing
the global transition 5 @ � �	� 5 @ � � � .

To solve this problem, we ‘stagger” copies of the local transition that are fired simul-
taneously, as described below. Let �

@ �I� � @
� � be a transition where the interleaving se-

mantics requirement is violated by process indices C�� � �&��������CJ�
	 of
 . executing indexed

copies T
@
) *. � s

@
) *. ����������T

@
)��. � s

@
)��. respectively of the template transition T . � s . of

 . . Replace the single global transition �
@ �	� � @

� � with a sequence - � ���������(-
	 � � such
that - � ^ � @ , -�	 � � ^ � @

� � and for each K � � q Y[V7� , transition - H � - H � � results by
executing local transition T

@
))�. � s

@
))�. . Clearly the interleaving semantics requirement

is met as at most one local transition is executed for each global transition. Finally,
note that states with indices other than C�� � �&�������"CJ�
	 are made to stutter finitely often in
- � ���������(-
	 � � which is allowed since we are considering formulas without the next-time
operator X.

Thus, given a computation path 5 of ��
 ���

 . � (� ,)\1 , we have constructed a stuttering
computation path � of ��
[�!��
 . � (� , ���"1 , such that the local computation sequence � � l � q �
is a stuttering of the local computation sequence � � l � q � . This stuttering path correspon-
dence, gives us the result.

���d� The proof follows by repeated application of the Disjunctive Monotonicity
Lemma.

(ii) This part follows by using a similar argument. ��

Using the previous result, we get the Disjunctive Truncation Lemma that allows re-
duction in system size over multiple coordinates simultaneously (2 coordinates for no-
tational brevity) instead of just one while preserving properties of the form 786 over
process index 1 in each class. The cutoff result then follows as an immediate corollary.

Lemma 3 (Disjunctive Truncation Lemma).WI� � ��� . � q YI�J� � ��� . � (�) * ,) � 1] ^ 7863� q . � iff ��� � �4� . � (P * , P � 1] ^ 7863� q . � , where _ � is
the minimum of � � and

] � �]&okq
, and _ . is the minimum of � . and

] � .]�o l
.

Proof
If � . �] � .]\o l

, set
 � ^ �J� � � (�) * 1 and
 . ^ � . . Then, ��� � �4� . � (�) * ,) � 1] ^ 786#� q . �
iff ��
 � ��
 . � (� ,) � 1] ^ 7863� q . � iff ��
 � ��
 . � (� , P � 1] ^ 786#� q . � (by the Disjunctive Bounding
Lemma) iff ��� � ��� . �$(�) * , P � 1] ^ 7863� q . � .

If �3� �] ���]	o q
, then � � ^ _`� and we are done; else set
[� ^ ��� . � (P � 1

and
 . ^ ��� . Then, ��������� . � (�) * , P � 1] ^ 7863� q . � iff �J� . ������� (P � ,) * 1] ^ 7863� q ��� iff��
M���

 . � (� ,)+*F1] ^ 786#� q ��� iff ��
M���

 . � (� , P *N1] ^ 786#� q �4� (by the Disjunctive Bounding
Lemma) iff ��������� . � (P *�, P � 1] ^ 7863� q . � . ��

An easy but important consequence of the Disjunctive Truncation Lemma is the follow-
ing.

Theorem 1 (Disjunctive Cutoff Result). Let V be
? @ B 5�6#�DCJ>D� or

? @ B 7863��CJ>D� , where 6
is a LTL 9 X formula and � � � q Y l � . ThenWO��� � �"� . �%ih� q � q � : ��� � ��� . � (�) * ,) � 1] ^ V iffWO�Ds � �$s . �ea �LT � �$T . � : ��� � ��� . � (� * , �

� 1] ^ V
where the cutoff �DT � ��T . � is given by T > ^] � >]�odl

, and for C 3^ �3Y+T @ ^] � @]�ojq
.

Proof By appeal to symmetry and the fact that 5 and 7 are duals, it suffices to prove the
result for formulas of the type 7863� q . � . The if direction is trivial. For the only if direction,
let �3�U�"� . � q

. Define � � � to be the minimum of � � and
] ���]�o q , and �
�. , the minimum of� . and

] � .]No`l . Then, by the Disjunctive Truncation Lemma, ���e�U�4� . � (�) * ,) � 1] ^ V � q . �
iff �����U�4� . ��(�)

�
* ,)
�
� 1] ^ V � q . � . This proves the cutoff result. ��

More generally for systems with ��� q
, different classes of processes, the cutoff

results for systems with disjunctive guard can be formualted as below. The proof is
along similar lines as for systems with two process classes.

Theorem 2 (Disjunctive Cutoff Theorem). Let V be
? @ B 5�6#�DC�>�� or

? @ B 7863��CJ>D� , where
� ��� q Y8� � and 6 is an LTL 9 X formula. ThenWO��� � �����&�4�"� � �eiw� q �����&��� q � : ��� � �&���&�4��� � � (�) * ,.-.-.- ,) / 1] ^ V iffWO�Ds � �&�����&��s � �%aw�LT � �&�����&��T � � : ��� � ���&���4�4� � � (� * ,.-.-.- , � / 1] ^ V ,
where the cutoff �DT � ���&���4�$T � � is given by T > ^] � >]�odl

and for C 3^ �#Y T @ ^r] � @]&o q
.

A useful corollary to the above result is the decidability results for the PMCP for sys-
tems with disjunctive guards.

Corollary 1 (Disjunctive Decidability Theorem). The PMCP for systems
with disjunctive guards and single-index assertions of the forms

?A@SB 5�63��CJ>D� and
?A@�B 786#�DC�>D�

is decidable in exponential time in the size of the tampltes defining the parameterized
family.

Proof By the Disjunctive Cutoff Theorem, it is enough to model check exponentially
many state graphs each of exponential size for the systems �J�e�U�&���&�4������� (� *�,.-.-.- , � /21 for all�Dsp���&��������su���'ak�LT&���&���&�4��T��$� . ��

4.2 Efficient decidability for “for all future” properties

While the Disjunctive Cutoff Result yields decidability for the PCMP for disjunctive
guards, the resulting decision procedure has a worst case complexity that is exponen-
tial in the size of each of the templates. It turns out that for universal-path-quantified
formulas it is possible to be much more efficient. For such properties, we show that
we can give a decision procedure for the PMCP that has a polynomial time worst case
complexity in the size each of the templates. Towards that end, we first show that the
PMCP for properties of the form 5�6 reduces to model checking just the single system
instance of size equal to the (small) cutoff (as opposed to all systems of size less than
or equal to the cutoff).

Lemma 4 (Single-Cutoff Lemma). WI� �U�"� . � q Yg��������� . �$(�)+*�,) ��1] ^ 5�63� q . � iff��������� . � (� *�, ��� 1] ^ 5�6#� q . � , where T&� ^r] ���]Uo q
and T . ^r] � .]&odl

.

Proof���d� This direction follows easily by instantiating � � ^ T&� and � . ^ T . on the left
hand side.���d� Choose arbitrary !u�!�2! . � q

. Set ! �� to be the minimum of !u� and T&� , and
! �. to be the minimum of ! . and T . . By the Disjunctive Truncation Lemma, we have��������� . �$(*$, 	 �"1] ^ 7863� q . � iff ��������� . �$(

�
* ,
	 �
� 1] ^ 7863� q . � . Then, by repeated application

of the Disjunctive Monotonicity Lemma, we get �J�%����� . � (� *$, ��� 1] ^ 7863� q . � . Finally, by
contraposition, ��������� . � (� *$, ��� 1] ^ 5�63� q . � implies ��������� . � (*�, 	 ��1] ^ 5�63� q . � . Since !u�
and ! . were arbitrarily chosen, we are done. ��

�������

�������

��������	� � �

��

���

��
 �
��

��
 � � �

��
 �
�� � � �

�������

�
 � �

������

��
 ��� �

��� ����� � � ��!�"#���$��� %	&��')(� *+� ,�%-� "#���$��� %	&��

�������

Fig 1.1 An Example of Simplification

Simplification Procedure. We now describe a transformation that given the templates���U�&���������'� with disjunctive guards allows us to construct the simplified templates � �� ����������� �� ,
such that

1. For each C , the state transition graph for � �@ is a subgraph of the state transition
diagram of � @ , and

2. All guards labeling transitions of � �@ are true.

We follow that up by showing that the transformation preserves single and double index
properties of the type 5�6 .

Given templates � � ����������� � , define Reachable-States ��� � ����������� � � ^ ��� � ����������� � � ,
where �

@ ^ �
]
 � � @ � such that for some � �U�&���������#� � q
, there exists a computa-

tion path of �������������������$� (�) * ,.-.-.-.,) / 1 leading to a global state that contains a local indexed
copy of
 � . For all C �	� , and for all K ��� q Y8� � , we define �

@
H as follows:

� 6H ^ � � H � .

�
@
� �H ^ �

@
H : �
]�� � �`�

@
H Y � � ��m
 � � H and the expression for �
contains a state in

: 	 �
@	 � .

For K ��� q Y8� � , define � H ^ : @ �
@
H .

Lemma 5 (Soundness Lemma). For a fixed C and for all K�� � q Yn� � , define _ H ^] �
@
H] .

Then there exists a finite computation sequence of ��� � �&��������� � � (P * ,.-.-.-., P / 1 leading to a
global state that has for each K � � q Yn� � and for each � H �`�

@
H , a local indexed copy of

� H .
Proof The proof is by induction on C . The base case, C ^ � , is vacuously true. Assume
that the result holds for C � � . For each K � � q Yn� � , let � H ^] �

@
H] and let 5 ^ 5 6 ����������5 >

be a finite computation of ��� � �&�������4� � � (�) * ,.-.-.-.,) / 1 such that global state 5 > has for eachK�� � q Y8� � and for each � H �g�
@
H , a local indexed copy of � H .

If for each K , �
@
� �H ^ �

@
H , then 5 is the desired computation and we are done.

Now assume that �
@
� �	 3^ �

@	 . Let T 	 � �
@
� �	 9 �

@	 . Furthermore, let
 	 � T 	 be the
transition that led to the inclusion of T 	 into �

@
� �	 . Clearly,
 	 �r�

@	
. Then, by the

induction hypothesis, in global state 5	> there exists a copy of template process � 	 , say�)��	 , in local state
 	 . We now construct a finite sequence �
^ � 60��������� � . > of states of�������������������$�$(�)+*�,.-.-.-.,) � � � ,.-.-.-.,)\/S1 as follows.

1. For K � � q Y � � Y�! �,� � q Y�� H � : � � K0��! � � ^ 5 � K0�2! � �N��5 > � K\��! � �2� > , i.e., we let all
processes other than the ‘extra’ process �) � � �	 execute the same local computations as
along 5 and then stutter.

2. � � !I��� 	 o q � ^ � �)�� � �	 � > - �LT)��
� �	 ��� , where - is the local computation 5 � !I��� 	 �
leading to
 	 with the index � 	 replaced by � 	 o q

, i.e., we let �) � � �	 stutter in its
initial state for the first � steps; then execute the same local computation as process �) �	
along 5 leading to a copy of
 	 ; then fire the local transition
 	 � T 	 resulting in a new
copy of local state T 	 ; and finally let it stutter in local state T 	 to ensure that the length
of the resulting local computation is

l � .

We claim that � is a valid stuttering computation path of �J�e���&�������4�'�$� (�)+*�,.-.-.-.,) � � � ,.-.-.-.,)\/21 .
Note that in the subsequence � ����������� � > all processes other than �)��
� �	 exhibit the same
behavior as along 5 with �)�� � �	 stuttering in its initial non-blocking local state. Thus
all transitions fired along � 6 ��������� � > are enabled. Subsequently, the only transitions fired
along � are by process �) � � �	 —first the local sequence - and then the transition
 	 �T 	 . Note that, by our construction, each local state occurring along 5 , i.e., each state
in
: H �

@
H , has a copy in � > and therefore in each of the global states � >N�&������� � . > � � and

� . > . This ensures that any transition of � � !M�"� 	 ohq � that was fired along 5 is enabled.
Specifically, all transitions fired along - are enabled. Finally since � P , where _ � � ,
has a copy of each state in

: H �
@
H , therefore transition
 	 � T 	 of �)��
� �	 is also enabled

thus proving our claim.
Note that global state � . > has at least one copy of each state in

: H �
@
H plus a copy

of T 	 . Repeating the above procedure for each state in �
@
� �H 9 �

@
H , we get a computation

path with the desired property. This completes the induction step and proves the lemma.
��

Lemma 6 (Completeness Lemma). � � � �&��������� � � ^ �D� � �&�������$� � � .
Proof By the above lemma, WIC � � q Y`� � Y � @ � �

@
. If possible, suppose that��� � ����������� � � 3^ �D� � �&�������$� � � . Then the set � ^ : @ � � @ � � @ � 3^�� . For definiteness,

let T H ����� � H . Then by definition of � H , there exists a finite computation sequence
5 ^ 5
6\���������258> such that for some ! , 5n> � K0�2!/� ^ T 	H . Let _ CJ� � � � Y�� � be the smallest

index such that �98 0 ��5IP @) ���	� 3^
� . Then there exists a local transition � H ��
 H � � H
driving global state 5IP @) � � into 5nP @) such that 5	P @) � �] ^ � and
 H ��� . Clearly,
�98 0 ��5 P @) � �&� � �,� 0 6 � 8 0 ��5 6!�&��������5 P @) � �&� � : @ �

@
. This implies that for some C � ,

�98 0 ��5nP�� � � � �
@ �H . Since � is enabled, there exists a state occurring in the expres-

sion for � that is included in the set �98 0 ��5	P @) � � � and therefore in the set �
@ �
H . But then

 H would be included in �
@ �
� �H � � H , a contradiction to our assumption that
 H ��� .

Thus � ^��
. This completes the proof. ��

We now modify the � -tuple of template processes (�e�U�&���������'�) to get the � -tuple
(�
�
� ���������4�

�
�), where �

�@ ^ � � @ ���
�@ ��� @ � , with � @ �
 @ � �

�@
iff the expression for the

guard � @ labeling � @ �
 @ in � @ contains a state in
: H ��� ��� � � � H . Furthermore, any tran-

sition in the new system is labeled with 0 � -	8 . See the above figure for an example. The
motivation behind these definitions is that since for any � ���"� . ���������"�#� � q

, no indexed
copy of any state in � @ 9 � @ is reachable in any computation of ���%����������������� (�)+*�,.-.-.-.,)\/S1 , we
can safely delete these states from their respective template process. Also, any guard of
a template process involving only states in � @ 9 � @ , will then always evaluate to false and
hence any transition labeled with such a guard will never be fired. This justifies deleting
such transitions from the transition graphs of the respective template processes. We now
show that we can reduce the PMCP for properties of the form 5�6 to model checking a
system comprised of just two of these simplified templates.

Theorem 3 (Reduction Result). Let

^ �

�	
if for some ! � � q Y�� � , the transition

graph for �
�	

has a nontrivial strongly connected component, else let

^ �

�
� . Then,

��� � ����������� � �$(� * ,.-.-.-., � / 1] ^ 5�63� q�� � iff ���
�� �

 � (� , � 1] ^ 5�6#� q � � , where T �`^] � �]\ojl

andT @ ^] � @]�okq
for C 3^ � .

Proof We show that �J� � �&�������4� � � (� * ,.-.-.-., � / 1] ^ 786#� q�� � iff �J�
�� ��
�� (� , � 1] ^ 7863� q � � . For

definiteness, assume that

^ �

�
� .

(�) Given a computation 5 of ���%�U�&���������'�$� (� * ,.-.-.-., � / 1 , we construct a computation �
of ��� �� �

�� (� , � 1 ^ �J� �� ��� �� � (� , � 1 such that (i) � � q � q � is stuttering equivalent to 5 � �#� q � ,
and (ii) if 5 is an infinite computation then so is � .

Define a formal sequence �
^ � ��� � . ������� of states of �J� �� �4� �� � (� , � 1 as described

below. To ensure that � satisfies (i), we set � � q � q � ^ 5 � � � q � . In case 5 � �#� q � is an infinite
computation sequence then we simply set � � l � q � ^ � � � ��� and we are done. Now assume
that 5 is an infinite computation but the local computation 5 � � � q � is finite and of lengthV , say. Since 5 is an infinite computation, there exists a process that executes an infinite
local computation in 5 . This can happen only if there exists a template whose transition
diagram has an infinite path and hence a non-trivial strongly connected component.
Thus, by definition of
 , the transition diagram for template � �� has an infinite local
path, say - . Then set � � l � q � ^ � � � � 	 - .

To prove that � is a valid computation sequence of ���
�� �

�� (� , � 1 , it suffices to show

that all transitions fired along � are valid. This follows by noting that all local states
occurring along 5 are reachable and thus belong to

: H � H . In particular, all local states
occurring along 5 � �#� q � and - belong to

: H � H . But by the Completeness Lemma, we
have

: � H ^ : � H . Thus all local states occurring along 5 � � � q � and - belong to
: H � H .

Furthermore, all local transitions fired along 53� �#� q � and - are labeled by guards whose
expressions involve a state in

: H � H ^ : H � H and hence they occur in
: H �

�H . Finally
these transition are now labeled with the guard true and are thus enabled along � .

(�) Given a computation � of ��� �� ��� �� � (� , � 1 , we construct a computation 5 of
��� � ����������� � � (� * ,.-.-.-., � / 1 , such that � � q � q � and � � l � q � are stuttering equivalent to 5 � � ��T � �
and 5 � ����T � � , respectively.

By the Soundness Lemma, it follows that there exists a finite computation path
- ^ - 6 ���������(- > of �J� � ����������� � � (� � * � ,.-.-.-., � � / � 1 starting at � (� � * � ,.-.-.-., � � / � 1 , such that WpK � � q Y� � Y!W
 H �`� H Y � ! ��� q Y] � H] � Y4- > � K0�2! � ^
 	H , i.e., - > has a copy of each reachable local
state of each template. By the Completeness Lemma,

: H � H ^ : H � H and so -I> has a
copy of each local state in

: H � H . In other words, each state of
: H � H is now ‘flooded’.

This enables every local transitions of
: H � H labeled with a guard whose expression

involves a state of
: H � H . But these are precisely all the transitions of the simplified

templates.
Then given a computation 5 of �J� �� �4� �� � (� , � 1 to get the desired computation � all we

need to do is ‘append’ 5 at the end of - as described below. First we let all processes�
@
H , where K � � q Y�� � and C � � q Y] � H] � , execute the same finite local computations

as along - and then stutter in their respective final states, i.e., WpK � � q Y�!/�AYOW ! �
� q Y] � H] � Y 5 � K0�2!/� ^ - � K0�2!/�N� -I> � K0��!/�2� � . By the above remark, all template transitions
in �

���� �
�
� of processes � ���� and � �	�� are now enabled in 5n> . These two process can

therefore mimic � by letting 5 � �#��T � � ^ �"� � � � > � � � q � q � , 5 � ����T � � ^ �"� � � � > � � � l � q � . Thus
for each C � � , transition 5 @ �	� 5 @ � � is a valid global transition. Hence 5 is valid
computation path. ��

The above result enables us to give a polynomial time decision procedure for properties
of the form 5�6 as we now show.

Theorem 4 (Efficient Decidability Theorem). For systems with disjunctive guards
and properties of the type

?A@�B 5�63��C > � , the PMCP is decidable in time quadratic in the
size of the given family ��� � �&�������4� � � , where size is defined as � H �] � H]�o] � H] � , and linear
in the size of the Büchi Automaton for �O6#� q >D� .
Proof We first argue that we can construct the simplified system � �> efficiently. By def-
inition, WpK�� �`Y[� H> � � H � �> . Let �

@ ^ : > �
@
> . Then, it is easy to see that, WpK�� �`Y

� H � � H � � and if � H ^ � H � � , then WIC � K Yn�
@ ^ � H . Also, WICeYn�

@ � : > �
�
> . Thus

to evaluate sets � H> , for all K , it suffices to evaluate them for values of K � � @] � @] . Fur-
thermore, given � H> , to evaluate � H � �> it suffices to make a pass through all transitions
leading to states in � > 9e� H> to check if a guard leading to any of these states contains a
state in

: > � H> . This can clearly be accomplished in time � H �] � H]!oh] � H] � . The above

remarks imply that evaluation of sets � H> , can be done in time � �"� � H �] � H]Uoj] � H] � � . � .
Furthermore, given C , whether �

�@
has a nontrivial strongly connected component can be

decided in time � �] �
�@]\o] �

�@] � by constructing all strongly connected components of
�
�@
. Thus, determining whether such an C exists can be done in time � ��� H �] � H]�o] � H] � � .
The Reduction Theorem reduces the PMCP to the model checking problem for the

system ���
�
> �

��$(� , � 1 , where

^ �
�
� if for some C � � q Y9! � , the transition graph for

�
�@

has a nontrivial strongly connected component else

^ �

�
� . Now, ���

�
> ��
A�$(� , � 1] ^
 63� q ��� iff �J�

�
> �

�� (� , � 1] ^ �����O63� q �&� . Thus it suffices to check whether �J�

�
> ��
A� (� , � 1] ^

���O6#� q ��� , for which we use the automata-theoretic approach of [VW86]. We con-
struct a Büchi Automaton �	��
 for �O6#� q ��� , and check that the language of the prod-
uct Büchi Automaton � , of ���

�
> �

 � (� , � 1 and �
��
 is non-empty (cf [LP85]). Since the

non-emptiness check for � can be done in time linear in the size of � , and the size of���
�
> ��
 � (� , � 1 is � � � � H �] � H]&oj] � H] � � . � , we are done.

4.3 Properties ranging over pairs of processes from two classes

Using similar kinds of arguments as were used in proving assertions in the sections 4.1
and 4.2, we can prove the following results.

Theorem 5 (Cutoff Theorem). Let V be
? @�B

, H Q 5�63��CJ>N�NK P � or
? @SB

, H Q 786#�DCJ>J�JK P � , where6 is an LTL 9 X formula and �N��_ � � q Y/! � . ThenWO���3�������&�4�"� 	 �%iw� q ���&���4� q � : �J���������&���4� 	 �$(�)+*$,.-.-.- ,) � 1] ^ V iffWO�Dsp�U�&�����&��s 	 �%ah�DT&�������&���$T 	 � : �J���U�&���&�4��� 	 � (� *$,.-.-.- , �

� 1] ^ V ,
where the cutoff �DTU�����&�����$T 	 � is given by T4> ^] �O>]	o l

, T P ^] � P]norl
and forC 3^ �F�"_ Y T @ ^] � @]&okq

.

Theorem 6 (Reduction Theorem).

����������������� 	 � (� * ,.-.-.-., � �$1] ^ ? @�B
, HNQ 5�6#�DCJ>J�JK P � iff ���

�
> ���

�
P � (� , � 1] ^ ? @SB

, HJQ 5�6#�DCJ>N�JK P � , whereT�> ^] � >]&odl �$T P ^r] � P]�odl
and WMC 3^ �F�"_ Y T @ ^r] � @]&okq

.

Again, we get the analogous Decidability Theorem and Efficient Decidability The-
orem. Moreover, we can specialize these results to apply when � = _ . This permits rea-
soning about formulas of the type

?R@�BNEGIH B 5�63��CJ>J�JK&>L� or
?A@SBFEGIH B 786#�DCJ>J�JK&>D� , for properties

ranging over all pairs of processes in a single class � .

5 Systems with Conjunctive Guards

The development of results for conjunctive guards closely resembles that for disjunctive
guards.

Lemma 7 (Conjunctive Monotonicity Lemma).

(i) WM��� q Y	��
 � �

 . � (� ,)\1] ^ 7863� q . � implies ��
 � �

 . � (� ,)�� � 1] ^ 7863� q . � .
(ii) WI��� q Y	��
I�!��
 . � (� ,)\1] ^ 7863� q �4� implies ��
I�!��
 . � (� ,)�� � 1] ^ 786#� q ��� .

Proof For any computation 5 of ��
[���

 . � (� ,)\1 , there exists an analogous computation �
of ��
M���

 . � (� ,)�� � 1 wherein the ��� o q � st copy of template process
 . stutters in its initial
state and the rest of the processes behave as along 5 . Note that since, by definition of
our system model, the initial state of each template appears in the expressions for all the
conjunctive guards of ��
[���

 . � (� ,)�� � 1 , process
)�� �. stuttering in its initial state does
not disable any transition fired by the other processes along � that was also fired along
5 . Thus � is a valid computation. ��

Lemma 8 (Conjunctive Bounding Lemma).

(i) WM��� ln]

 .]�okq Y	��
 � �

 . � (� ,)\1] ^ 7863� q . � iff ��
 � ��
 . � (� , � � 1] ^ 7863� q . � , whereT . ^jl]

 .]Uo q

.
(ii) WI��� l]

 .] Y	��
 � �

 . � (� ,)\1] ^ 7863� q � � iff ��
 � ��
 . � (� , . � � � � 1] ^ 7863� q � � .
Proof

(i) (�) Let 5 be a full path of ��
M�!��
 . ��(� ,)01 . There are two cases to consider (a) 5 is
an infinite computation, and (b) 5 is deadlocked.

First assume that 5 is an infinite computation of ��
 �!��
 . �$(� ,)\1 . We show how to
construct an infinite computation � of ��
[�!��
 . � (� , ��� 1 such that � � l � q � is stuttering equiv-
alent to 5 � l � q � . Towards that end, set � � q � q � ^ 5 � q � q � and � � l � q � ^ 5 � l � q � . If one of
5 � q � q � and 5 � l � q � is an infinite local computation then the resulting computation � is
also infinite. If however none of 5 � q � q � or 5 � l � q � is an infinite local computation then
there exists ! 3^mq

such that 5 � l ��!/� is an infinite local computation. In that case, set
� � l � l � ^ 5 � l �2! � , thus ensuring that � is infinite. We let the remaining copies of
 . stut-
ter in their respective initial states. Then using the fact that a process in its initial state
does not disable any other process we can, as in the proof of Conjunctive Monotonicity
Lemma, show that � is a valid computation.

Now consider the case when 5 ^ 5
6+���������258> is a deadlocked computation sequence of��
M���

 . � (� ,)\1 . In constructing computation path � of ��
 ���

 . � (� , � � 1 apart from preserving
the local computation path of
 �. , modulo stuttering, we have to make sure that all
process eventually deadlock along � . The first condition is ensured by projecting on

to the local computations of processes
 �� and
 �. , i.e., setting � � q � q � ^ 5 � q � q � and
� � l � q � ^ 5 � l � q � .

To satisfy the second condition, we have to make sure that for each process
 in��
M���

 . � (� , ��� 1 there exists a set of process in local states that deadlocks every transition
emanating from the local state of
 in the last global state of � . Note that we just need
one copy of each of these ‘deadlocking’ local states. However
 might be in local
state � in the last global state of � and, due to the irreflexive nature of the guards, the
quantification being over all other processes, we might need another process in local
state � to deadlock
 . Thus in the last global state occurring along � , to deadlock all the
processes we need at most two copies of each local state occurring therein. With this in
mind, we project onto processes indices of
 . making sure that in the resulting global
state � > we have at least one copy of each local state occurring in 5M> and furthermore,
exactly two copies of each local state that has two or more copies on � > . As before, we
let the remaining processes stutter in their respective initial states. This completes the
construction and proves the result.

(�) The proof follows by repeated application of the Conjunctive Monotonicity
Lemma.

(ii) Similar to the above proof. ��

We next present the Conjunctive Truncation Lemma which is analogous to the Dis-
junctive Truncation Lemma, in that it allows reduction in system size over multiple
coordinates simultaneously (2 coordinates for notational brevity).

Lemma 9 (Conjunctive Truncation Lemma). WI� � �"� . �
q Yf��� � ��� . � (�) * ,) � 1] ^

786#� q . � iff ��������� . � (�)
�
* ,)
�
� 1] ^ 7863� q . � , where � �. is the minimum of � . and

l] � .]\o q
,

and �
� � is the minimum of � � and
l] ���] .

Proof Idea
Use the Conjunctive Bounding Lemma and associativity of the

]�]
operator. ��

An easy corollary of the Conjunctive Truncation Lemma is the cutoff result for systems
with conjunctive guards.

Theorem 7 (Conjunctive Cutoff Result). Let V be
? @ B 5�63��CJ>D� or

? @ B 786#�DCJ>2� , where 6
is a LTL 9 X formula and � � � q Y l � . ThenWO���3���"� . �%ih� q � q � : ��������� . � (�)+*$,) � 1] ^ V iffWO�Ds � �$s . �'aj�LT � �$T . � : ��� � ��� . � (� * , �

� 1] ^ V ,
where the cutoff �DT � ��T . � is given by T > ^jl] � >]Uo q

, and for C 3^ � Y+T @ ^jl] � @] .
More generally, for systems with � � q

class of processes we have

Theorem 8 (Conjunctive Cutoff Theorem). Let V be
?R@�B 5�6#�DC > � or

?A@SB 7863��C > � , where6 is a LTL 9 X formula and � � � q Y8� � . ThenWO���3�����������"�#�$�%ih� q �&������� q � : �J���!�������������$� (�) * ,.-.-.-.,) / 1] ^ V iffWO�Dsp�U�&�������$s �$�eaw�DT&�!������� T��$� : �������������������$� (� * ,.-.-.-., � / 1] ^ V ,
where the cutoff �DTU�!���������$T��$� is given by T4> ^ ln] � >]�okq

, and for C 3^ � Y+T @ ^kln] � @] .

Although the above results yield decidability for the PMCP in the Conjunctive
guards case, the worst case complexity of the decision procedures may be exponen-
tial in the size of the given templates. We now show that if we limit path quantification
to range over infinite paths only (i.e. ignore deadlocked paths); or finite paths only; then
we can give an efficient decision procedure for this version of the PMCP. We use 5�� ���
for “for all infinite paths,” 7�� ��� for “for some infinite path,” 5���� for “for all finite paths,”
and 7	�
� for “for some finite path”.

Theorem 9 (Infinite Conjunctive Reduction Theorem). For any LTL 9 X formula 6
and � � � q Y8� � , we have

(i) WO���3�&�&���&���"�#�$�%ih� q �����&�4� q � : �����U�&�������4�'�$� (�)+*$,.-.-.-.,) / 1] ^ ? @SB 7 � ��� 63��CJ>D� , iff

�J��������������������(� *�,.-.-.-., � / 1] ^ 7 � ��� 63� q >�� ;
(ii) W �D�3�&���&���&�"�#�$�%iw� q �&������� q � : �������������������$� (�)+*�,.-.-.-.,) / 1] ^j? @SB 5 � ��� 6#�DCJ>D� , iff

�J������������������� (� * ,.-.-.-., � / 1] ^ 5 � ��� 63� q >D� ,
where �LT&������������T&��� ^ � q ��������� l�

� �>

��������� q � .
Proof
By appeal to symmetry, to obtain (i), it suffices to establish that for each ��� � ���&������� � �i � q ���&���&� q � : ��� � �&�������4� � � (�) * ,.-.-.-.,) / 1] ^ 7�� ���J63� q > � iff ��� � �&�������4� � � (� * ,.-.-.-., � / 1] ^ 7�� ���J63� q > � .
Using the duality between 5�� ��� and 7�� ��� on both sides of the latter equivalence, we can
also appeal to symmetry to obtain (ii). We establish the latter equivalence as follows.

(�) Let 5 = 5 6
@
) � , � ��I� 5I�

@
)+*$, � *�I� �&��� denote an infinite computation of�������������������$� (�)+*�,.-.-.-.,) / 1 , where CJ� @ denotes the index of the process that fires the local

transition driving the system from global states 5 @ to 5 @ � � and � @ is the guard enabling
the transition. Since 5 is infinite, it follows that there exists some process such that
the result of projecting 5 onto that process results in a stuttering of an infinite local
computation of the process. By appeal to symmetry, we can without loss of generality,
assume that for each process class � � , if a copy of � � in �J� � ����������� � � (�) * ,.-.-.-.,) / 1 has the
above property then that copy is in fact the concrete process � �� in case � 3^ � and the
concrete process � .� in case � ^ � with the local computation 5 � �N� q � being finite.

Define a (formal) sequence � = � 6
@
)
�
� , �
�
��	� � �

@
)
�
* , �
�
*�I� ���&� by projecting each global state

5 @ onto process 1 coordinate for each class � � for � 3^ � and onto process coordinates
1 and 2 for process class �'> to get a state �

@
. We let CJ� �@ =

q > if CJ� @ =
q > , CJ� �@ =

l > ifC�� @ =
l > , else set C��
�@ = � , while � �@ is the syntactic guard resulting from � @ by deleting

all conjuncts corresponding to indices not preserved in the projection. Then, by our
construction and the fact that 5 was an infinite computation, we have that � denotes
a stuttering of a genuine infinite computation of ��� � �&�������4� � � (� * ,.-.-.-., � / 1 . To see this, note
that for any C such that �

@ 3^ � @
� � , the associated (formal) transitions have their guard� �@ true, since for conjunctive guards � @ and their projections � �@ we have 5 @] ^ � @ implies

� @] ^ � �@ , and can thus fire in �J� � �&��������� � � (� * ,.-.-.-., � / 1 . For any stuttering C where �
@

= �
@
� � ,

the (formal) transition is labeled by CJ�
�@
= � .

Thus, given infinite computation path of ���e�U�&�������4�'�$� (�) * ,.-.-.-.,) / 1 , there exists a stutter-
ing of an infinite computation path of ���%����������������� (� * ,.-.-.-., � / 1 , such that the local compu-
tation path of � �> is the same in both. This path correspondence proves the result.

(�) Let �
^ � 6\� � �U�&����� be an infinite computation path of ���%�!�������������$� (� *$,.-.-.-., �N/�1 . Then,

consider the sequence of states
^ 576+��5M�U�&������� , where 5 � �N� q � ^ � � �N� q � , 5 � �F� l � ^ � � �N� l �

and WO��!I�NK � 3^ �
�N� q �$��� �N� l � Y�53��!I�NKu� ^ � � H 	 � � . Let � @ be the guard labeling the local
transition 0 � that causes global state �

@
to transit to �

@
� � . Then in state 5 @ all processes

apart from the one executing (a copy of) 0 � are in their respective initial states. Since
the guards do allow initial states of all template processes as non-blocking states in that
their being present in the global state does not falsify any guards, we have 5 @] ^ � @ .

Thus, given infinite computation path � of �J�%�!��������������� (� *�,.-.-.-., � / 1 , there exists an infi-
nite computation path 5 of ���%�U���������4�'�$� (�) *$,.-.-.-.,) / 1 , such that the local computation path of� �> is the same in both. This path correspondence easily gives us the desired result. ��

In a similar fashion, we may prove the following result.

Theorem 10 (Finite Conjunctive Reduction Theorem). For any LTL 9 X formula 6 ,
and � � � q Y8� � we have

(i) WO��� � �&���&���"� � �%ih� q �����&�4� q � : ��� � �&�������4� � � (�) * ,.-.-.-.,) / 1] ^ ?A@SB 7	���463��C > � , iff

�J������������������� (� ,.-.-.-., � 1] ^ 7 ��� 6#� q >L� ;
(ii) W �D� � ���&���&�"� � �%iw� q �&������� q � : ��� � ����������� � � (�) * ,.-.-.-.,) / 1] ^ ?R@SB 5 ����63��C > � , iff

�J������������������� (� ,.-.-.-., � 1] ^ 5 ��� 63� q >D� .
Note that the above theorem permits us to verify safety properties efficiently. Infor-
mally, this is because if there is a finite path leading to a ‘bad’ state in the system��� � ����������� � � (�) * ,.-.-.-.,) / 1 , then there exists a finite path leading to a bad state in the sys-
tem �J� � ����������� � � (� ,.-.-.-., � 1 . Thus, checking that there is no finite path leading to bad state
in ��� � ����������� � �$(�) * ,.-.-.-.,) / 1 reduces to checking it for ��� � �&�������4� � �$(� ,.-.-.-., � 1 . We can use this
to obtain an Efficient Conjunctive Decidability Theorem. Moreover, the results can be
readily extended to formulas with multiple indices as in the disjunctive guards case.

6 Applications

Here, we consider a solution to the mutual exclusion problem. The template process is
given below.

�������

�	

������� ��

���	

Fig 1.2 Template for Mutual Exclusion

Initially, every process is in local state � , the non-critical region. The guard 0 ��- 8 is
universally true irrespective of the current global state. If a process wants to enter the
critical section � , it goes into the trying region � , which it can as guard 0 ��- 8 is always
enabled. Guard �

^
� � � , instantiated for process C of � processes, takes the conjunc-

tive form
? H EG @ ��� H � � H � . When � is true, no other process is in the critical section, and

the transition from � to � can be taken. Note that all guards are conjunctive with neutral
(i.e., non-blocking) initial state N. Thus, by the Finite Conjunctive Reduction Theorem
for multi-indexed properties, the PMCP for all sizes � with the mutual exclusion prop-
erty

?A@
, H ,
@JEGMH 5 ���&;��e��� @ & � H � can be reduced to checking a

l
-process instance. Using

the Conjunctive Cutoff Theorem, the starvation-freedom property
? @ 5 �J;%��� @ � : � @ � �

can be checked by a � -process instance. In this simple example, mutual exclusion is
maintained but starvation-freedom fails.

7 Concluding Remarks

The PMCP is, in general, undecidable [AK86]. However, under certain restrictions, a
variety of positive results have been obtained. Early work includes [Lub84] which uses
an abstract graph of exponential size “downstairs” to capture the behaviour of arbitrary
sized parameterized asynchronous programs “upstairs” over Fetch-and-Add primitives;
however, while it caters for partial automation, the completeness of the method is not
established, and it is not clear that it can be made fully automatic. A semi-automated
method requiring construction of a closure process which represents computations of
an arbitrary number of processes is described in [CG87]; it is shown that, if for some
! , � � �4� � (� , 	 1 is appropriately bi-similar to ��� ��� � (� , 	 � � 1 , then it suffices to check in-
stances of size at most ! to solve the PMCP. But it is not shown that such a cutoff ! exists
and the method is not guaranteed to be complete. Kurshan and McMillan [KM89] intro-
duce the related notion of a process invariant (cf. [WL89]). Ip and Dill [ID96] describe
another approach to dealing with many processes using an abstract graph; it is sound
but not guaranteed to be complete; [PD95] proposes a similar construction for verifi-
cation of safety properties of cache coherence protocols, which is also sound but not
complete. A theme is that most these methods suffer, first, from the drawback of being
only partially automated and hence requiring human ingenuity, and, second, from being
sound but not guaranteed complete (i.e., a path “upstairs” maps to a path “downstairs”,
but paths downstairs do not necessarily lift). Other methods can be fully automated but
do not appear to have a clearly defined class of protocols on which they are guaranteed
to terminate successfully (cf. [CGJ95], [Sis97], [Ver93]).

For systems comprised of CCS processes, German and Sistla [GS92] combine the
automata-theoretic method with process closures to permit efficient solution to the
PMCP for single index properties, modulo deadlock. But efficient solution is only
yielded for processes in a single class. Even for systems of the form � � �4� � (� ,)01 a dou-
bly exponential decision procedure results, which likely limits its practical use. Emer-
son and Namjoshi [EN96] show that in a single class (or client-server) synchronous
framework the PMCP is decidable but with PSPACE-complete complexity. Moreover,
this framework is undecidable in the asynchronous case.

In some sense, the closest results might be those of Emerson and Namjoshi [EN95]
who for the token ring model, reduce reasoning, for multi-indexed temporal logic for-
mulas, for rings of arbitrary size to rings up to a small cutoff size. These results are
significant in that, like ours, correctness over all sizes holds iff correctness of (or up
to) the small cutoff size holds. But these results were formulated only for a single pro-
cess class and, for a restricted version of the token ring model, namely one where the
token cannot be used to pass values. Also, related are the results of Attie and Emer-
son [AE98]. In the context of program synthesis, rather than program verification, it is
shown how certain

l
-process solutions to synchronization problems could be inflated to� -process solutions. However, the correspondence is not an “iff”, but is established in

only one direction for conjunctive-type guards; disjunctive guards are not considered,
nor are multiple process classes.

We believe that our positive results on the PMCP are significant for several rea-
sons. Because the PMCP solves (a major aspect of) the state explosion problem and
the scalability problem in one fell swoop, many researchers have attempted to make it
more tractable, despite its undecidability in general. Of course, the PMCP seems to be
prone to undecidability in practice as well, as is evidenced by the wide range of solution
methods proposed that are only partially automated or incomplete or lack a well-defined
domain of applicability. Our methods are fully automated returning a yes/no answer,
they are sound and complete as they rely on establishing exact (up to stuttering) corre-
spondences (yes upstairs iff yes downstairs). In many cases, our methods are efficient,
making the problem genuinely tractable. An additional advantage, is that downstairs
we have a small system of cutoff size that, but for its size, looks like a system of size� . This contrasts with methods that construct an abstract graph downstairs which may
have a complex and non-obvious organization.

References

[AE98] P.C. Attie and E.A. Emerson. Synthesis of concurrent systems with many similar pro-
cesses. In ACM Transactions on Programming Languages and Systems, volume 20(1),
pages 51–115, 1998.

[AK86] K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent sys-
tems. In Information Processing Letters, volume 15, pages 307–309, 1986.

[BCG89] M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks with many
identical finite state processes. In Information and Control, volume 81(1), pages 13–31,
1989.

[CE81] E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, LNCS 131,
pages 52–71, 1981.

[CG87] E.M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal logic
model checking algorithms. In Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, pages 294–303, 1987.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using abstra-
cion and regular languages. In 6th International Conference on Concurrency Theory,
LNCS 962, pages 395–407, 1995.

[EK03] E.A. Emerson and V. Kahlon. Model checking guarded protocols. In Eighteenth Annual
IEEE Symposium on Logic in Computer Science, pages 361–370, 2003.

[EN95] E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 85–94, 1995.

[EN96] E.A. Emerson and K.S. Namjoshi. Automatic verification of parameterized syn-
chronous systems. In Computer Aided Verification, Proceedings of the 8th Interna-
tional Conference, LNCS 1102, pages 87–98, 1996.

[ES93] E.A. Emerson and A.P. Sistla. Symmetry and model checking. In Computer Aided
Verification, Proceedings of the 5th International Conference, LNCS 697, pages 463–
478, 1993.

[GS92] S.M. German and A.P. Sistla. Reasoning about systems with many processes. In J.
ACM, volume 39(3), pages 675–735, 1992.

[ID96] C. Ip and D. Dill. Verifying systems with replicated components in murphi. In 8th
International Conference on computer Aided Verification, LNCS 1102, pages 147–158,
1996.

[KM89] R.P. Kurshan and L. McMillan. A structural induction theorem for processes. In Pro-
ceedings of the Eight Annual ACM Symposium on Principles of Distributed Computing,
pages 239–247, 1989.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specifications. In 12nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 97–107, 1985.

[Lub84] B. Lubachevsky. An approach to automating the verification of compact parallel coor-
dination programs. In Acta Informatica, volume 21, 1984.

[McM99] K. McMillan. Verification of infinite state systems by compositional model checking.
In 10th Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, pages 219–234, 1999.

[PD95] F. Pong and M. Dubois. A new approach for the verification of cache coherence proto-
cols. In IEEE Transactions on Parallel and Distributed Systems, 1995.

[Sis97] A. P. Sistla. Parameterized verification of linear networks using automata as invariants.
In 9th International Conference on Computer Sided Verification, LNCS 1254, pages
412–423, 1997.

[Suz88] I. Suzuki. Proving properties of a ring of finite state systems. In Information Processing
Letters, volume 28, pages 213–314, 1988.

[Ver93] I. Vernier. Specification and verification of parameterized parallel programs. In Pro-
ceedings of the 8th International Symposium on Computer and Information Sciences,
pages 622–625, 1993.

[VW86] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifi-
cation. In IEEE Symposium on Logic in Computer Science, pages 332–344, 1986.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with net-
work invariants. In Automatic Verification Methods for Finite State Systems, LNCS
407, pages 68–80, 1989.

