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1.  INTRODUCTION

Stochastic weather generators are commonly used

to simulate time series of weather, especially for the

variables minimum and maximum temperature

(Tmin and Tmax, respectively) and amount of precip-

itation, on a daily time scale (Wilks & Wilby 1999).

Among other uses, these models constitute one tech-

nique to produce sequences of daily weather consis-

tent with seasonal climate forecasts or longer-term

climate change projections (Maraun et al. 2010,

Wilks 2010). For example, in a project on agricultural

decision-making in the Argentine Pampas, scenarios

of daily weather are needed consistent with plausible

variations in climate (Podestá et al. 2009).

Recently, generalized linear models (GLMs; Mc -

Cullagh & Nelder 1989) have been proposed as a

technique to fit stochastic weather generators to daily

data (Furrer & Katz 2007). Through the use of covari-

ates, the GLM approach makes it straightforward to

incorporate annual cycles and long-term trends, as

well as to condition the model on indices of large-

© Inter-Research 2012 · www.int-res.com*Email: ykkim@yu.ac.kr

Reducing overdispersion in stochastic weather
 generators using a generalized linear modeling

approach

Y. Kim1,*, R. W. Katz2, B. Rajagopalan3, G. P. Podestá4, E. M. Furrer5

1Department of Statistics, Yeungnam University, Daegu 712-749, South Korea
2Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, Colorado 80307, USA

3Department of Civil, Environmental and Architectural Engineering, 

and Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder, Colorado 80309, USA
4Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA

5Institute for Social and Preventive Medicine, Biostatistics Unit, University of Zürich, 8001 Zürich, Switzerland

ABSTRACT: Stochastic weather generators are commonly used to simulate time series of daily

weather, especially minimum (Tmin) and maximum (Tmax) temperature and amount of  precipitation.

Recently, generalized linear models (GLM) have been proposed as a convenient approach to fit-

ting weather generators. One limitation of weather generators is a marked tendency to underesti-

mate the observed interannual variance in monthly, seasonal, or annual total precipitation and

mean temperature, termed the ‘overdispersion’ phenomenon. In this study, aggregated statistics,

consisting of seasonal total precipitation and mean Tmin and Tmax, are introduced as additional

covariates into the GLM weather generator. With an appropriate degree of smoothing of these

aggregated statistics, this approach is shown to virtually eliminate overdispersion when applied to

2 sites, Pergamino and Pilar, in the Argentine Pampas. The addition of these covariates does not

distort the performance of the weather generator in other respects, such as annual cycles in the

probability of precipitation and in the mean Tmin and Tmax. For seasonal total precipitation, the

reduction in overdispersion is partially attributable to a corresponding reduction in the overdisper-

sion of the frequency of precipitation occurrence, as well as to  apparent temporal trends or

‘regime’ shifts. For seasonal mean Tmin and Tmax, the reduction in overdispersion is largely due

to temporal trends on an interannual time scale.

KEY WORDS:  Stochastic weather generator · Generalized linear model · Overdispersion · Locally

weighted scatterplot smoothing

Resale or republication not permitted without written consent of the publisher



Clim Res 53: 13–24, 201214

scale atmospheric or oceanic circulation such as the

El Niño− Southern Oscillation phenomenon (ENSO).

For more background on the use of GLMs in climate

applications, see Chandler (2005), Chandler &

Wheater (2002).

One important limitation of stochastic weather gen-

erators is their marked tendency to underestimate the

observed interannual variance of monthly, seasonally,

or annually aggregated variables (e.g. Buishand 1978,

Katz & Parlange 1998), especially pronounced for pre-

cipitation. This behavior of the data relative to a given

statistical model is conventionally termed the ‘overdis-

persion’ phenomenon (i.e. the model is ‘underdis-

persed’ relative to the data). The extent to which

overdispersion is attributable to an inadequate model

for high frequency (i.e. daily) variations in weather

(Katz & Parlange 1998), as opposed to a failure to take

into account low frequency (i.e. interannual) variations

in climate such as ‘regime’ shifts (Katz & Zheng 1999),

is not clear. Overdispersion implies that impact assess -

ments involving the risk of climate variations on inter-

annual time scales will be unrealistic if they rely on

scenarios of daily weather from stochastic generators.

In the present study we propose a modified GLM-

based weather generator that takes into account low

frequency variations. To reduce the overdispersion

phenomenon, we incorporate time series consisting of

seasonal total precipitation and seasonal mean Tmin

and Tmax into the GLM weather generator, as addi-

tional covariates. These seasonal time series need to

be smoothed to avoid introducing underdispersion

(i.e. too much variance instead of not enough vari-

ance). We use locally weighted scatterplot smoothing

(LOESS; Cleveland 1979, Hastie & Tibshirani 1990)

be cause of its simplicity and flexibility, although

other common smoothers such as moving averages

could have been used instead. Wilks (1989) condi-

tioned a stochastic model for daily precipitation on

monthly total precipitation, and Hansen & Mavroma-

tis (2001) adjusted the para meters of a stochastic

weather generator in an ad hoc fashion to correct for

overdispersion. The ad hoc adjustments of Hansen &

Mavromatis (2001) entail the risk that the performance

of the weather generator may deteriorate in other re-

spects. Less ad hoc approaches include conditioning

or nesting the daily generator within another genera-

tor for a longer time scale such as monthly or annual

(Dubrovsky et al. 2004, Srikanthan & Pegram 2009).

We briefly review the basic GLM approach to sto-

chastic weather generators, and introduce the exten-

sion involving the use of aggregated climate statistics

as covariates (Section 2). These extended  models are

then fitted to time series of daily weather at Perga-

mino and Pilar, 2 important agricultural locations in

the Argentine Pampas, and the model fit in terms of

overdispersion is evaluated (Section 3). The extent to

which the addition of these covariates affects the per-

formance of the GLM weather generator in other

respects, such as annual cycles in the probability of

precipitation and in mean Tmin and Tmax, is exam-

ined. Possible sources of the reduction of overdisper-

sion are identified, whether corresponding to reduc-

tions in subcomponent processes, such as the fre-

quency of wet days for precipitation, or to long-term

temporal trends or apparent ‘regime’ shifts (Sec-

tion 4). Finally, some implications of the results are

discussed in Section 5.

2.  GLM WEATHER GENERATOR

2.1.  Original model

The GLM approach to stochastic weather genera-

tors introduced by Furrer & Katz (2007) focuses on the

simplest form of generator first proposed by Rich ard -

son (1981). In the present study we only briefly de-

scribe this basic GLM weather generator, re ferring to

Furrer & Katz (2007) for details (see also www. image.

ucar.edu/~eva/GLMwgen/). For the ease of inter -

 pretation of the results concerning over dis persion,

the ENSO phenomenon is not used as a covariate, un-

like in Furrer & Katz (2007).

The precipitation occurrence and intensity compo-

nents of the GLM stochastic weather generator of

Furrer & Katz (2007) are essentially the same as those

in Stern & Coe (1984), who used GLM to model daily

precipitation amount as a chain-dependent process

with annual cycles in the parameters.

2.1.1.  Precipitation occurrence

Let Jt denote the precipitation occurrence state on

day t of a given year (i.e. Jt = 1 if precipitation occurs,

Jt = 0 otherwise), and let pt = Pr{Jt = 1},t = 1,2,…,

denote the probability of a wet day. Equivalent to a

first-order, 2-state Markov chain, the logistic trans-

formation of the probability of precipitation is mod-

eled conditional on the occurrence state on the previ-

ous day Jt–1:

ln(pt�1 − pt) = μ + αJt−1 + β1Ct + β2St + γ1CtJt−1 +

γ2StJt−1 (1)

where Ct = cos(2πt�365) and St = sin(2πt�365). Be -

sides the intercept term (or mean) μ, the coefficient α
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permits the conditional probability of precipitation to

shift depending on whether or not precipitation

occurred on the previous day (strictly speaking, α is

not a correlation coefficient because of the logistic

transformation on the left-hand side of Eq. 1), β1 and

β2 determine the phase and amplitude of the sine

wave for the annual cycle in these con ditional proba-

bilities, and γ1 and γ2 allow this an nual cycle to be

separate for the 2 conditional probabilities.

2.1.2.  Precipitation intensity

The daily precipitation intensity (i.e. precipitation

amount conditional on Jt = 1) is modeled as a gamma

distribution (e.g. Stern & Coe 1984), with an annual

cycle in the form of a sine wave for mean intensity,

denoted by μt:

ln(μt) = μ + βμ,1Ct + βμ,2St (2)

Besides the intercept term μ, the coefficients βμ,1 and

βμ,2 determine the phase and amplitude of the sine

wave for the annual cycle in the mean intensity. Eq.

(2) is equivalent to allowing the scale parameter, but

not the shape parameter, of the gamma distribution

to have an annual cycle. This constraint on the shape

parameter ap pears reasonable at both Pergamino (as

already verified in Furrer & Katz 2007) and Pilar, but

could be relaxed if necessary.

2.1.3.  Tmin and Tmax

Let (Xt, Yt) denote the Tmin and Tmax (respec-

tively) on day t of a given year, jointly modeled as a

bivariate first-order autoregressive AR(1) process (as

in Richardson 1981). In the GLM approach of Furrer

& Katz (2007), this bivariate process is modeled indi-

rectly through 2 univariate linear models:

Xt = μX,0 + μX,1Jt + ϕXXt−1 + ψXYt−1 + βX,1Ct + 

βX,2St + εX,t (3)

Yt = μY,0 + μY,1Jt + ϕYYt−1 + ψYXt + βY,1Ct + 

βY,2St + εY,t (4)

Here the 2 error terms, εX,t and εY,t, besides being

normally distributed with mean = 0, have no autocor-

relation or cross correlation, unlike the conventional

representation of a bivariate AR(1) process in which

the error terms need to be cross correlated (i.e. a gen-

eral bivariate white noise process). The term involv-

ing Jt (i.e. coefficients μX,1 in Eq. 3 and μY,1 in Eq. 4)

allows for a shift in the conditional mean Tmin and

Tmax depending on whether or not precipitation

occurs (as in Richardson 1981), and the terms involv-

ing Ct and St (i.e. coefficients βX,1 and βX,2 in Eq. 3;

βY,1 and βY,2 in Eq. 4) model the annual cycle in mean

Tmin and Tmax as sine waves. Autocorrelation is

included through a lag term consisting of the same

temperature variable on the previous day (i.e. coeffi-

cients ϕX in Eq. 3 and ϕY in Eq. 4). Cross correlation is

introduced into the Tmin Xt through a term involving

the Tmax on the previous day, Yt−1 (i.e. coefficient ψX

in Eq. 3), and into the Tmax Yt through a term involv-

ing the Tmin on the same day, Xt (i.e. coefficient ψY in

Eq. 4). Note that it would be straightforward to

include additional Fourier series terms in Eqs. (3 & 4),

as well as in Eqs. (1 & 2), if needed.

2.2.  Model with aggregated covariates

The basis of our statistical approach is to relate

long-term (i.e. interannual) temporal scale predictor

variables to short-term (i.e. daily) temporal scale pre-

dictands. For example, indices of large-scale atmos-

pheric or oceanic circulation, such as the ENSO, can

be used as covariates in the daily precipitation mo -

del. Instead, we incorporate time series of seasonal

climate statistics, namely total precipitation and

mean Tmin and Tmax in the GLM weather generator

as covariates in the manner of disaggregation. Re -

taining ENSO as a covariate would make the inter-

pretation of the model more difficult. However, our

approach indirectly takes into account the effects of

ENSO on daily weather statistics, because of the

well-established ENSO signal in these aggregated

climate statistics in the Argentine Pampas (Grondona

et al. 2000, Letson et al. 2005).

As will be seen in Section 3, using the observed

(i.e. un smoothed) seasonal climate statistics as co -

variates may introduce excessive noise into the daily

weather statistics and result in ‘underdispersion’ for

the ag gregated climate statistics. Thus, we consider

smoothed seasonal climate statistics as covariates in

the GLM weather generator, and adopt LOESS as a

smoothing tool (Cleveland 1979). LOESS combines

much of the simplicity of linear least squares regres-

sion with the flexibility of nonlinear regression and

resistance to outliers, and is descriptively known as

locally weighted polynomial regression. It is a com-

putationally intensive method, requires fairly large,

densely sampled data sets in order to produce good

models, and does not produce a regression function

explicitly represented by a mathematical formula.

Never theless, it is a very simple and flexible proce-
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dure (e.g. LOESS does not require the specification

of a function to fit a model to all of the data, except for

a smoothing parameter called the ‘span’ and another

parameter specifying the degree of the local polyno-

mial; e.g. the function ‘loess’ in the open source sta-

tistical programming language R). Here we use the

value 2 for the degree of the local polynomial, and

the value of the span parameter is selected to mini-

mize overdispersion (i.e. through increasing the vari-

ance produced by the statistical model). A moving

average (or running mean), more commonly used as

a smoother in climate research, would be less flexible

than LOESS.

Our approach involves introducing LOESS

smoothed seasonally aggregated climate statistics

into the basic GLM weather generator specified by

Eqs. (1) to (4) as follows:

ln(pt�1 − pt) = μ + αJt−1 + β1Ct + β2St + γ1CtJt−1 +

γ2StJt−1 + βsItPt
s + βw(1− It)Pt

w (5)

ln(μt) = μ + βμ,1Ct + βμ,2St + βμ,sItPt
s + βμ, w(1− It)Pt

w (6)

Xt = μX,0 + μX,1Jt + ϕXXt−1 + ψXYt−1 + βX,1Ct + βX,2St +

βX,sItNt
s + βX,w(1− It)Nt

w + εX,t (7)

Yt = μY,0 + μY,1Jt + ϕYYt−1 + ψYXt−1 + βY,1Ct + βY,2St +

βY,sItMt
s + βY,w(1− It)Mt

w + εY,t (8)

where It is a seasonal indicator (i.e. It = 1 in austral

summer [October−March] and It = 0 in austral winter

[April−September]), Pt
s and Pt

w are LOESS smoothed

summer and winter seasonal total precipitation, and

Nt
s and Nt

w (Mt
s and Mt

w) are LOESS smoothed sum-

mer and winter seasonal mean Tmin (Tmax). Note

that the summer and winter time-series are smoothed

separately, and that the smoothed climate statistics

do not vary depending on the day t, but remain con-

stant over a given season (the use of the subscript ‘t’

is solely for convenience). The seasonal indicators in

Eqs. (5) to (8) allow for different relationships with

the aggregated covariates depending on the season.

The value of the LOESS smoothing parameter mini-

mizing overdispersion is determined through trial

and error, ranging from the case of no smoothing (i.e.

span = 0) to as smooth as possible (i.e. span = 1).

3.  FIT OF GLM WEATHER GENERATOR TO

DATA

3.1.  Study area and data

As an application of the basic GLM approach,

time series of daily precipitation (mm) and daily

Tmin and Tmax (°C) at 2 locations in the Argentine

Pampas, Pergamino and Pilar (Fig. 1a), are consid-

ered. Both locations have a marked wet season in

the Southern Hemisphere summer, with Pilar being

somewhat drier (Fig. 1b,c). The Pergamino data

were already modeled by Furrer & Katz (2007), the

only difference is that the present study omits an

index of the ENSO phenomenon as a covariate. The

annual precipitation cycle in this region has a clear

maximum in late spring and summer and a marked

winter minimum. Data are available for the time

period 1932–2003, but several years were excluded

from the analysis because they contain too many

missing values (Pergamino: 1954–1956 and 1964–

1966; Pilar: 1956–1960 and 1968), such that a total

of 66 yr of data were analyzed at each location.

There are further missing values in the rest of the

record, more so for temperature than for precipita-

tion (especially at Pilar), but they are relatively

scarce and do not prevent the GLM framework from

being used. Data corresponding to February 29 in

leap years were removed for simplicity. Note that

Furrer & Katz (2007) applied a more stringent crite-

rion for excluding years with missing data, analyz-

ing only 63 yr for Pergamino, in part to facilitate the

use of ENSO as a covariate.

3.2.  Fit of original model

Table 1 lists the parameter esti -

mates and SEs for the original GLM

weather generator (i.e. without the

ag gregated climate statistics as co -

variates). Using the open source soft-

ware R (www.r-project.org), these re -

sults were obtained through the

ap plication of the ‘glm’ function to fit

Eqs. (1) & (2) and ‘lm,’ a special case of

16

Fig. 1. (a) Pampas region of Argentina showing study locations Pergamino and

Pilar. (b,c) Monthly mean total precipitation for (b) Pilar and (c) Pergamino
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glm, to fit Eqs. (3) & (4). For Perga mino, the estimated

coefficients for the remaining variables are virtually

the same as those obtained by Furrer & Katz (2007),

despite the omission of ENSO and adjusting for the

difference in the cosine and sine term definitions. To

select the best fitting model, we use Akaike’s infor-

mation criterion (AIC) and Bayesian information cri-

terion (BIC), with both criteria penalizing the maxi-

mized log likelihood function for the number of

parameters estimated (e.g. Venables & Ripley 2002).

The model with minimum AIC (or BIC) is selected as

best fitting. Consistent with the results obtained by

Furrer & Katz (2007), both the AIC and BIC indicate

that each covariate category is statistically significant

for Pergamino. Similarly, the AIC and BIC both sup-

port the same terms in the model for Pilar as for

Pergamino (detailed results concerning model selec-

tion not included). 

For Pergamino, Furrer & Katz (2007) already deter-

mined that this form of GLM weather generator un-

derestimates the observed SD of annual and summer

total precipitation (by roughly 15%), annual, summer,

and winter mean Tmin (by roughly 20 to 30%), and to

a lesser extent annual, summer, and winter mean

Tmax, notwithstanding the inclusion by Furrer & Katz

(2007) of an ENSO index as a covariate. In Section

3.3, we attempt to reduce this overdispersion.

3.3.  Fit of model with aggregated covariates

Table 2 lists the estimated coefficients and associ-

ated SEs for all components (i.e. including the

smoothed aggregated statistics as covariates) of the

GLM weather generator fitted to Pergamino and

Pilar. Comparing AIC and BIC values in these tables

with the corresponding values in Table 1, the AIC

always selects, and the BIC nearly always selects, the

model with the aggregated covariates as being a bet-

ter fit. The estimated coefficients of the remaining

covariates do not change very much (especially those

for the categories labeled ‘autocorrelation’ and

‘depen dence’ in the tables) when the aggregated

covariates are included.

Fig. 2 provides 2 examples of how the span para-

meter in LOESS can be chosen to minimize overdis-

persion. Time series of daily weather were simulated

using the same 66 yr for which observations were

Covariate Precip. occurrence Precip. intensity (mm) Tmin (°C)      Tmax (°C)
category                 Term          Coef.                Term            Coef.                Term            Coef.                Term            Coef.

Pergamino                                                                                                                                                                              
Mean                         μ       −1.56 ± 0.019             μ          2.43 ± 0.019              μ         −2.76 ± 0.109             μ         9.16 ± 0.112

Autocorrelation       Jt−1     1.10 ± 0.034             −                   −                     Xt−1       0.42 ± 0.005           Yt−1       0.52 ± 0.006

Dependence              −                 −                       −                   −                     Yt−1       0.36 ± 0.005            Xt        0.22 ± 0.006
                                   −                 −                       −                   −                       Jt        1.89 ± 0.048             Jt        −1.83 ± 0.050

Seasonality               Ct      0.45 ± 0.027            Ct         0.28 ± 0.028             Ct        0.72 ± 0.044            Ct        2.21 ± 0.044
                                  St      0.03 ± 0.027            St         0.14 ± 0.026             St        0.42 ± 0.030            St        0.44 ± 0.030

Interaction             Ct Jt−1  −0.57 ± 0.048             −                   −                       −                   −                       −                   −
                               St Jt−1  −0.01 ± 0.046             −                   −                       −                   −                       −                   −

AIC              25842            38451          123202         123794
BIC               25891            38473          123249         123840

Pilar                                                                                                                                                                                         
Mean                         μ       −1.76 ± 0.021             μ          2.07 ± 0.022              μ         −1.23 ± 0.094             μ         9.11 ± 0.117

Autocorrelation       Jt−1     1.44 ± 0.037             −                   −                     Xt−1       0.50 ± 0.005           Yt−1       0.57 ± 0.006

Dependence              −                 −                       −                   −                     Yt−1       0.27 ± 0.004            Xt         0.17 ± 0.007
                                   −                 −                       −                   −                       Jt        1.27 ± 0.044             Jt        −2.41 ± 0.057

Seasonality               Ct     0.92 ± 0.030            Ct         0.54 ± 0.031             Ct        1.26 ± 0.040            Ct        2.06 ± 0.049
                                  St      0.13 ± 0.028            St         0.04 ± 0.028             St        0.62 ± 0.026            St        0.15 ± 0.033

Interaction             Ct Jt−1  −0.87 ± 0.052             −                   −                       −                   −                       −                   −
                               St Jt−1  −0.05 ± 0.048             −                   −                       −                   −                       −                   −

AIC              24398            35125          119654         131020
BIC               24447            35149          119703         131069

Table 1. Estimated coefficients (Coef.; estimate ± SE) for all components of the original GLM weather generator (i.e. without ag-

gregated climate statistics as covariates) at Pergamino and Pilar, Argentine Pampas. Precip.: precipitation, Tmin: daily mini-

mum temperature, Tmax: daily maximum temperature, AIC: Akaike’s information criterion, BIC: Bayesian information criterion



Clim Res 53: 13–24, 201218

Fig. 2. Boxplots (giving the minimum, lower quartile, median, upper quartile, and maximum; box indicates middle half of data,

dashed line the range) of simulated SD of summer total precipitation (mm) as a function of the LOESS span smoothing parame-

ter for the GLM weather generator with aggregated climate statistics as covariates at Pergamino and Pilar. Horizontal solid line:

corresponding observed value for the data series (below the line indicates overdispersion, above the line underdispersion)

Covariate Precip. occurrence Precip. intensity (mm) Tmin (°C)      Tmax (°C)

category                 Term          Coef.                Term            Coef.                Term            Coef.                Term            Coef.

Pergamino                                                                                                                                                                              

Mean                         μ       −1.72 ± 0.139             μ          1.61 ± 0.166              μ         −7.34 ± 0.307             μ         0.27 ± 1.664

Summer                   ItPt
s     0.08 ± 0.038           ItPt

s        0.24 ± 0.045           ItNt
s      0.35 ± 0.021          ItMt

s      0.32 ± 0.061

Winter                  (1−It)Pt
w 0.02 ± 0.083       (1−It)Pt

w    0.42 ± 0.099        (1−It)Nt
w  0.67 ± 0.045       (1−It)Nt

w  0.50 ± 0.090

Autocorrelation       Jt−1     1.10 ± 0.034             −                   −                     Xt−1       0.41 ± 0.005           Yt−1       0.51 ± 0.006

Dependence              −                 −                       −                   −                     Yt−1       0.37 ± 0.005            Xt         0.23 ± 0.006

                                   −                 −                       −                   −                       Jt         1.88 ± 0.047             Jt         –1.83 ± 0.050

Seasonality               Ct      0.29 ± 0.051            Ct         0.20 ± 0.058             Ct        0.36 ± 0.071            Ct        2.50 ± 0.073

                                  St      0.03 ± 0.027            St         0.14 ± 0.026             St        0.40 ± 0.029            St        0.44 ± 0.030

Interaction             Ct Jt−1   −0.58 ± 0.048             −                   −                       −                   −                       −                   −

                               St Jt−1   −0.01 ± 0.046             −                   −                       −                   −                       −                   −

AIC             25830*          38415*        122922*       123743*

BIC              25895*          38456*        122987*       123809*

Pilar                                                                                                                                                                                         

Mean                         μ       −2.39 ± 0.140             μ          1.65 ± 0.176              μ         −5.60 ± 0.230             μ         −2.11 ± 1.062

Summer                   ItPt
s    0.21 ± 0.042           ItPt

s        0.12 ± 0.053           ItNt
s      0.30 ± 0.015          ItMt

s      0.40 ± 0.038

Winter                  (1−It)Pt
w 0.65 ± 0.180       (1−It)Pt

w    0.53 ± 0.224        (1−It)Nt
w  0.61 ± 0.030      (1−It)Mt

w  0.57 ± 0.053

Autocorrelation       Jt−1     1.43 ± 0.037             −                   −                     Xt−1       0.48 ± 0.005           Yt−1       0.56 ± 0.006

Dependence              −                 −                       −                   −                     Yt−1       0.27 ± 0.004            Xt         0.18 ± 0.007

                                   −                 −                       −                   −                       Jt         1.28 ± 0.044             Jt         −2.40 ± 0.056

Seasonality               Ct     0.79 ± 0.053            Ct         0.55 ± 0.063             Ct        1.12 ± 0.063            Ct        2.31 ± 0.080

                                  St      0.12 ± 0.028            St         0.04 ± 0.028             St        0.63 ± 0.026            St        0.13 ± 0.033

Interaction             Ct Jt−1   −0.87 ± 0.052             −                   −                       −                   −                       −                   −

                               St Jt−1   −0.05 ± 0.048             −                   −                       −                   −                       −                   −

AIC             24373*          35121*        119229*       130896*

BIC              24438*          35162*        119294*       130962*

Table 2. Estimated coefficients (Coef; estimate ± SE) for all components of the GLM weather generator with aggregated climate

statistics as covariates at Pergamino and Pilar, Argentine Pampas. Note: in precipitation models for convenience to make the re-

sults easy to present in a compact format, daily mean rate is used as a covariate instead of precipitation total. *Model preferred 

by AIC or BIC over corresponding model in Table 1. For definitions, see Table 1
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available and aggregated statistics calculated, with

the simulation exercise repeated 500 times. Shown

are boxplots of the SD of the aggregated statistics,

along with the corresponding values for the 66 yr

data series and including cases of unsmoothed ag -

gregated covariates and temperature models with

linear temporal trend covariates but no aggregated

covariates. For summer total precipitation at both

Perga mino and Pilar, the overdispersion present in

the original model (i.e. without any aggregated sta-

tistics as covariates) gradually disappears, eventually

be coming underdispersed as the case of no smooth-

ing (i.e. span = 0) is approached. For Pergamino, a

span parameter of 0.4 virtually eliminates any over -

dispersion; for Pilar, a span of 0.6 is necessary. If a

finer grid of values of the span parameter were used,

then the overdispersion could be completely elimi-

nated. Nevertheless, it is clear from Fig. 2 that the

degree of overdispersion is not very sensitive to the

choice of value of the span parameter.

Using the same simulation approach as in Fig. 2,

Fig. 3 illustrates how our proposed model (i.e. with

aggregated statistics as covariates), with a suitable

choice of smoothing parameter, performs in repro-

ducing variances of summer and winter total precipi-

tation and mean Tmin and Tmax at both Pergamino
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Fig. 3. Boxplots (see Fig. 2 for definitions) of simulated SD of summer (S) and winter (W) total precipitation (mm, top), mean

maximum temperature (Tmax) (°C, middle) and mean minimum temperature (Tmin) (°C, bottom), for Pergamino (left) and Pi-

lar (right), based on the GLM weather generator without aggregated covariates (I), with smoothed aggregated covariates (II;

Pergamino span — mean precipitation [S] 0.4, [W] 0.4; mean Tmax [S] 0.3, [W] 1.0; mean Tmin [S] 0.2, [W] 0.7. Pilar span —

mean precipitation [S] 0.6, [W] 0.4; mean Tmax [S] 0.5, [W] 0.2; mean Tmin [S] 0.0, [W] 0.9), and unsmoothed aggregated

 covariates (III). Horizontal solid line: corresponding observed value for the data series. For boxplot definitions, see Fig. 2
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and Pilar. The proposed model virtually eliminates

the overdispersion phenomenon in nearly all cases,

with the value of the span parameter ranging from

0.4 to 0.6 for seasonal total precipitation, from 0 to 0.9

for Tmin, and from 0.2 to 1 for Tmax. The wider

range in span parameter for temperature may be

related to the presence of long-term trends, consid-

ered in Section 4. Although the winter mean Tmax at

Pergamino does not appear to be overdispersed, this

might reflect sampling error in estimating the sea-

sonal SD. The GLM weather generator with un -

smoothed aggregated covariates tends to overesti-

mate inter-annual variances (i.e. underdispersion),

and the introduction of a linear temporal trend (i.e.

without the smoothed aggregated temperatures as

covariates) in the temperature models is not enough

to correct overdispersion. Note that precipitation in

the winter season is simply not as variable as in the

summer season, at least in absolute terms.

4.  EVALUATION OF GLM WEATHER

 GENERATOR

4.1.  Daily statistics

We examine how well the GLM weather generator,

with and without the aggregated climate statistics as

covariates, reproduces some daily statistics (a subset

of those examined in Furrer & Katz 2007), focusing on

the results for Pilar. The Markov chain model for daily

precipitation occurrence can be fully characterized by

the 2 transition probabilities p11(t) = Pr{Jt = 1 | Jt−1 = 1},

the conditional probability of a wet day given the pre-

vious day was wet, and p01(t) = Pr{Jt = 1 | Jt−1 = 0}, the

conditional probability of a wet day given the

previous day was dry. From these transition prob -

abilities, it is straightforward to derive the uncondi-

tional probability of a wet day, π(t) = Pr{Jt = 1}, and the

first-order autocorrelation coefficient (or ‘persistence’

parameter), ρ(t) = Corr(Jt−1, Jt), of the occurrence

 process (see Furrer & Katz 2007).

As a function of the time of year, Figs. 4 to 7 show

p11(t) and p01(t), π(t) and ρ(t), the mean and SD of daily

precipitation intensity, and the mean daily Tmin and

Tmax, respectively, at Pilar. In each case, the curves

for the GLM weather generator, both with and with-

out the aggregated climate statistics as covariates,

are included along with the observed daily statistics.

Like the mean daily Tmin and Tmax, the transition

probability p01(t), the unconditional probability π(t),

and the mean and SD of intensity all have quite

noticeable maxima in mid-summer. Only the persis-

tence parameter exhibits a maximum in mid-winter.

The GLM weather generator captures all of these

seasonal patterns quite well, with virtually no differ-

ence depending on whether or not the aggregated

climate statistics are included as covariates. The

results obtained for Pergamino are quite similar (not

shown, but included in Furrer & Katz 2007).

4.2.  Sources of reduction in overdispersion

Long-term trends or more abrupt shifts in ‘regimes’

are one possible source of overdispersion. For precip-

itation, it can also be informative to decompose the

variance of seasonal total precipitation into 2 compo-

nents, one involving the variance of the number of

wet days, the other the variance of daily precipitation

intensity (Katz & Parlange 1998).

Using the same approach as in Section 3, Fig. 8

shows boxplots of the simulated SDs of the number

of wet days in summer and winter at Pergamino and

Fig. 4. Modeled transition probabilities p11(t) (left) and p01(t) (right) with (solid line) and without (dashed line) smoothed aggre-

gated covariates, at Pilar. Dots: empirical transition probabilities, i.e. frequencies of observed transitions calculated separately 

on each day of the year
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Pilar. The overdispersion in this statistic in summer

at Pilar is essentially removed with the modified

GLM weather generator. On the other hand,

because the seasonal total precipitation covariates

in the precipitation occurrence component of the

GLM weather generator are only barely statistically

significant in summer at Pergamino (see SEs in

Table 2), the over dispersion cannot be reduced

much at all in this case. One way to ensure the elim-

ination of overdispersion in the number of wet days

would be to modify how the transition probabilities

are modeled, replacing the seasonal total precipita-
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Fig. 7. Modeled mean daily maximum (Tmax; left) and minimum (Tmin; right) temperatures with (solid line) and without (dashed

line) smoothed aggregated covariates, at Pilar. Dots: empirical mean temperatures calculated separately for each day of the year

Fig. 6. Modeled (left) mean and SD (right) of precipitation intensity with (solid line) and without (dashed line) smoothed 

aggregated covariates, at Pilar. Dots: empirical means and SD calculated separately for each day of the year

Fig. 5. Modeled unconditional probability of rain π(t) (left) and first-order autocorrelation coefficient ρ(t) (right) with (solid line)

and without (dashed line) smoothed aggregated covariates, at Pilar. Dots: empirical probabilities, i.e. frequencies of rain on

each day of the year (left) and empirical autocorrelation coefficients (Pearson’s correlation coefficient between occurrence on 

consecutive days on each day of the year) (right)
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Fig. 9. Optimal smoothed aggregated covariates of total precipitation (top), mean maximum (Tmax; middle) and minimum

(Tmin; bottom) temperatures during summer (left) and winter (right) for Pergamino. Dashed lines: corresponding observed 

values of the data series. Note that for winter Tmax, no smoothed covariate is used

Fig. 8. Boxplots of simulated SD of summer and winter number of wet days for Pergamino and Pilar based on the GLM

weather generator without aggregated covariates (I) and with smoothed aggregated covariates (II). Horizontal solid line: 

corresponding observed value for the data series. For boxplot definitions, see Fig. 2
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tion covariates in Eq. (5) with the corresponding

number of wet days.

Figs. 9 & 10 show the time series of the seasonal

aggregated climate statistics, both raw and optimally

smoothed, at Pergamino and Pilar. Marked trends

of increasing Tmin are evident at Perga mino in sum-

mer and at Pilar in both summer and winter; such

patterns were also identified by Mes sina et al. (1999),

Magrin et al. (2005). Weaker trends of decreasing

Tmax may be present, especially at Pilar in summer.

The fact that the use of linear trends, instead of

aggregated temperature statistics, as covariates did

not eliminate overdispersion (as mentioned in Sec-

tion 3.3) suggests that these trends may be somewhat

nonlinear. For seasonal precipitation, while no

marked trends are evident, there are at least hints of

a shift in recent decades to a wetter regime in sum-

mer at both Pergamino and Pilar (Podestá et al. 2009).

Any such shifts would be automatically incorporated

into the model through the seasonally aggregated

covariates.

5.  DISCUSSION

It is shown how the GLM approach to stochastic

weather generators can been extended to effectively

eliminate the overdispersion phenomenon in season-

ally aggregated climate statistics. Consequently, sce-

narios of daily weather can be produced with more

23

Fig. 10. Optimal smoothed aggregated covariates of the weather time series at Pilar. Other details as in Fig. 9. Note that for 

summer Tmin the observed and smoothed values coincide
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realistic low frequency statistical properties, without

any apparent deterioration in high frequency charac-

teristics. This extension involves the incorporation of

smoothed (using LOESS) seasonally aggregated cli-

mate statistics into the GLM weather generator as

covariates. The only non-automatic feature of this

extension is the need to determine the degree of

smoothing that minimizes overdispersion, but the

results are not very sensitive to the exact choice of

span parameter in LOESS. With this improvement,

climate impact assessments using scenarios of daily

weather produced by such generators should be

more realistic. Concerning climate change simula-

tions, the proposed method would not necessarily be

straightforward to apply unless the seasonal climate

statistics were available (e.g. as obtained from simu-

lations by a numerical model of the climate system).

An alternative approach to removing overdisper-

sion would involve replacing an observed covariate

with a hidden variable to reflect unobserved shifts in

climate regimes on inter-annual or longer (e.g. de ca -

dal) time scales. Using a hidden Markov model

(HMM, Zucchini & MacDonald 2009) to represent

this regime state would allow for long-term persis-

tence, as well as having the advantage of being a

fully probabilistic approach (i.e. explicitly modeling

the uncertainty about which climate regime is

presently occurring). Although HMMs with a hidden

daily state variable have been incorporated into time

series modeling of daily precipitation (e.g. Hughes et

al. 1999), stochastic weather generators with a hidden

seasonal state variable have not yet been developed.
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