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Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy

(HE). However, the process by which peripheral inflammation results in cognitive

impairment remains unclear. In animal models, neuroinflammation and altered

neurotransmission mediate cognitive impairment. Taking into account these data, we

hypothesized that in rats with HE: (1) peripheral inflammation is a main contributor to

neuroinflammation; (2) neuroinflammation in hippocampus impairs spatial learning by

altering AMPA and/or NMDA receptors membrane expression; (3) reducing peripheral

inflammation with infliximab (anti-TNF-a) would improve spatial learning; (4) this would

be associated with reduced neuroinflammation and normalization of the membrane

expression of glutamate receptors. The aims of this work were to assess these

hypotheses. We analyzed in rats with portacaval shunt (PCS) and control rats, treated or

not with infliximab: (a) peripheral inflammation by measuring prostaglandin E2, IL10, IL-

17, and IL-6; (b) neuroinflammation in hippocampus by analyzing microglial activation

and the content of TNF-a and IL-1b; (c) AMPA and NMDA receptors membrane

expression in hippocampus; and (d) spatial learning in the Radial and Morris water

mazes. We assessed the effects of treatment with infliximab on peripheral inflammation,

on neuroinflammation and AMPA and NMDA receptors membrane expression in

hippocampus and on spatial learning and memory. PCS rats show increased serum

prostaglandin E2, IL-17, and IL-6 and reduced IL-10 levels, indicating increased

peripheral inflammation. PCS rats also show microglial activation and increased nuclear

NF-kB and expression of TNF-a and IL-1b in hippocampus. This was associated with

altered AMPA and NMDA receptors membrane expression in hippocampus and impaired

spatial learning andmemory in the radial andMorris water maze. Treatment with infliximab

reduces peripheral inflammation in PCS rats, normalizing prostaglandin E2, IL-17, IL-6,
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and IL-10 levels in serum. Infliximab also prevents neuroinflammation, reduces microglial

activation, translocates NF-kB into nucleoli and normalizes TNF-a and IL-1b content in

hippocampus. This was associated with normalization of AMPA receptors membrane

expression in hippocampus and of spatial learning and memory. The results suggest that

peripheral inflammation contributes to spatial learning impairment in PCS rats. Treatment

with anti-TNF-a could be a new therapeutic approach to improve cognitive function in

patients with HE.

Keywords: hepatic encephalopathy, neuroinflammation, neurotransmission, cognitive impairment, TNF-a

INTRODUCTION

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome
present in patients with liver disease with symptoms ranging
from mild cognitive impairment to coma. Around 40% of
patients with liver cirrhosis show minimal HE (MHE), with
mild cognitive impairment, psychomotor slowing, and attention
deficits (Weissenborn et al., 2005; Felipo et al., 2012a) which are
not evident but can be unveiled using psychometric tests. MHE
affects several million people around the world and impairs their
quality of life and the ability to perform daily tasks (Leevy and
Phillips, 2007; Bajaj, 2008; Felipo, 2013).

Hyperammonemia and inflammation act synergistically to
induce the neurological alterations in MHE and in HE.
In cirrhotic patients, hyperammonemia impairs performance
in psychometric tests during inflammation but not after its
resolution (Shawcross et al., 2004). The serum levels of the pro-
inflammatory cytokines IL-6 and IL-18 are higher in cirrhotic
patients with MHE than in those without MHE and show
a good correlation with the grade of cognitive impairment
(Montoliu et al., 2009). The joint presence of certain levels of
inflammation and hyperammonemia is enough to induce mild
cognitive impairment, even in the absence of liver failure, as
shown in a report analyzing neurological impairment in patients
with different hepatic or dermatological diseases associated with
different grades of inflammation and hyperammonemia (Felipo
et al., 2012b).

The mechanisms leading to cognitive impairment in HE seem
to involve induction of neuroinflammation which would alter
neurotransmission resulting in reduced cognitive function.

Rats with porta-cava shunts (PCS), a main model of
HE recommended by the International Society for Hepatic
Encephalopathy (Butterworth et al., 2009), show impaired
cognitive function and neuroinflammation (Cauli et al., 2007;
Agusti et al., 2011). Reducing neuroinflammation with ibuprofen
or with inhibitors of MAP kinase p38 improves cognitive
function in rats with HE due to PCS (Cauli et al., 2007; Agusti
et al., 2011).

An in vivo PET study in cirrhotic patients with HE show
that they have increased binding in brain of [11C](R)-PK11195,
a marker of neuroinflammation, correlating with the grade of
cognitive impairment (Cagnin et al., 2006). This suggests that
patients with HE also show neuroinflammation.

Hyperammonemia per se induces neuroinflammation
(Rodrigo et al., 2010), but peripheral inflammation may also

induce neuroinflammation (Biesmans et al., 2013; Murta et al.,
2015). A main aim of this work was to assess whether peripheral
inflammation contributes to neuroinflammation and cognitive
impairment in rats with HE.

Neuroinflammation would impair cognitive function by
altering neurotransmission. Spatial learning and memory are
modulated by AMPA and NMDA receptors in hippocampus
(Sanderson et al., 2008; Keifer and Zheng, 2010; Wiltgen et al.,
2010). Membrane expression of AMPA and NMDA receptors in
hippocampus may be altered by neuroinflammation. Exposure
to IL-1b reduces membrane expression of GluR1 subunit of
AMPA receptors in hippocampal neurons and this seems to be
mediated by NMDA receptors (Lai et al., 2006). TNF-a also
alters AMPA receptors membrane expression in hippocampus
(Ogoshi et al., 2005). These effects of IL-1b and TNF-a would
result in altered neurotransmission which would lead to cognitive
impairment.

An association between peripheral inflammation and mild

cognitive impairment is also present in other diseases leading to

chronic inflammation as diabetes, rheumatoid arthritis, obesity

or chronic kidney disease (Umemura et al., 2011; Shin et al.,

2013; da Matta et al., 2014; Díaz-Gerevini et al., 2014; Nguyen
et al., 2014). To reduce peripheral inflammation patients with

some of these diseases are being treated with compounds directed

to inhibit TNF-a, which plays a pivotal role in the initiation

and amplification of the inflammatory cascade (Cheng et al.,
2014). In patients with sarcoidosis or rheumatoid arthritis,

anti-TNF-a improves cognitive function (Elfferich et al., 2010;
Raftery et al., 2012). Anti-TNF-a has been also suggested as a
potential treatment against cognitive impairment in Alzheimers
disease (Cheng et al., 2014). One anti-TNF-a formulations used
in clinical practice is infliximab, a 165 kDa chimeric human-
murine monoclonal antibody which binds to both soluble and
transmembrane-bound TNF-a forming stable non-dissociating
immune complexes. Due to its large size infliximab does not
cross the blood-brain-barrier when administered systemically
thus specifically targeting peripheral TNF-a (Cheng et al., 2014).

Taking into account the above studies, we hypothesized that in
rats with HE:

(1) peripheral inflammation would be a main contributor to
neuroinflammation;

(2) neuroinflammation in hippocampus would impair spatial
learning by altering AMPA and/or NMDA receptors
membrane expression;
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FIGURE 1 | Scheme showing the experimental design. Blood was taken

at 1, 3 and 7 weeks for ammonia and cytokine determinations (black arrows)

and at 1, 2 and 7 weeks to determine PGE2 (blue arrow).

(3) reducing peripheral inflammation with infliximab would
improve spatial learning;

(4) this would be associated with reduced neuroinflammation in
hippocampus and normalization of AMPA and/or NMDA
receptors membrane expression.

This work aimed to assess these hypotheses. We measured in
PCS rats: peripheral inflammation (prostaglandin E2, IL10,
IL-17, and IL-6 levels), neuroinflammation in hippocampus
(microglial activation and TNF-a and IL-1b content),
membrane expression of AMPA and NMDA receptors in
hippocampus and spatial learning in the Radial andMorris water
mazes.

We assessed the effects of reducing peripheral inflammation
by treating PCS rats with infliximab on peripheral inflammation,
neuroinflammation in hippocampus, AMPA and NMDA
receptors membrane expression and spatial learning and
memory.

MATERIALS AND METHODS

Portacaval Anastomosis and Treatment
with Infliximab
Male Wistar rats (220–240 g) were subjected to portacaval
anastomosis as in Lee and Fisher (1961). Control rats were
sham operated. The experiments were approved by the Comite
de Experimentación y Bienestar Animal of our Center and
performed in accordance with guidelines of the Directive
of the European Commission (2010/63/EU) for care and
management of experimental animals. Animals were distributed
into four groups: sham (SM); sham+infliximab (SM INFLIX);
PCS; PCS+infliximab (PCS INFLIX). The experiment was
repeated four times and eight animals per group were used
in each experiment. A total of 32 rats per group were
used. Infliximab (Remicade; Merck Sharp &Dohme) was
administered i.v. (5mg/kg) in the tail vein as in Karson
et al. (2013). First administration was 2 days before PCS
surgery. Weekly treatment with infliximab was maintained
until sacrifice except during behavioral tests, when infliximab
was administered every 2 weeks. Controls were injected
i.v. with saline. The experimental design is summarized in
Figure 1.

PGE2, IL-6, and IL-10 Determination in
Plasma
Blood samples (200µL) were collected from tail vein at
weeks 1, 3, and 7 after PCS surgery and plasma was isolated
for determination of ILs. For prostaglandin E2 (PGE2)
determination blood (200µL) was taken and plasma isolated
at 1, 2 and 7 weeks after PCS surgery. Prostaglandin E2
was measured using ELISA Biotrak system (Amersham
Bioscience, UK). IL-6 and IL-10 levels were analyzed
by western blot using primary antibodies against IL-10
(1:1000, Abcam) and IL-6 (1:500, BioSource). Secondary
antibodies were anti-rabbit IgG conjugated with alkaline
phosphatase (1:4000). The images were captured and
band intensities quantified using the AlphaImager 2200
program. Western blot data are given as percentage of controls
(sham).

Ammonia Determination in Blood
Blood (20µL) was taken from the tail vein. Blood ammonia
was measured immediately after blood collection with
the Ammonia Test Kit II for the PocketChemBA system
(Arkay, Inc., Kyoto, Japan) following the manufacturer’s
specifications.

Brain Immunohistochemistry
At week 8 after PCS surgery the rats were anesthetized with
sodium pentobarbital and transcardially perfused with 0.9%
saline followed by 4% paraformaldehyde in 0.1 M phosphate
buffer (pH 7.4). Brains were removed and post-fixed in the
same fixative solution for 24 h at 4◦C. Five-micrometer thick,
paraffin-embedded sections (5µm) were cut and mounted on
coated slide glass. The tissue sections were then processed with
the Envision Flex+kit (DAKO) blocking endogenous peroxidase
activity for 5min and then incubated with anti IBA1 (Wako;
1:300 for 30min), anti TNF-a (Abcam; 1:200 for 45min), or
anti IL-1b (RD SYSTEM; 1:100 for 30min). The reaction was
visualized by incubation with Envision Flex + horseradish
peroxidase for 20min and finally diaminobenzidine for 10min.
Sections were counterstained with Mayer’s hematoxylin for
5min. TNF-a and IL-1b positive cells were manually counted
by two blinded experimenters and the results (the mean of
two blind experimenters) were expressed as a percentage of
the total number of cells. For each rat at least 120–150 cells
per section were counted from at least four different sections.
Intensity of TNF-a in CA1 region was quantified using ROI
manager function in ImageJ (1.48v). CA1 region was selected
manually. Inverted values of Mean Gray value were recorded and
results expressed as a percentage of control group. For analysis
of microglial activation the area of interest was selected. Using
Auto Local Threshold and analyzed particle functions in ImageJ,
the intensity thresholds and size filter were applied. To measure
the perimeter of microglia, the Bernsen method was used and
2000–20,000 size filter was applied. For each rat, at least 30–40
cells were quantified and the results were converted from pixels to
micrometers.
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Analysis of TNF-a, IL-1b, IkB, and
Phosphorylated IkB Content by Western
Blot
Rats were sacrificed by decapitation at week 9 after PCS surgery
and hippocampi were dissected and homogenized in 66mMTris-
HCl (pH 7.4), 1% SDS, 1 mM EGTA, 10% glycerol, 1 mM sodium
ortho-vanadate, and 1 mM sodium fluoride containing protease
inhibitor cocktail (Roche, Mannheim, Germany). Samples were
subjected to electrophoresis and immunoblotting as in Felipo
et al. (1988) using primary antibodies against TNF-a and IL-
1b (RD SYSTEMS; 1:500 for both) and as secondary antibodies
anti-goat IgG conjugated with alkaline phosphatase (1:4000) or
primary antibodies against IKB alpha (1:5000) and Phospho
IKB alpha (S32 + S36) (1:1000) from Abcam and as secondary
antibodies anti-rabbit and anti-mouse IgG conjugated with
alkaline phosphatase (1:4000). The images were captured and
band intensities quantified using the AlphaImager 2200 program.
Data are given as percentage of controls (sham).

Immunofluorescence Analysis of NF-κB
p65 and p50
Free-floating sections (30µm) were cut through the
hippocampus using vibratome. Parallel series were collected
in with 0.1% sodium azide. Sections were washed in 0.1 M
phosphate buffer and blocked with normal serum from the
same species as the secondary antibody before being incubated
overnight with primary antibody (NF-κB p65, 1:200; NF-κB p50,
1:200; Fibrillarin, 1:300) from Abcam, diluted in blocking buffer
and secondary fluorescent antibody (1:400) from Invitrogen.
The nuclei were stained with DAPI (Sigma-Aldrich) and sections
were mounted on slides and cover-slipped. A negative control
was performed omitting the primary antibodies. The images were
observed under confocal microscope (Leica TCS-SP2-AOBS)
and photographically recorded.

p50 and p65 may be located in the nuclei or in the cytosol. The
nuclei were labeled in blue with DAPI. Nuclear NFKB subunits
(p50 or p65) were quantified as the green puncta inside blue
staining (DAPI). p65 or p50 outside the blue staining are in
the cytosol. Green puncta outside DAPI staining was quantified
as cytosolic NFKB. Nuclear intensity of both NFKB subunits
was analyzed using ImageJ (1.48v). Nuclei were outlined using
ROI manager function on DAPI blue channel and the selection
was applied on green channel (p50 or p65 channel) to measure
nuclear fluorescence. Mean Gray value for each nucleus was
measured. At least 120 cells per section were counted from at least
eight different sections. NFkB marked nucleoli were manually
counted by two blinded experimenters. The ratio of nucleoli/cells
(the mean of the data obtained by two blinded experimenters)
was calculated and expressed as a percentage respect to control.
A double immunofluorescence was performed, using the nucleoli
marker fibrillarin (Abcam, 1:300) and p50 subunit of NF-κB to
confirm nucleolar traslocation.

Fluorescence In situ Hybridization
Fluorescence in situ hybridization was performed to detect
TNF-a mRNA expression in 5µm hippocampal sections. Slides

were deparaffined and rehydrated. Tissue was digested with
5µg/ml proteinase K (Ambion-Life Technologies) in DEPC
water for 6min at room temperature. A fluorescein-conjugated
probe of 23 nucleotides (50µM; Exiqon) was diluted in
hybridization solution (50 ng/µl) with 30% formamide and
denatured at 80◦C for 2min. It was immediately chilled on
ice to prevent re-annealing. The slices were incubated for 16
h in a humidified hybridization chamber at 60◦C. The next
day 2 stringency washes were performed with 1X SSC at 48◦C
for 15min and 1X SSC at room temperature for 15 min. The
slices were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI; Sigma; 5µg/ml) and Neun (Millipore, 1:100). The results
were observed under confocal microscope and photographically
recorded.

Membrane Expression of Receptors
At week 8 after PCS surgery rats were sacrificed and brains
rapidly removed and dropped into ice-cold standard buffer
(in mM): NaCl 121, KCl 1.87, KH2PO4 1.17, NaHCO3 26.2,
CaCl2 2.5, and glucose 11, aerated with 95% O2-5% CO2 (pH
7.4). Hippocampi were dissected and transversal slices (400µm)
added to tubes containing ice-cold standard buffer with or
without 2 mM BS3 (Pierce, Rockford, IL). Samples treated or
not with BS3 were analyzed by Western blot as in Boudreau and
Wolf (2005). Primary antibodies used were: anti-GluR1 (1:500),
anti-GluR2 (1:2000), and anti-NR2A (1:1000) from Millipore
(Temecula, CA, USA) and anti-NR1 (1:1000) fromBDBioscience
(Franklin Lakes, NJ, USA). Treatment with BS3 aggregates all
proteins present in the cell membrane leaving intact intracellular
proteins. In the western blot, in the samples obtained in the
absence of BS3 the band stained by the antibody contains all the
antigen (e.g., GluR1) present in the sample, both in membrane
and intracellular. In the samples treated with BS3 the membrane
proteins are aggregated and do not enter the gel. So that the band
stained contains only the intracellular (non-membrane) antigen.
The membrane expression of the receptors was calculated as the
difference between the intensity of the bands without BS3 (total
protein) and with BS3 (non-membrane protein).

Spatial Learning in 8 Arms Radial Maze
The rats had to locate food pellets placed at the end of 4 out of
8 arms according to a random configuration as in Hernandez-
Rabaza et al. (2010). Each animal performed three trials per day
during 3 days. The number of spatial reference errors (entry to
unbaited arms) and working memory errors (number of entries
to arms already visited in the same trial) were recorded.

Spatial Learning and Memory in the Morris
Water Maze
Spatial learning and memory in the Morris water Maze was
analyzed as in Monfort et al. (2007) 6 weeks after PCS surgery.
Rats were trained to learn the fixed location of the invisible
platform during 4 days with 3 swims per day. Seventy-two hours
after last training day the platformwas removed and the rats were
allowed to swim for 90 s. The time spent in the quadrant in which
was the platform was recorded.
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Statistical Analysis
Results are expressed as mean ± SEM. Values are given in
international units when possible (ammonia, PGE-2). Values
which are relative (immunohistochemistry, immunofluorescenc,
Western blot,) are expressed as percentage of control rats. Data
were analyzed by one-way ANOVA followed by Tukey post-
hoc test, except for Figures 2A,C–E and 9A,C,E, where two-
way ANOVA with repeated measures was done. P < 0.05 is
considered significant differences.

RESULTS

Infliximab Reduces Peripheral
Inflammation but Not Ammonia Levels in
PCS Rats
PCS rats show increased (p < 0.0001) ammonia levels, ranging
between 200 and 240 µM at 1, 3, and 7 weeks while in control
(sham) rats ammonia ranges between 40 and 80µM (Figure 2A).
Treatment with infliximab did not affect ammonia levels in sham
or PCS rats. Ammonia levels in PCS rats treated with infliximab
ranged between 180 and 245µMat 1, 3, and 7 weeks (Figure 2A).

PCS rats show peripheral inflammation with a rapid increase
of prostaglandin 2 (PGE2) levels which reach 369 ± 98% (p <

0.01) of controls 1 week after surgery. Treatment with infliximab
prevents PGE2 increase, keeping it at 131 ± 13% of controls.
PGE2 in PCS rats return to normal levels (150± 25% of controls)
2 weeks after surgery, remaining at this level at 7 weeks (142 ±

11% of controls) (Figure 2B).
Pro-inflammatory IL-6 in serum of PCS rats increase to 147±

12% (p < 0.01), 123 ± 7%, and 135 ± 6% (p < 0.05) of controls
at 1, 3, and 7 weeks, respectively (Figure 2C).

Treatment with infliximab keeps IL-6 at normal values at all
times tested, reaching 113 ± 10, 89 ± 7, and 109 ± 14% of
controls at 1, 3, and 7 weeks, respectively (Figure 2C).

Pro-inflammatory IL-17 in serum of PCS rats increase to 146
± 12 and 162 ± 16% (p < 0.05) of controls at 3 and 7 weeks,
respectively (Figure 2D).

Treatment with infliximab keeps IL-17 at lower values,
reaching 118 ± 6 and 132 ± 15% of controls at 3 and 7
weeks, respectively, not statistically different from control rats
(Figure 2D).

Peripheral inflammation in PCS rats is also reflected in anti-
inflammatory IL-10, which decreases to 56 ± 9 and 74 ± 11%
(p = 0.02) of controls at 1 and 3 weeks, respectively. At 7
weeks IL-10 returned to normal levels (99 ± 13%) in PCS rats
(Figure 2E).

Infliximab prevents IL-10 decrease in PCS rats, especially at 1
week. IL-10 remained at 80 ± 12 and 77 ± 15% of controls at 1
and 3 weeks, respectively (Figure 2E).

Infliximab reduces therefore peripheral inflammation in PCS
rats.

PCS Rats Show Neuroinflammation in
Hippocampus Which Is Reduced by
Infliximab
PCS rats show activation of microglia in hippocampus, with
increased cell body size and shorter processes compared to

control rats (Figure 3A). As a measure of the grade of
activation we analyzed the perimeter of microglial cells stained
with Iba1 (Figure 3B): The perimeter was lower (p < 0.001)
in PCS rats (368 ± 19µm) than in control rats (481 ±

25µm). In PCS rats treated with infliximab the perimeter of
microglial cells was 495 ± 27 µm, which is not different from
controls, indicating prevention of microglial activation following
infliximab treatment of PCS rats.

Figures 4A,B show representative low and high magnification
images of immunohistochemistry analysis for TNF-a in the
CA1 region of hippocampus. PCS rats show a strong increase
(260 ± 23% of controls, p < 0.001) in the number of cells
expressing TNF-a. Treatment with infliximab reduced it to
normal levels (145 ± 31% of controls) (Figure 4C). Moreover,
the staining intensity with anti-TNF-a increased in PCS rats
to 216 ± 38% of controls (p < 0.001) but not in PCS rats
treated with infliximab (98 ± 18% of controls) (Figure 4D).
Content of TNF-a in hippocampus was also analyzed by western
blot. PCS rats show increase of TNF-a to 155 ± 13% of
controls (p < 0.01) but not PCS rats treated with infliximab
(114 ± 11% of controls, p < 0.05 compared with PCS rats)
(Figure 4E).

The staining for TNF-a is mainly observed in neurons. To
assess whether this is due to TNF-a synthesis into the neurons we
used fluorescence in situ hybridization to visualize TNF-amRNA.
PCS rats show a high expression of TNF-a mRNA (in green)
in neurons of the CA1 region which is much lower in PCS rats
treated with infliximab. TNF-a mRNA was practically absent in
neurons of control rats (Figure 4F).

To further confirm that the mRNA for TNF-a in PCS rats is
located in neurons we assessed, by double immunofluorescence
labeling, if it co-localizes with the neuronal marker NeuN. As
shown in Figures 4G,H, this is the case, confirming neuronal
expression of TNF-a in PCS rats.

For IL-1b, a representative image of the
immunohistochemistry analysis in the CA1 region of
hippocampus is shown in Figure 5A. The number of cells
expressing IL-1b was increased in PCS rats to 180 ± 19% of
controls (p < 0.001) and was not affected by infliximab (180 ±

18%) (Figure 5B). The staining intensity for IL-1b increased in
PCS rats (142± 8%, p < 0.001) compared to controls, indicating
increased IL-1b levels. Treatment with infliximab normalized
IL-1b levels to 112± 7% of controls (Figure 5C).

To confirm the effects of PCS and infliximab on the content
of TNF-a and IL-1b in hippocampus, we quantified them by
Western blot. The content of TNF-a was increased (p < 0.05)
in PCS rats to 144 ± 17% of controls and was normalized by
infliximab (119 ± 11% of controls) (Figure 4D). The content
of IL-1b was increased (p < 0.05) in PCS rats to 138 ± 15%
of controls, and was normalized by infliximab (87 ± 14% of
controls) (Figure 5D). We observed that many cells labeled with
IL-1b are located surrounding blood vessels, as illustrated in
Figures 5E–G.

As expression of TNF-a and IL-1b is modulated by the
transcription factor NF-kB, we assessed whether infliximab could
be normalizing TNF-a and IL-1b expression acting through
NF-kB. Representative immunostaining images of p65 and p50
and subunits of NF-kB are shown in Figures 6A, 7A. It can
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FIGURE 2 | Infliximab reduces peripheral inflammation but not hyperammonemia in PCS rats. Blood samples were taken at the indicated times after surgery

from control (sham, SM) or PCS rats treated with vehicle or infliximab (INFLIX). (A) Ammonia levels were measured in blood. Plasma was isolated from blood samples

and PGE2 levels (B), IL-6 (C), IL-17 (D), and IL-10 (E) were analyzed. Representative images of western blots are shown. Values are mean ± SEM of 5 rats per group

for PGE2 and 8–14 rats per group for IL-6 and IL-10. Two-way ANOVA with repeated measures and Bonferroni post-test were performed. Statistic values for

ammonia (A) were: F = 23.3, Df = 3, P < 0.0001. For PGE2 (B) the effects of PCS and Infliximab treatment were statistically different with p < 0.05, F = 7.3 and Df

= 3 and there is also a significant effect of time (p < 0.05, F = 5.8, Df = 1). For IL-6 (C) PCS rats were statistically different from controls with p < 0.01, F = 13 and

Df = 1 and the effect of Infliximab treatment in PCS rats was also statistically significant (p < 0.01, F = 9.4, Df = 1). For IL-17 (D) PCS rats were statistically different

from controls with p < 0.05, F = 3.8, and Df = 3 whereas the effect of Infliximab treatment in PCS rats was not statistically significant. No time effect was found in this

case. For IL-10 (E) values for PCS rats were statistically different from controls with p < 0.05, F = 6.4, and Df = 1 and there is also a significant effect of time

(p < 0.05, F = 4.0, Df = 2). Interaction was significantly different (p < 0.05, F = 4.0, f = 2). Values significantly different from controls are indicated by asterisks and

from PCS rats by aa. *p = 0.05; **p < 0.01; ***p < 0.001; aap < 0.01.
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FIGURE 3 | Infliximab reduces microglial activation in the hippocampus of PCS rats. Rats were sacrificed and hippocampus dissected 8 weeks after PCS

surgery. Immunohistochemistry was performed as indicated in the “Materials and Methods” section using antibody against Iba-1. Representative images are shown

(A). The perimeter of microglial cells was quantified (B). One-way ANOVA with Tukey post-hoc test was performed to compare all groups. Differences between groups

were statistically different: F = 7.5, Dfn = 3, Dfr = 198, p < 0.0001; and variances were not statistically different. Values are the mean ± SEM of 4 rats per group.

Values significantly different from controls are indicated by asterisks and from PCS rats by a. **p < 0.01; aaap < 0.005. Scale bar = 50µm.

be seen that anti-p50 stained the nucleoli within the nuclei
(Figures 7A,B), while p65 did not (Figure 6A).

The intensity of the p65 subunit of NF-kB staining in the
nuclei was increased in PCS rats to 154 ± 6% of controls.
Treatment with infliximab did not affect this increase, which
remained at 154± 6% of controls (Figure 6B).

The increased translocation of p65 to the nuclei in PCS rats
was associated with increased phosphorylation of IkB, which
reached 130 ± 9% (p < 0.05) of control rats (Figure 6C)
and degradation of IkB, which levels were reduced to 73 ±

5% (p < 0.05) of control rats (Figure 6D). Treatment with
infliximab reduced the phosphorylation of IkB to 95 ± 6% of
control rats (Figure 6C) and did not affect degradation of IkB,
which levels remained at 75 ± 6% (p < 0.05) of control rats
(Figure 6D). The lack of effect of infliximab on IkB content
is in agreement with the lack of effect on nuclear p65 shown
above.

More remarkable effects were found on the p50 subunit of NF-
kB. In PCS rats the intensity of the p50 subunit of NF-kB in the
nuclei was not affected. Treatment with infliximab increased it in
PCS rats to 228± 10% of controls (Figure 7C).

The main effects were found in the subcellular localization
of p50 between cytosol-nuclei and, especially, in nucleoli. The
ratio of p50 in the nuclei (green puncta inside DAPI staining)
vs. cytosol (green puncta outside DAPI staining) was increased
in PCS rats to 207 ± 7% of controls (p < 0.001). Treatment
with infliximab reduced this ratio to 137 ± 6% of controls
(Figure 7D).

In PCS rats the number of the cells expressing p50 in the
nucleoli was strongly reduced (40 ± 5%; p < 0.001) (Figure 7E).

Treatment with infliximab induced a strong increase (to 156 ±

8% of control rats) in the number of cells expressing p50 in the
nucleoli. Infliximab did not affect p50 in nucleoli in control rats,
which remained at 79± 8% of the cells (Figure 7E). Treatment of
PCS rats with infliximab induces a massive translocation of p50
from the nuclei inside the nucleoli (Figure 7F).

To confirm that infliximab induces a translocation of p50 to
nucleoli we performed a double immunofluorescence labeling of
a marker of nucleoli (fibrillarin, in red) and of p50 (green). The
images in Figure 7G show that there is a co-localization of p50
and fibrillarin, thus confirming the translocation of p50 to the
nuclei in PCS rats treated with infliximab.

Membrane Expression of AMPA and NMDA
Receptors Is Altered in Hippocampus of
PCS Rats but Not in PCS Rats Treated with
Infliximab
The expression in membrane of the GluR1 subunit of AMPA
receptors was reduced (p < 0.05) in hippocampus of PCS rats
to 79 ± 9% of control rats (Figure 8A). In contrast, membrane
expression of the GluR2 subunit was increased (p < 0.05) in PCS
rats to 150± 30% of control rats (Figure 8B).

Infliximab normalized the membrane expression of both
GluR1, to 93± 13% of control rats (Figure 8A) andGluR2, to 108
± 8% of control rats (Figure 8B). These values are not different
from control rats, indicating prevention of the effect of PCS.

Concerning NMDA receptors, the membrane expression of
the NR2A subunit is increased (p < 0.05) in PCS rats to 132
± 16% of control rats (Figure 8C). In contrast, membrane
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FIGURE 4 | TNF-a levels are increased in hippocampus of PCS rats and are normalized by infliximab. Rats were sacrificed and hippocampus dissected 8

weeks after PCS surgery. Immunohistochemistry was performed using anti-TNF-a. (A) Representative low (scale bar = 200 µm) and (B) high (scale bar = 50µm)

magnification images are shown. The number of cells expressing TNF-a (C) and intensity of the staining for TNF-a (D), were quantified. One-way ANOVA with Tukey

post-hoc test was performed to compare all groups. Differences between groups were statistically different: (B) F = 9.4, Dfn = 3, Dfr = 52, p < 0.0001; (C) F = 7.3,

Dfn = 3, Dfr = 51, p < 0.001; and variances were not statistically different. Values are the mean ± SEM of 4 rats per group. For each rat at least 120–150 cells from

four different sections were counted. (E) Western blot was performed as described in method. Values are the mean ± SEM of 10–14 rats per group. One-way ANOVA

with Tukey’s post-hoc test was performed to compare all groups. The differences between groups were statistically different (p < 0.001, F = 6.9, Df between groups

= 3) and variance was not statistically different. (F) Representative images of in situ hybridization for TNF-a mRNA (green color; scale bar = 50µm). (G) Double

fluorescence staining of the neuronal marker NeuN (red), TNF-a mRNA (green), and merged (yellow) showing co-localization in PCS rats (Scale bar = 50 um). (H) Low

magnification images (10×) of the neuronal marker NeuN (red), TNF-a mRNA (green), and merged (yellow) showing co-localization in PCS rats. Values significantly

different from controls are indicated by asterisks and values different from PCS rats by a. ap < 0.05; **p < 0.01; ***p ≤ 0.005; aap < 0.01.
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FIGURE 5 | IL-1b levels are increased in hippocampus of PCS rats and are normalized by infliximab. Rats were sacrificed and hippocampus dissected 8

weeks after PCS surgery. Immunohistochemistry was performed using antibodies against IL-1b (A; scale bar = 50µm). The number of cells expressing IL-1b (B) and

staining intensity (C) for IL-1b were quantified. One-way ANOVA with Tukey post-hoc test was performed to compare all groups. Differences between groups were

statistically different: (B) F = 8.1, Dfn = 3, Dfr = 49, p < 0.001; (C) F = 9.1, Dfn = 3, Dfr = 46, p < 0.0001 and variances were not statistically different. Values are

the mean ± SEM of 4 rats per group in (B) and six rats per group in (C). For each rat at least 120–150 cells from four different sections were counted. (E,F)

Representative low (scale bar = 500µm) and high (scale bar = 50µm) magnification images showing neurons expressing IL-1b around a blood vessel. (G)

Representative image showing astrocytes stained with the IL-1b antibody around a blood vessel (scale bar = 50µm). Western blot was performed using anti-IL-1b

(D) as described in methods. Values are the mean ± SEM of 8–10 rats per group. One-way ANOVA with Tukey’s post-hoc test was performed to compare all groups.

The differences between groups were statistically different (p < 0.05, F = 3.2, Df between groups = 3) and the variance was not statistically different. Values

significantly different from controls are indicated by asterisks and values different from PCS rats by a. *p < 0.05; **p < 0.01; ***p ≤ 0.005; ap < 0.05.

expression of the NR1 subunit was reduced (p < 0.05) in PCS
rats to 75± 11% of control rats (Figure 8D).

Infliximab normalized the membrane expression of NR1, to
108± 20% of control rats (Figure 8D) but not that of NR2A, that
reached 158± 20% of control rats (Figure 8C).

Spatial Learning and Memory Are Impaired
in PCS Rats but Not in PCS Rats Treated
with Infliximab
Spatial learning and memory in the rats were assessed using the
Radial maze and the Morris water maze tests. In the radial maze,
PCS rats performed more working errors than control rats at
day 1 and 2 (Figure 9A). Treatment with infliximab improved
performance of PCS rats, which made significantly less (p< 0.05)
working errors (9± 1.5) on day 1 than PCS rats (Figure 9A).

The total number of working errors during the 3 days was
higher (p < 0.01) in PCS (32 ± 4) than in control rats (16 ± 3).

Treatment with infliximab improved performance of PCS rats,
whichmade 23± 3 errors, not statistically different from controls
(Figure 9B).

PCS rats also made more reference errors (18 ± 1.7) than
controls (11 ± 1) in the radial maze at day 1 (Figure 9C). This
was also prevented by infliximab. PCS rats treated with infliximab
performed significantly less reference errors (14 ± 1, p < 0.05)
than PCS ras (Figure 9C).

The total number of reference errors during the 3 days
was higher (p < 0.01) in PCS (45 ± 2) than in control
rats (33 ± 3). Treatment with infliximab completely restored
performance of PCS rats, which performed 37 ± 2 errors
(Figure 9D).

In the Morris water maze, spatial learning was not affected
(Figure 9E) but the spatial memory of PCS rats was impaired
(Figure 9F). In thememory test PCS remained less time (25± 2%
of time, p< 0.05) in the right quadrant than control rats (36± 3%
of time). Treatment with infliximab restored spatial memory in
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FIGURE 6 | Effects of infliximab on p65 subunit of NF-kB content in nuclei and on IkB. Rats were sacrificed and hippocampus dissected 8 weeks after PCS

surgery. (A) Immunofluorescence was performed using antibodies against the p65 subunit of NF-kB (green staining). Nuclei were stained in blue with DAPI. (B) The

intensity of p65 staining in nuclei was quantified. Values are mean ± SEM of 3 rats per group. For each rat at least 120 cells per section were counted in at least eight

different sections. One-way ANOVA with Tukey’s pos-hoc test was performed: statistic values were F = 25.5, Dfn = 3, Dfr = 511 and p < 0.0001. (C) Content of IkB

phosphorylated in S132 + S36 was analyzed by western blot. Values are mean ± SEM of 3 rats per group. One-way ANOVA with Tukey’s pos-hoc test was

performed: statistic values were F = 2.5, Dfn = 3, Dfr = 24 and p < 0.05. (D) Content of IkB was analyzed by western blot. Values are mean ± SEM of 3 rats per

group. One-way ANOVA with Tukey’s pos-hoc test was performed: statistic values were F = 5.6, Dfn = 3, Dfr = 28 and p < 0.01. Values significantly different from

controls are indicated by asterisks. *p < 0.05, ***p ≤ 0.005. Values significantly different from PCS rats are indicated by ap < 0.05.

PCS rats, which remained 34 ± 2% of time in the right quadrant
(Figure 9F).

DISCUSSION

This study shows that infliximab reduces peripheral
inflammation in PCS rats, preventing the increases in pro-
inflammatory IL-6, IL-17, and PGE2 and the decrease in
anti-inflammatory IL-10. This is in agreement with previous
studies in human diseases showing that infliximab reduces
peripheral inflammation (Kato et al., 2011; Brunner et al., 2013).
It is also shown that reducing peripheral inflammation with
infliximab restores spatial learning and memory in rats with HE
due to PCS. This suggests that treatment with anti-TNF-a could
be a new therapeutic approach to improve cognitive and motor
function in patients with HE.

We also propose a sequence of events, summarized
in Figure 10, by which peripheral inflammation leads to
neuroinflammation, altered neurotransmission and cognitive
impairment in rats with HE and how treatment with infliximab
prevent them.

The present report provides the first demonstration that
reducing specifically peripheral inflammation, using anti-TNF-a,
which does not cross the blood-brain barrier, prevents the
induction of neuroinflammation, the changes in membrane
expression of AMPA receptors and associated impairment of
spatial learning and memory in rats with HE due to PCS.

The data reported indicate that peripheral inflammation
in PCS rats would be the main cause for the induction of
neuroinflammation in hippocampus and for impairment of
spatial learning.

Peripheral inflammation may induce neuroinflammation by
different mechanisms: infiltration of immune cells from the
periphery (Gimenez et al., 2006); active transport of some
cytokines into the brain parenchyma (Banks et al., 1995)
or activation of vagal afferent nerves or direct entry of
cytokines at circumventricular regions lacking an intact blood-
brain barrier (D’Mello et al., 2009). Blood cytokines may also
activate their receptors in endothelial cells and trigger the
release of inflammatory factors into the brain (Rummel et al.,
2006). For example, in rats injected with LPS, blood IL-6
activates its receptors in endothelial cells leading to activation
of STAT3 which increases cyclooxygenase 2 and PGE2 in
cerebral cortex (Rummel et al., 2006). We have not found
infiltration of blood cells into the brain of PCS rats and have
observed that the increase in IL-1b occurs mainly around blood
vessels (Figures 5E–G). Moreover, infliximab acts only in the
periphery (see Section Introduction) and reduces serum IL-
6 in PCS rats. It seems likely that peripheral inflammation
in PCS rats would induce neuroinflammation by activation of
receptors for pro-inflammatory cytokines in endothelial cells
which would transduce the signals to the hippocampus leading
to neuroinflammation.

Peripheral inflammation in PCS rats results in reduced IkB
levels and increased nuclear content of NF-kB in hippocampus
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FIGURE 7 | Effects of infliximab on p50 subunit of NF-kB content in nuclei and nucleoli. Rats were sacrificed and hippocampus dissected 8 weeks after PCS

surgery. (A) Immunofluorescence was performed using antibodies against the p50 subunit of NF-kB (green staining). Nuclei were stained in blue with DAPI. A negative

control performed in the absence of p50 subunit antibody is shown in (B). Double immunofluorescence was performed using NF-kB p50 (green) and Fibrillarin, a

marker of nucleoli (red). The merge show co-localization (yellow) of these proteins (G). Representative images and split channels of NF-kB p50 immunofluorescence

(F) are shown. The intensity of p50 (C) staining in nuclei, the ratio of p50 in nuclei/cytoplasm (D) and the proportion of cells containing p50 into the nucleoli (E) were

quantified. Values are mean ± SEM of 3 rats per group. For each rat at least 120 cells per section were counted in at least eight different sections. One-way ANOVA

with Tukey’s pos-hoc test was performed: in (C) statistic values were F = 50.6, Dfn = 3, Dfr = 960, p < 0.0001; in (D), F = 54, Dfn = 3, Dfr = 81, p < 0.0001; in (E),

F = 97.8, Dfn = 3, Dfr = 810, p < 0.0001; Values significantly different from controls are indicated by asterisks and values different from PCS rats by aaa. ***p ≤

0.005; aaap < 0.005. Scale bar = 10µm.

which induces the transcription of pro-inflammatory TNF-a
and IL-1b which contribute to impairment of spatial learning
(Figure 8A). A similar activation of NF-kB has been observed
in ovine hippocampus following LPS-induced peripheral
inflammation (Hang et al., 2004; Briscoe et al., 2006) and
in cortex of rats with traumatic brain injury, which was

also associated with increased TNF-a levels (Hang et al.,
2004).

It is noteworthy that the mRNA for TNF-a expression
increases in PCS rats mainly in neurons, as shown by in situ
hybridization. TNF-a and IL-1b are expressed in hippocampal
neurons in vivo in response to lesions (Tchélingérian et al.,
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FIGURE 8 | The membrane expression of the GluR1 and GluR2 subunits of AMPA receptors and NR1 and NR2A subunits of NMDA receptors is altered

in hippocampus of PCS rats and is normalized by treatment with infliximab. Rats were sacrificed and hippocampus dissected 8 weeks after PCS surgery.

Samples incubated in the absence (−) or presence (+) of BS3 were subjected to Western blotting using antibodies for each subunit. Representative images are

shown. Samples without BS3 represent the total amount of each protein. Samples with BS3 correspond to the non-membrane fraction. The band intensities were

quantified and membrane expression was calculated as the difference of intensity between samples without and with BS3. Values are expressed as percentage of

controls and are mean ± standard errors of 8–16 rats per group. One-way ANOVA with Tukey’s post-hoc test was performed to compare all groups. For (A) GluR1

differences between groups were statistically different (p < 0.05, F = 1.5, Df between groups = 3). For (B) GluR2 statistics was p < 0.05, F =3.2, Df between groups

= 3. For (C) NR2A statistics was p < 0.001, F = 10.0, Df between groups = 3. For (D) NR1 statistics was p < 0.001, F = 1.3, Df between groups = 3. In all cases

variances were not statistically different. Values significantly different from controls are indicated by asterisks and values different from PCS rats by a. *p < 0.05; ap <

0.05; **p < 0.01.

1996) or to pneumococcal meningitis (Izadpanah et al., 2014).
In situ hybridization studies show that in murine pneumococcal
meningitis TNF-a mRNA was first upregulated in astroglial cells
but at 18–24 h was strongly increased in hippocampal neurons
(Izadpanah et al., 2014). A similar process would occur in
hippocampus of rats with HE due to PCS, leading to increased
expression of TNF-a in neurons.

The mechanism by which neuroinflammation alters
neurotransmission in hippocampus would involve activation of
TNF-a and IL-1b receptors in neurons, leading to AMPA and
NMDA receptors translocation and altered distribution of its
subunits. We show that in PCS rats membrane expression of
the GluR1 subunit of AMPA receptors is reduced while that
of GluR2 is increased. For NMDA receptors NR1 is reduced

and NR2A is increased in membrane in PCS rats. This would
be a consequence of increased IL-1b and TNF-a as changes
in membrane expression reverse when the content of these
pro-inflammatory cytokines are normalized by treatment with
infliximab. In support of this, it has been reported that IL-1b
reduces membrane expression of the GluR1 subunit of AMPA
receptors in hippocampal neurons (Lai et al., 2006). TNF-a also
alters membrane expression of AMPA receptors in hippocampus
(Ogoshi et al., 2005).

NMDA and AMPA receptors modulate long-term
potentiation (LTP) in hippocampus, considered the bases
for spatial learning and memory (Morris and Frey, 1997). LTP is
impaired in PCS rats (Monfort et al., 2007). The data reported
here support that altered membrane expression of AMPA and
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FIGURE 9 | Spatial learning and memory in the radial and Morris water mazes are impaired in PCS rats and restored by infliximab. Radial maze was

performed from 4 to 5 weeks and MWM at 6 weeks after PCS surgery. Spatial learning in the radial maze was assessed in sham (SM) and PCS rats, treated with

vehicle or infliximab (INFLIX). Working (A,B) and reference (C,D) errors were counted on each day (A,C) and in the total period of 3 days (B,D). Spatial learning and

memory was also assessed in the Morris water maze. Escape latencies (in seconds) to reach the platform during the different sessions are shown in (E) and the time

spent in the right quadrant in the memory test in (F). Values are mean ± SEM of 15–16 rats per group. Two-way ANOVA with repeated measures and Bonferroni

post-test were performed in (A,C,E). Statistic values were: F = 10, Df = 3, p < 0.0001 comparing all groups; F = 17.5, Df = 2, p < 0.0001 for the effect of time and

for interaction, F = 4.3, Df = 6, p < 0.001 in (A). In (C), F = 5.8, Df = 3, p < 0.01 between groups; F = 9.6, Df = 2, p < 0.0001 for time effect and for interaction, F

= 2.3, Df = 6, p < 0.05. In (E), only time effect was significant with F = 88.8, Df = 3, p < 0.0001, but there are not significant differences between groups. In (B,D,F)

one-way ANOVA and Tukey’s post test was performed. In (B), statistic values were F = 7.4, Df = 3, p < 0.001. In (C), F = 7.2, Df = 3, p < 0.001. In (F), F = 6.6, Df

= 3, p < 0.001, PCS group is significantly different from SM, and from SM INFLIX and PCS INFLIX groups. Values significantly different from controls are indicated by

asterisks and from PCS rats by a. **p < 0.01; ***p < 0.001; ap < 0.05; bb, significant difference between PCS and SM- INFLIX, bbp < 0.01.

NMDA receptor subunits would play a main role in impairment
of LTP in PCS rats which, in turn, would lead to impaired spatial
learning. AMPA receptors activation increases intracellular
Na+ and, when the GluR2 subunit is lacking also increases
Ca2+. The presence of the GluR2 subunit prevents entry of
Ca2+ (Geiger et al., 1995; Liu and Cull-Candy, 2005). In PCS
rats, the increase of GluR2 and decrease of GluR1 subunits in
the membrane together with the reduced amount of the NR1

subunit of NMDA receptors will reduce Ca2+ entry through
AMPA receptors, resulting in altered intracellular signaling and
neurotransmission, which will finally lead to reduced spatial
learning and memory. GluR1 subunit is essential for spatial
learning (Sanderson et al., 2008, 2010), thus supporting that
the altered membrane expression of GluR1 and GluR2 are
main contributors to impaired spatial learning in PCS rats
(Figure 10A).
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FIGURE 10 | Proposed model for the mechanisms involved in impairment of spatial learning and memory in rats with HE and for their improvement by

infliximab. (A) Peripheral inflammation in PCS rats results in increased nuclear content of NF-kB in hippocampus which induces the transcription of pro-inflammatory

TNF-a and IL-1b, which activate their receptors in neurons of hippocampus. This leads to translocation of AMPA and NMDA receptors. Membrane expression of GluR1

subunit is reduced that of GluR2 increased. For NMDA receptors NR1 is reduced and NR2A increased in membrane in PCS rats. This altered expression of glutamate

(Continued)
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FIGURE 10 | Continued

receptors results in altered neurotransmission which, in turn, leads to impaired spatial learning and memory in the Radial and Morris water mazes. (B) Treatment with

infliximab reduces peripheral inflammation and p50 subunit of NF-kB content in the nucleus, which is translocated to nucleoli. NF-kB in the nucleoli can’t activate

transcription of TNF-a and IL-1b, resulting in reduced neuroinflammation in PCS rats treated with infliximab. This reduces activation of TNF-a and IL-1b receptors in

the neurons and normalizes membrane expression of AMPA receptors. Normalization of neurotransmission leads to restoration of spatial learning and memory.

Treatment of PCS rats with infliximab reduces peripheral
inflammation and p50 subunit of NF-kB in the nucleoplasm,
increasing it in nucleoli. Stark and Dunlop (2005) showed
that sub-nuclear compartmentalization regulate NF-kB
transcriptional activity in cancer cell lines. Pro-apoptopic
treatments translocate the NF-kB p65 subunit to the nucleolus,
reducing its levels in the nucleoplasm and decreasing NF-kB
transcriptional activity. In contrast, anti-apoptopic treatments
such as TNF-a excluded p65 from the nucleolus (Stark and
Dunlop, 2005). In this study the effects on NF-kB p50 subunit
were not analyzed. In PCS rats p50 is reduced in nucleoli and
increased in the nucleoplasm, allowing increased transcription
of TNF-a and IL-1b. Treatment of PCS rats with infliximab
translocates p50 from nucleoplasm to nucleoli, preventing
transcription of TNF-a and IL-1b. This reduces activation of
their receptors in the neurons and restores the distribution of
AMPA receptors, which return to normal. The normalization of
neurotransmission leads subsequently to the improvement in
spatial learning and memory (Figure 10B).

In summary, we show that in rats with HE due to PCS,
peripheral inflammation leads to neuroinflammation, with
increased nuclear NF-kB and expression of TNF-a ad IL-1b
in hippocampus, which leads to altered neurotransmission by
altering the membrane expression of AMPA and NMDA
receptors, which impairs spatial learning and memory.
Reducing specifically peripheral inflammation, using anti-
TNF-a, which does not cross the blood-brain barrier, reduces

neuroinflammation, translocates NF-kB to the nucleoli,
normalizes TNF-a and IL-1b in hippocampus, membrane
expression of AMPA receptors and spatial learning and
memory. These data support that impairment of spatial
learning is a consequence of peripheral inflammation and
that treatment with anti-TNF-a could be a new therapeutic
approach to improve cognitive function in patients with MHE or
clinical HE.
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