
Reducing Rollbacks of Transactional Memory Using
Ordered Shared Locks

Ken Mizuno, Takuya Nakaike, and Toshio Nakatani

Tokyo Research Laboratory, IBM Japan, Ltd.
{kmizuno,nakaike,nakatani}@jp.ibm.com

Abstract. Transactional Memory (TM) is a concurrency control mechanism that
aims to simplify concurrent programming with reasonable scalability. Program-
mers can simply specify the code regions that access the shared data, and then
a TM system executes them as transactions. However, programmers often need
to modify the application logic to achieve high scalability on TM. If there is any
variable that is frequently updated in many transactions, the program does not
scale well on TM.

We propose an approach that uses ordered shared locks in TM systems to im-
prove the scalability of such programs. The ordered shared locks allow multiple
transactions to update a shared variable concurrently without causing rollbacks
or blocking until other transactions finish. Our approach improves the scalability
of TM by applying the ordered shared locks to variables that are frequently up-
dated in many transactions, while being accessed only once in each transaction.
We implemented our approach on a software TM (STM) system for Java. In our
experiments, it improved the performance of an hsqldb benchmark by 157% on 8
threads and by 45% on 16 threads compared to the original STM system.

1 Introduction

Transactional Memory (TM) [1] is a new concurrency control mechanism that aims
to simplify concurrent programming with acceptable scalability. In TM, program sec-
tions that access shared variables are treated as transactions. If some transactions cause
a conflict, as when one transaction updates a variable that another concurrently exe-
cuting transaction has read, then the TM system rolls back and re-executes one of the
transactions.

If there is a variable that is updated in many transactions, it will cause frequent con-
flicts and degrade the scalability of the program. Figure 1 is a sample program for a
hash table. Some transactions are tagged using the keyword atomic. In this program,
size is updated every time an entry is inserted or removed, and this causes frequent
conflicts. Figure 2 shows a sample execution sequence of two concurrent transactions
in a TM system that uses lazy conflict detection [2,3]. They read the same value from
size and increment it. The update in each transaction is invisible to the other transac-
tion before it is committed. If Transaction A commits successfully before Transaction
B tries to commit, then B should roll back because size was updated by the commit of
A after the read operation in B. In contrast, if size is eliminated, conflicts rarely occur
since the accesses to table are scattered by the hashes of the keys. A similar situation

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 704–715, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Reducing Rollbacks of Transactional Memory 705

public void put(Object k, Object v) {
atomic {
if (contains(k)) {

updateRecord(table[hash(k)], k, v);
} else {

int s = ++size;
if (s > capacity) expandTable();
insertRecord(table[hash(k)], k, v);

}
}

}
public void remove(Object k) {

atomic {
if (contains(k)) {

size--;
removeRecord(table[hash(k)], k);

}
}

}
pubic Object get(Object k) {

atomic {
return getRecord(table[hash(k)], k);

}
}

Fig. 1. Sample program for a hash table with a counter variable

Transaction A

Transaction B

time

s = ++size;

s = ++size;

commit

rollback

Both read

the same value

The update becomes 

visible to other 

transactions

B rolls back because 

size is updated by A

Fig. 2. Sample execution sequence of two transactions accessing hash table

occurs for the variables that hold the next ID numbers in ID number generators, vari-
ables that hold the sizes of collection objects, or variables that hold execution statistics.
If a program is not tuned for TM, it often contains such variables and they prevent the
scalability.

In this paper, we propose an approach for TM systems that uses ordered shared locks
[4,5,6] for the variables that are tagged by the programmer. The ordered shared locks
allow multiple transactions to update a shared variable concurrently without causing
rollbacks or blocking until other transactions finish. If two transactions are executed
in the same order as the example of Figure 2 using the ordered shared lock for size,



706 K. Mizuno, T. Nakaike, and T. Nakatani

Transaction B reads the result of the increment operation in Transaction A, and both A
and B successfully commit.

In this paper, we make the following contributions.

– We present an approach that uses ordered shared locks in TM.
– We explain an implementation of the approach on a software-based TM (STM)

system for Java.
– We evaluate the performance of the approach using some benchmark programs.

We give a brief overview of the original ordered shared lock in Section 2. We explain
our approach and an implementation of it as an STM system for Java in Section 3.
We evaluated the performance of the implementation of our approach in Section 4. We
review related work in Section 5 and conclude in Section 6.

2 Ordered Shared Lock

The ordered shared lock [4,5,6] is an extension of the shared/exclusive lock that allows
multiple transactions to share locks even when one of the locks is a lock for write
access.1 Locks between multiple reads are shared as in the traditional shared/exclusive
lock.

Figure 3 is a sample execution sequence of transactions that use ordered shared locks.
Transaction B can acquire a lock on X even though Transaction A has acquired a lock
on X. In this case, Transaction B observes the result of the write operation in A even
though A has not committed yet. The lock on X is said to be on hold for Transaction B
since it was acquired after Transaction A acquired the lock on X and before Transaction
A releases the lock. The lock for B remains on hold until Transaction A releases the
lock. When more than two transactions acquire locks for the same object concurrently,
the lock for Transaction B is on hold until all of the transactions that acquired the lock
before Transaction B acquired the lock release their locks.

Transactions that use ordered shared locks should satisfy the following constraints.

Acquisition Rule. If Transaction A acquires a lock on object X before Transaction B
acquires a lock on object X, the operation on X in Transaction A must precede the
operation on X in Transaction B.

Relinquishing Rule. A transaction may not release any lock as long as any of its locks
are on hold.

The example in Figure 3 satisfies the constraints since Transaction B reads X after
Transaction A wrote to X, and the release operation for the lock on X of Transaction B
is deferred until A releases the lock on X.

The ordered shared lock may cause cascading rollbacks. If Transaction A is rolled
back in the example of Figure 3, then Transaction B should also be rolled back because
it has read the result of an operation from Transaction A. Therefore, the ordered shared
lock is not suitable for transactions that cause rollbacks frequently because it causes
frequent cascading rollbacks.

1 We describe only the most permissive protocol of the ordered shared locks that allows ordered
sharing both between read and write, and between write and write.



Reducing Rollbacks of Transactional Memory 707

Transaction A

Transaction B

time

acquire(X) write(X) release(X)

acquire(X) read(X) release(X)

observes the result 

of the write in A
deferred until A 

releases X

acquire(Y) write(Y) release(Y)

(on hold)
release(X)

Fig. 3. Sample execution sequence of two transactions with ordered shared locks

Transaction A

Transaction B

time

acquire(X) write(X)

acquire(X) read(X)

acquire(Y) write(Y)

acquire(Y) read(Y)
(on hold)

(on hold)

release(X)

release(X)

Both are deferred

Fig. 4. Sample execution sequence that causes deadlock

The ordered shared lock approach may also cause a deadlock. However, deadlock
can be detected and recovered from by using a traditional deadlock detection and re-
covery technique. A simple way to recover from a deadlock is to roll back one of the
deadlocked transactions. Figure 4 is a sample execution sequence that causes a dead-
lock. In this example, both Transaction A and B are unable to commit before the other
transaction releases its locks.

3 Our Approach

In this section we introduce our approach that uses the ordered shared locks for TM. We
first explain how to integrate the ordered shared locks in the TM. After that, we describe
the design of our STM system for Java, and then we explain the implementation of our
approach.

3.1 Integrating Ordered Shared Locks in TM

In our approach, programmers specify some variables as uncooperative variables, and
then the TM system uses ordered shared locks for them. This prevents the rollbacks due
to conflicts on the uncooperative variables and improves the scalability.

Programmers should specify the variables with these properties as the uncooperative
variables:

– They are frequently updated in many transactions.
– They are accessed at most once in each transaction.
– Each transaction accesses at most one uncooperative variable.



708 K. Mizuno, T. Nakaike, and T. Nakatani

Transaction A

Transaction B

time

acquire(size)

acquire(size)

commit

commit

clears the on-hold 

status of size

s = ++size;

s = ++size;

release(size)

release(size)commit
(on hold)

Fig. 5. Sample execution sequence for hash table using our approach

The variables that satisfy the first property cause frequent conflicts in the standard TM
systems. The ordered shared locks are suitable for such variables because they prevent
the rollbacks due to the conflicts. The other two properties avoid rollbacks. If one of
these two properties does not hold, rollbacks can occur due to situations such as illus-
trated in Figure 4. We think these two properties are acceptable because our motivation
is to remove the rollbacks caused by a few uncooperative variables.

In order to integrate the ordered shared locks into the TM, we divided the relinquish-
ing rule described in Section 2 into two rules. Now the constraints of the ordered shared
locks can be interpreted as:

Acquisition Rule. If Transaction A acquires a lock on object X before Transaction B
acquires a lock on object X, then the operation on X in Transaction A must precede
the operation on X in Transaction B.

Committing Rule. A transaction may not commit as long as any of its locks is on hold.
Relinquishing Rule. A transaction may not release any lock before it commits or

aborts.

We say a transaction is ready to commit when it reaches the end of the transaction
and none of its locks is on hold. The conflict detection for the variables other than
the uncooperative variables is included in the commit operation when we are using
the lazy conflict detection. It should be executed after the transaction becomes ready to
commit, although it can be executed speculatively before the transaction becomes ready
to commit to detect conflicts and abort more quickly. Figure 5 shows a sample execution
sequence for the example in Figure 1 using our approach. Now the two transactions
successfully commit and size is incremented twice.

A transaction with ordered shared locks will roll back in these situations:

– When a conflict occurs in variables that do not use ordered shared locks.
– When a deadlock is detected in the transaction.
– When a transaction that this transaction is waiting for is rolled back. (A cascading

rollback.)

The first situation is the same as the original TM. The main benefit of the ordered shared
lock is that the uncooperative variables do not cause any rollback in this situation. The
second and the third situations are caused by the ordered shared lock.

Our approach is strongly serializable [7], which means that the transactions are seri-
alizable in the order of the commit operations, as long as it is applied to a TM system
that is also strongly serializable. To prove this, we need to check this property: The



Reducing Rollbacks of Transactional Memory 709

JIT compiler

JVM

public void foo1(){
while (true){

try {
TM.begin();
…
this.a = 1;
foo2(this.a);
…
TM.end();
break;

} catch (Abort e){
}

}
}

Write-set

Read-set

Status

Write-set

Read-set

Status

Write-set

Read-set

Status

Write-set

Read-set

Status

STM runtime libraries

Write-set

Read-set

Status

Write-set

Read-set

Status

foo1:
…
call _begin
…
call _write(&this.a,1)
call _read(&this.a)
…
call foo2
…
call _end
…

Java source code

Compile

Compiled code

Call

100 0

65 0

11 0

37 0

890 0

7 0

495 0

Version number Lock-bit

Ownership record tableTransaction descriptor

Manage

Fig. 6. Overview of Our STM System

commit operation of Transaction A must finish before the beginning of the commit op-
eration of Transaction B if Transaction B reads the value of the variable that Transaction
A wrote. If the variable is an uncooperative variable, this property is guaranteed by the
three rules of this section. If the variable is not an uncooperative variable, this property
is satisfied as long as the TM system is strongly serializable. Most TM systems that use
lazy conflict detection guarantees this property by executing the validation and commit
atomically.

3.2 Design of a Java STM

Figure 6 shows an overview of our Java STM system. It consists of an STM runtime
library that is based on an IBM STM for C/C++ [8], and a JIT compiler that generates
code that calls the runtime library.

The JIT compiler generates two versions of JIT-compiled code for each method in-
voked in a transaction: a non-transactional version and a transactional version [9,10]. In
the transactional version, the stm read or stm write function of the runtime library
is called when the code accesses the heap area. Transactions are specified using special
methods named TM.begin() and TM.end().

We used lazy conflict detection and lazy versioning [9,11]. With lazy versioning, the
results of the write operations in a transaction are buffered to a transaction-local data
structure. The results are reflected to the shared variables when the transaction suc-
cessfully commits, but they are discarded if the transaction rolls back. The alternative
is eager versioning [10,12], which stores the result of a write operation directly in the
shared variable, and copies the old values to a transaction-local data structure in order
to write them back to the shared variable if the transaction rolls back.

To simplify the memory management of the STM runtime, we do not require the
STM operations to be non-blocking, but instead we use locking to access the meta-
data [12]. We devised a simple mechanism to avoid starvation in which a long-running
transaction is repeatedly aborted by short running transactions. When the number of



710 K. Mizuno, T. Nakaike, and T. Nakatani

0

0

0

0

lock flag

lock list

next

tail

head

address 0x006b01b0

value

removed

transaction id

operation

13

false

1

write

13

true

5

read

28

false

3

write

next

tail

head

address 0x00c8f2b0

value

removed

transaction id

operation

312

fase

4

read

Fig. 7. Data Structure to Control Ordered Shared Lock

rollbacks of a transaction exceeds a threshold, the transaction acquires a lock to prevent
the other transactions from proceeding to the commit process.

Our Java STM system provides weak atomicity, and thus it does not guarantee the
safety of publication or privatization [11,13].

When garbage collection (GC) occurs, we abort all of the transactions. This is be-
cause GC may move objects and invalidate the metadata of the transactions. We use
periodic validations to avoid infinite loops due to inconsistent reads. When an incon-
sistent read causes an exception such as a “divide by zero” exception, the TM system
catches the exception and executes the usual cleanup operations in TM.end(). If the
exception is caused by an inconsistent read, then the validation fails and the transaction
rolls back.

3.3 Implementation of Our Approach

In this subsection we describe our implementation of the ordered shared lock in our
Java STM system. This implementation is based on the description in [5,6].

Figure 7 shows the data structure used to control the ordered shared locks. The sys-
tem provides a lock list for each variable that uses the ordered shared locks. The lock
list is implemented using an array and the array contains transactions which hold the
ordered shared lock in the order of lock acquisition. The list also contains the types of
the operations (read or write), flags that indicate whether the entry was removed due to
a rollback, and the values that the transactions read or wrote. A write operation stores
the value in the lock entry and it is reflected into the shared variable in the commit
operation. A read operation reads the value from the preceding lock entry if it exists.
The lock lists are stored in a hash table using the addresses of the variables as keys.
Chaining is used when a hash collision occurs.

Each record of the hash map has a lock flag field. In order to satisfy the acquisition
rule, the lock acquisition and a read or write operation are executed atomically using the
lock flag: the transaction sets the lock flag, appends an entry to the lock list, executes



Reducing Rollbacks of Transactional Memory 711

the operation, and then clears the lock flag. We also implemented a method that adds a
specified value to a specified variable atomically for use in increment or += operations.
If such operations are executed as a combination of read and write operations, another
transaction may access the variable in the middle of the operations. This may cause a
deadlock.

In order to implement the commit rule, each transaction has a variable named
wait_count, which indicates the number of locks that are on hold. The variable is in-
cremented when the transaction acquires a lock that will be on hold. When a transaction
releases a lock in a commit or rollback operation, it decrements the wait_count for
the transaction whose lock released the on-hold status. When a transaction reaches its
end, it waits until wait_count becomes zero before executing the validation. To de-
tect a deadlock, the transaction will be rolled back if it times out before wait_count
becomes zero. This approach has little overhead for the deadlock detection, but it causes
a significant slowdown when a deadlock occurs. We chose this approach because the
properties of the uncooperative variables described in Section 3.1 avoid deadlock and
the deadlock detection mechanism is rarely triggered.

4 Experiments

This section describes the benchmark experiments that we watched to analyze the per-
formance of our approach.

4.1 Benchmark Programs

We tested three programs: a small program intensively accessing HashMap, the SPEC-
jbb2005 [14] benchmark, and the hsqldb benchmark [15] in the DaCapo benchmarks
[16]. We executed them in the synchronized mode, the TM mode without ordered shared
locks, and the TM mode with ordered shared locks. In the synchronized mode, each
critical section is guarded using Java’s synchronized block. In the TM modes, each
critical section is executed as a transaction. We used 10-millisecond intervals for the
periodic read-set validations in the TM modes. We executed the benchmarks on Red
Hat Enterprise Linux Server release 5.1 on a 16-way POWER6 machine. Our STM
system for Java is based on the IBM 64-bit JVM version 1.5.0. We used 8 GB of Java
heap to minimize the GC events in our experiments.

HashMap. We implemented a benchmark program for java.util.HashMap. In our
benchmark, a HashMap object is first filled with 1,000 elements and then each thread
calls one of the get, put, or removemethods in a critical section. The critical section
is guarded by synchronizing the HashMap object, but it is executed as a transaction in
the TM modes. When a thread calls the put method, it always puts a new entry rather
than updating an existing entry. The transactions are 95% calls to get, 2.5% calls to
put, and 2.5% calls to remove.

For the TM mode with ordered shared locks, we specified as an uncooperative variable
the variable named elementCount, which holds the number of elements and which
is updated in the put and remove methods. In the put method, this variable is also
used to check if it exceeds the threshold to resize the table. We set the initial size of the
HashMap large enough to prevent any resize operations during an experimental run.



712 K. Mizuno, T. Nakaike, and T. Nakatani

SPECjbb2005. We used a modified version of SPECjbb2005. The original SPECjbb-
2005 prepares a thread-local data structure called a warehouse to avoid lock contentions.
We modified it to share a single warehouse for all of the threads, similar to the imple-
mentation of Chung et al. [17]. Each SPECjbb2005 transaction (such as new order or
order status) is executed in a critical section. However, the JBBDataStorage2 trans-
action that traverses multiple tables is divided into multiple critical sections, each of
which traverses one table. The critical sections are guarded by synchronizing the ware-
house object in the synchronized mode.

For the TM mode with ordered shared locks, we specified as an uncooperative vari-
able the variable named historyCount, which is always updated in a SPECjbb2005
transaction named DeliveryTransaction.

Hsqldb. We used the hsqldb benchmark in the DaCapo benchmarks. In this benchmark,
the database tables are placed in memory, and an SQL statement is executed in a critical
section. Hsqldb is not designed to execute SQL statements concurrently, and there is
some shared data that does not actually need to be shared. We modified the code to
avoid rollbacks caused by the shared data:

– There is a counter variable that tracks the number of created objects. It is used to
trigger garbage collection at a specified threshold. We removed the counter since it
provides little benefit in a multi-threaded environment.

– Some hash tables are used to store data that is essentially thread-local. This is im-
plemented as shared data, which we modified to use thread-local hash tables.

– Hsqldb uses object pools to increase the single-thread performance. We disabled
them because they decrease the multi-thread performance.

For the TM mode with ordered shared locks, we specified as an uncooperative vari-
able the variable named currValue in the NumberSequence class. This variable
is used to generate the ID numbers of the database records.

4.2 Result

Figure 8 shows the relative throughput of the benchmarks compared to the single-thread
performance of the synchronized mode. Figure 9 shows the abort ratio, the ratio of
aborted transactions to all of the transactions. The label “OS” denotes the ordered shared
lock in the figures.

In all of the benchmarks, the results of the TM modes are worse than that of the syn-
chronized mode when the number of threads is small. This is because of the overhead
of the software-based TM.

In the HashMap benchmark, our approach shows a low abort ratio because we elim-
inated the conflicts on the uncooperative variable. However, the throughput was de-
graded because the path length of the commit operation is relatively long in the kernel
loop of this benchmark. In our approach, the commit operations in transactions that ac-
cess the same uncooperative variable are serialized because no transaction can start a
commit operation until the preceding transactions release the ordered shared lock. As

2 Implemented using java.util.TreeMap.



Reducing Rollbacks of Transactional Memory 713

Fig. 8. Relative throughput compared to the single-thread performance of the synchronized mode
(higher is better)

Fig. 9. Abort ratio (lower is better)

the number of rollbacks is reduced, it will be more beneficial when HashMap is used in
larger transactions.

Our approach did not improve the performance of the modified SPECjbb2005 bench-
mark. In this benchmark, reducing the conflicts on one uncooperative variable does not
reduce the abort ratio. There are other variables that cause conflicts but which are not
suitable for the ordered shared lock.

Finally, the results for the hsqldb benchmark were greatly improved. The throughput
increased by 157% on 8 threads and by 45% on 16 threads compared to the TM mode
without ordered shared locks. The uncooperative variable was the primary cause of the
conflicts, thus the ordered shared lock had provided a great benefit. On the down side, the
abort ratio was increased when there were more than 8 threads. This seems to be caused
by cascading rollbacks. When the abort ratio is very high, our approach causes further
rollbacks due to the cascading rollbacks, which reduces the benefit of our approach.

5 Related Work

In order to reduce the costs of rollbacks, various kinds of nested transactions have been
introduced. However, none of them are beneficial for the variables whose values affect



714 K. Mizuno, T. Nakaike, and T. Nakatani

the execution of other parts of the transaction. For example, with closed nesting [18], the
conflicts in an inner transaction are detected at the end of the inner transaction, so only
the inner transaction is rolled back. Unfortunately, this provides no benefit when the
conflicts occur between the end of the inner transaction and the end of the outer trans-
action. Open nesting [18] solves this problem, but the results of the inner transaction
must not affect the other parts of the outer transaction. It is not applicable to transactions
such as put in Figure 1, which use the results of increment operations. With abstract
nesting [19], only an inner transaction is rolled back when conflicts caused by the inner
transaction are detected at the end of the outer transaction. However, this provides no
benefits if the result of the re-execution of the inner transaction affects other parts of the
outer transaction.

The correctness of TM was discussed in [20]. This work introduces a correctness
criterion called opacity that captures the inconsistency of reads. We did not use this
approach since we can safely detect the exceptions caused by inconsistent reads in Java.

The ordered shared lock was proposed by Agrawal et al. [4,5,6]. The analysis of [5]
showed that the ordered shared lock improves the performance for database workloads
with large numbers of data contentions. The ordered shared lock has also been applied
to real-time databases in [6] to eliminate blocking.

6 Conclusion

We proposed an approach that uses the ordered shared lock in TM systems. In this
approach, frequently conflicting variables that are accessed only once in each transac-
tion are controlled by ordered shared locks and the other variables are controlled by a
normal conflict detection mechanism of the TM. This approach improves the scalabil-
ity because we can reduce the conflicts caused by the uncooperative variables. In our
experiments, we improved the performance of an hsqldb benchmark by 157% on 8
threads and by 45% on 16 threads compared to the original STM system.

References

1. Herlihy, M., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-Free Data
Structures. In: 20th Annual International Symposium on Computer Architecture, pp. 289–
300. ACM Press, New York (1993)

2. Hammond, L., Wong, V., Chen, M.K., Carlstrom, B.D., Davis, J.D., Hertzberg, B., Prabhu,
M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional Memory Coherence and Con-
sistency. In: 31st Annual International Symposium on Computer Architecture, pp. 102–113.
ACM Press, New York (2004)

3. Fraser, K., Harris, T.: Concurrent Programming Without Locks. ACM Trans. Comput.
Syst. 25(2), 1–61 (2007)

4. Agrawal, D., Abbadi, A.E.: Locks with Constrained Sharing. In: 9th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 85–93. ACM Press,
New York (1990)

5. Agrawal, D., Abbadi, A.E., Lang, A.E.: The Performance of Protocols Based on Locks with
Ordered Sharing. IEEE Trans. Knowl. Data Eng. 6(5), 805–818 (1994)



Reducing Rollbacks of Transactional Memory 715

6. Agrawal, D., Abbadi, A.E., Jeffers, R., Lin, L.: Ordered Shared Locks for Real-Time
Databases. VLDB J. 4(1), 87–126 (1995)

7. Breitbart, Y., Garcia-Molina, H., Silberschatz, A.: Overview of Multidatabase Transaction
Management. VLDB J. 1(2), 181–239 (1992)

8. XL C/C++ for Transactional Memory for AIX,
http://www.alphaworks.ibm.com/tech/xlcstm/

9. Harris, T., Fraser, K.: Language Support for Lightweight Transactions. In: 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applica-
tions, pp. 388–402. ACM Press, New York (2003)

10. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman, T.: Com-
piler and Runtime Support for Efficient Software Transactional Memory. In: ACM SIGPLAN
2006 Conference on Programming Language Design and Implementation, pp. 26–37. ACM
Press, New York (2006)

11. Shpeisman, T., Menon, V., Adl-Tabatabai, A.R., Balensiefer, S., Grossman, D., Hudson, R.L.,
Moore, K.F., Saha, B.: Enforcing Isolation and Ordering in STM. In: ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation, pp. 78–88. ACM Press,
New York (2007)

12. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM: A
High Performance Software Transactional Memory System for a Multi-Core Runtime. In:
11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
187–197. ACM Press, New York (2006)

13. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.R., Hudson, R.L., Saha, B.,
Welc, A.: Practical Weak-Atomicity Semantics for Java STM. In: 20th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, pp. 314–325. ACM Press, New York (2008)

14. SPECjbb2005, http://www.spec.org/jbb2005/
15. hsqldb, http://hsqldb.org/
16. The DaCapo benchmark suite, http://dacapobench.org/
17. Chung, J., Minh, C.C., Carlstrom, B.D., Kozyrakis, C.: Parallelizing SPECjbb2000 with

Transactional Memory. In: Workshop on Transactional Memory Workloads (2006)
18. Moss, J.E.B., Hosking, A.L.: Nested Transactional Memory: Model and Architecture

Sketches. Sci. Comput. Program. 63(2), 186–201 (2006)
19. Harris, T., Stipic, S.: Abstract Nested Transactions. In: The 2nd ACM SIGPLAN Workshop

on Transactional Computing, TRANSACT 2007 (2007)
20. Guerraoui, R., Kapalka, M.: On the Correctness of Transactional Memory. In: 13th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 175–184.
ACM, New York (2008)

http://www.alphaworks.ibm.com/tech/xlcstm/
http://www.spec.org/jbb2005/
http://hsqldb.org/
http://dacapobench.org/

	Reducing Rollbacks of Transactional Memory Using Ordered Shared Locks
	Introduction
	Ordered Shared Lock
	Our Approach
	Integrating Ordered Shared Locks in TM
	Design of a Java STM
	Implementation of Our Approach

	Experiments
	Benchmark Programs
	Result

	Related Work
	Conclusion


