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V V Frolov2, J C Driggers10, A Pele2, A L Urban5, G Valdes5,

R Abbott1, C Adams2, R X Adhikari1, A Ananyeva1,

S Appert1, K Arai1, J S Areeda3, Y Asali4, S M Aston2,

A M Baer6, M Ball7, S W Ballmer8, S Banagiri9, D Barker10,

L Barsotti11, J Bartlett10, B K Berger12, J Betzwieser2,

D Bhattacharjee13, G Billingsley1, S Biscans11,1, C D Blair2,

R M Blair10, N Bode14,15, P Booker14,15, R Bork1, A Bramley2,

A F Brooks1, D D Brown16, A Buikema11, C Cahillane1,

K C Cannon17, X Chen18, A A Ciobanu16, F Clara10,

S J Cooper19, K R Corley4, S T Countryman4, P B Covas20,

D C Coyne1, L E H Datrier21, D Davis8, C Di Fronzo19,

K L Dooley22,23, P Dupej21, S E Dwyer10, T Etzel1, M Evans11,

T M Evans2, J Feicht1, A Fernandez-Galiana11, P Fritschel11,

P Fulda24, M Fyffe2, J A Giaime5,2, K D Giardina2,

P Godwin25, E Goetz5,13, S Gras11, C Gray10, R Gray21,

A C Green24, E K Gustafson1, R Gustafson26, J Hanks10,

J Hanson2, T Hardwick5, R K Hasskew2, M C Heintze2,

A F Helmling-Cornell7, N A Holland27, J D Jones10,

S Kandhasamy28, S Karki7, M Kasprzack1, K Kawabe10,

N Kijbunchoo27, P J King10, J S Kissel10, Rahul Kumar10,

M Landry10, B B Lane11, B Lantz12, M Laxen2,

Y K Lecoeuche10, J Leviton26, J Liu14,15, M Lormand2,

A P Lundgren29, R Macas22, M MacInnis11, D M Macleod22,

G L Mansell10,11, S Márka4, Z Márka4, D V Martynov19,

K Mason11, T J Massinger11, F Matichard1,11, N Mavalvala11,

R McCarthy10, D E McClelland27, S McCormick2,

L McCuller11, J McIver1, T McRae27, G Mendell10, K Merfeld7,

E L Merilh10, F Meylahn14,15, T Mistry30, R Mittleman11,

G Moreno10, C M Mow-Lowry19, S Mozzon29, A Mullavey2,

T J N Nelson2, P Nguyen7, L K Nuttall29, J Oberling10,

Richard J Oram2, C Osthelder1, D J Ottaway16, H Overmier2,

J R Palamos7, W Parker2,31, E Payne32, R Penhorwood26,

C J Perez10, M Pirello10, H Radkins10, K E Ramirez33,

J W Richardson1, K Riles26, N A Robertson1,21, J G Rollins1,

ar
X

iv
:2

00
7.

14
87

6v
1 

 [
as

tr
o-

ph
.I

M
] 

 2
9 

Ju
l 2

02
0



Reducing scattered light in LIGO’s third observing run. 2

C L Romel10, J H Romie2, M P Ross34, K Ryan10, T Sadecki10,

E J Sanchez1, L E Sanchez1, T R Saravanan28, R L Savage10,

D Schaetzl1, R Schnabel35, E Schwartz2, D Sellers2, T Shaffer10,

D Sigg10, B J J Slagmolen27, J R Smith3, B Sorazu21,

A P Spencer21, K A Strain21, L Sun1, M J Szczepańczyk24,
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Abstract.

Noise due to scattered light has been a frequent disturbance in the Advanced

LIGO gravitational wave detectors, hindering the detection of gravitational waves.

The non stationary scatter noise caused by low frequency motion can be recognized as

arches in the time-frequency plane of the gravitational wave channel. In this paper, we

characterize the scattering noise for LIGO’s third observing run O3 from April, 2019

to March, 2020. We find at least two different populations of scattering noise and we

investigate the multiple origins of one of them as well as its mitigation. We find that

relative motion between two specific surfaces is strongly correlated with the presence

of scattered light and we implement a technique to reduce this motion. We also present

an algorithm using a witness channel to identify the times this noise can be present in

the detector.

1. Introduction

The LIGO gravitational-wave observatories located at Hanford, Washington (LHO),

and Livingston, Louisiana (LLO) in the USA, along with the Virgo detector in Cascina,

Italy [1], and the GEO 600 detector in Germany [2] are a part of a worldwide network

of gravitational-wave detectors [3]. A schematic of the LIGO detectors is shown in Fig.

1. Each LIGO detector is a dual-recycled Fabry-Perot Michelson interferometer with 4

km arms. The detector acts as a transducer for strain, converting phase shift due to a

gravitational wave into a signal that can be measured on a photo-diode. The output

signal at the photodetectors is calibrated to an equivalent strain signal h(t) [4, 5].

The first two observing runs, in September 2015-January 2016 and November 2016-

August 2017, resulted in spectacular discoveries, including signals from the merger of 10

pairs of black holes and one from a merger of neutrons stars [7–9]. The third observing

run began on April 1, 2019, and ended on March 27, 2020. During this run, plausible

candidates were shared as public alerts, averaging one a week [10]. The average binary

neutron star (BNS) range at Livingston and Hanford, during O3, is approximately 130

Mpc and 110 Mpc respectively. In October 2019, a month-long working break separated

the first and second half of O3, called O3a and O3b respectively. An increase in the

laser input power and squeezed light injection contributed to the increase in range from

O2 to O3 [11].

Noise from several different sources limits the sensitivity of the strain data at

different frequencies. While quantum shot noise is dominant at frequencies above 300

Hz [12], ground motion is the major source of noise below 10 Hz which can affect the
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Figure 1: A schematic of aLIGO detectors taken from [6]

higher frequency band of the detectors. In addition to quantum noise, suspension noise

and seismic noise, short duration noise transients also known as “glitches” can affect the

sensitivity of the detectors [13]. These noise transients can be due to high ground motion,

electronic malfunction or other reasons, not well-understood [14–16]. At aLIGO they

are detected by the Omicron algorithm. Each of these events, also known as omicron

trigger, is annotated with some parameters such as event time, frequency, signal to

noise ratio (SNR) [17, 18]. In this paper, we focus on the type of noise transient due

to scattered light which impacts the gravitational strain in 10 Hz to 120 Hz frequency

band. Identifying and reducing the amount of scattering is imperative to increase the

sensitivity of the detectors.

The paper is composed as follows. In Sec. 2 we give an overview of the sensors

and instruments at the LIGO end stations. Next in Sec. 3, we discuss scattering noise

and mathematically define the phase and amplitude component of the noise. Scattering

noise during O3 is addressed in Sec. 4. In Sec. 5 we provide a mathematical treatment

of slow scattering, a sub-population of the light scattering and discuss the source of the

noise. In Sec. 6 we develop a method to mitigate the slow scattering noise discussed in

Sec. 5. Sec. 7 introduces another source of slow scattering observed during O3. In Sec.

8 we discuss a method to identify scattering times. Finally we summarize the paper in

Sec. 9.

2. Hardware and sensors at LIGO end stations

The site of light scattering discussed in this paper, is the set of mirrors located in the

end station housing. This section describes these mirrors and other hardware, crucial

for an understanding of light scattering. A schematic of the LIGO end station housing

one end test mass [19] of the interferometer arm is shown in Fig. 2. Each station has

a reference seismometer on the floor to monitor ambient seismic noise. The vacuum

system has at the end of the 4km arms large vacuum chambers housing the test masses.
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Figure 2: The schematic of end station housing shows the seismic isolation system, quadruple

suspension, transmission monitor system (TMS), and the seismometer used to measure ground

vibrations. The optical shadow sensor and magnetic actuators (OSEMs) in the quadruple

suspension cage measure relative motion and produce a force on the main and reaction chain.

About 4 ppm of the light power in the arms is transmitted through the end test mass. 95%

of this 4 ppm is dumped and the remaining 5% is split onto the two-quadrant photo-diodes

(QPDs) in the TMS. These QPD’s are used to check for any misalignment of the beam on the

end test mass.

The test mass and a transmitted light monitoring table are suspended from a two-stage

seismic isolation table [20]. The test mass has a double chain, four-layered suspension

for additional isolation [21]. The quadruple suspension chain behind the quadruple

test mass suspension is called the reaction chain. There is additional hardware around

the suspension, most importantly the “cage”: a structure hard bolted to the seismic

isolation table which serves both as a reference and as a safety measure for protecting

against large motions that could damage the suspension.

The suspension for the test mass uses optical shadow sensor and magnetic actuators

(OSEM) at the top three stages as well as an electrostatic drive (ESD) at the test mass

stage. The OSEMs at the top stages measure relative motion and can produce a force

(actuate) between the cage and the two chains. For the upper-intermediate mass (UIM)

and penultimate (PUM) mass stages, the OSEMs measure and actuate in-between the

two chains. The ESD is formed by the installation of 5 gold traces on reaction mass [22].

Applying a voltage on the gold traces, an electrostatic force can drive the test mass.

The reaction mass is a hollow cylinder to allow the transmitted beam to pass without

encountering additional optical surfaces [23].

The transmission monitor is a double suspension with OSEMs at the top stage,

measuring motion with respect to its cage [24]. It houses a telescope to reduce the
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large beam size coming from the arm. The LIGO end test masses have a transmission

of approximately 4ppm, so for an arm power of 250kW as in O3a for the Livingston

detector, the transmitted beam would be about 1W. 95% of this light is dumped and

5% is split about equally between two quadrant photodiodes.

In order to keep the optical cavities in the arms on resonance, LIGO uses the

interferometric signal at the detector output to sense the difference in the arm length.

It then feeds back that signal to one of the end test masses, at different stages of the

quadruple suspension, with a bandwidth of about 60 Hz [6]. As a result, the test mass

chain moves much more relative to the local surfaces, since it has to “account” for

the motion of all other test masses. The main pendulum frequency of the quadruple

suspension is around 0.45 Hz which means that for the drive applied at lower frequencies

at upper stages, the entire chain will move together. The dominant ground motion to

be fed back is indeed below this frequency. Furthermore, because most of the drive is

applied in between the chains, the test mass chain moves twice as much relative to the

reaction chain. The test mass motion relative to other surfaces like the transmission

monitor, the cage or the vacuum chamber walls is half of the motion measured by the

OSEM at the UIM or PUM level, below 0.45 Hz.

Each LIGO detector is equipped with several hundreds of auxiliary sensors, used

in the feedback control system and in the environmental monitoring system. Many

of these channels are not sensitive to differential arm length and are used to identify

various environmental and physical couplings to the detector. Ground motion in various

frequency bands, for example, is measured by seismometers located at end stations and

corner station. These seismometers record ground motion in X, Y and Z direction in

the frequency range from 0.03 Hz to 30 Hz. Earthquakes shake the ground in 0.03− 0.1

Hz band while seismic noise due to trains and human activity near the site, also known

as anthropogenic noise, shows up in the 1 − 3 Hz region. Ocean waves and sea storms

produce seismic waves with frequencies ranging from 0.03 − 0.5 Hz, also known as

microseisms. While the secondary, and dominant, microseism peak is typically measured

around 0.15 Hz [25, 26], it varies in frequencies and was strongest at 0.13 Hz for this

analysis. As we discuss later, the output of these sensors is used to look for correlations

with noise transients in the strain data.

3. Scattering Noise

Tiny imperfections on the surfaces of test mass mirrors in the interferometer cause a

small amount of light to scatter out of the main beam. This scattered light can then

reflect from surfaces that have large relative motion relative to the test mass such as the

chamber walls and then back to the test mass. Upon recombining with the main beam,

the scattered light introduces noise in the gravitational wave data. The amplitude of

the noise depends on how much light recombines with the main beam, and the upper

frequency depends on the relative motion.

The motion of the scatterer introduces an additional phase in the field reflected
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from its surface. Consider a small fraction A of the total field that gets scattered back

to the main beam, from a scattering surface located behind the end test mass (ETM).

This light will acquire an additional phase due to the path length modulation caused by

the relative motion between the end test mass and the scatterer. The resulting phase

noise can be formulated as:

hph(f) = A
λ

8πL
F [sin δφ(t)] (1)

φ(t) = φ0 + δφsc(t) =
4π

λ
|x0 + δxsc(t)| (2)

λ is the laser wavelength, x0 is static path that corresponds to the static phase φ0

while δxsc is the time-dependent displacement of the scattering surface which gives rise

to additional phase δφsc(t), F is the Fourier transform [27–29].

The build up of this phase shifted field in the arms by the factor Γ pushes on the

mirrors resulting in radiation pressure noise. This radiation component of the noise can

be expressed as:

hrad(f) = A
2ΓP

Mc

2

Ω2 − ω2
F [cos δφ(t)] (3)

Γ = 13.58 here is cavity signal gain, M = 40 kg is the mass of mirrors, P is the power

in the arms, c is speed of light and Ω is the suspension eigenfrequency [30].

Figure 3: Scattering noise shows up as arches in the time-frequency spectrograms. The

stacked arches suggests a scatter path that involves multiple reflections of stray light between

the test mass and the scatterer.

Scattering noise can be recognized as arches in time-frequency spectrograms as

shown in Fig. 3. The peak frequency of these arches tells us the number of fringes per

second and can be related to the velocity of the scatterer, vsc with the following relation:

ffringe(t) =

∣

∣

∣

∣

2nvsc(t)

λ

∣

∣

∣

∣

(4)

where ffringe(t) is the fringe frequency and n is the number of times stray light gets

reflected back and forth between the test mass and the scatterer before it joins the main

beam. This equation can be derived by calculating the rate of change of phase from Eq.

2. We can also look at the spacing of the peaks in the time domain to give us half the

period of the scattering surface.
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4. Scattering in O3

The BNS range of the detectors, which is the average astrophysical range for binary

star mergers, increased to 110-140 Mpc in O3, from 80-100 Mpc in O2 [11] Due to

this improvement in sensitivity and the enhanced stability of the interferometer which

allows the detector to stay operational during high microseismic activity, some of the

transients of similar origin in O2 and O3 now surface with higher signal to noise ratio

(SNR). Consequently, we see a lot more scattering arches in O3. An interesting feature

of scattering in O3 is the presence of two different populations of scattering triggers, so-

called the “slow” scattering and the “fast” scattering at both LLO and LHO. The glitch

morphology of the slow scattering is the more familiar arch in time-frequency plane as

shown in Fig. 3. The fast scattering triggers are more localized in time and occur with

lower SNR compared to slow scattering. Table 1 compares different characteristics of

slow and fast scattering triggers as classified by a noise classification tool GravitySpy

discussed in Sec. 8.

(a) Slow scattering arches. (b) PUM stage motion during light scattering.

Figure 4: The first image shows time-frequency representation of slow scattering. This

is an unusual number of arches due to extremely high ground motion in the 0.03 - 0.1 Hz

(earthquake) and 0.1 - 0.3 Hz (microseism) bands on April 5, 2019. The second image shows

the PUM stage motion between the chains for the same time period. As mentioned in Sec. 2,

the PUM stage OSEM records twice the displacement of the main chain.

4.1. Slow Scattering.

In time-frequency spectrograms, slow scattering triggers resemble an arch. Fig. 4a.

shows slow scattering in h(t) for a day with large ground motion. As shown in this

figure, the arches have a period of ∼ 7 seconds, and from this we can derive the scattering

surface is moving with a frequency close to 0.13 Hz which corresponds to one of the peaks

in microseism [31]. Slow scattering is dominant during high ground motion in 0.03 - 0.1

Hz (earthquake) and 0.1 - 0.3 Hz (microseism) band. These arches reach high frequencies

during larger ground motion and so it is more visible above the quite background noise

in the differential arm cavity (DARM). During O3, it was particularly strong on Dec 1,

2019 and January 6, 2020 due to high levels of ground motion on both of these days at

LLO. Depending on the ground motion, slow scattering creates “scatter shelves” in the

frequency band 10 Hz to 120 Hz in h(t) spectra.
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(a) Fast scattering triggers.

(b) Anthropogenic band ground motion.

(c) Omicron trigger rate.

Figure 5: The figure on the left shows the fast scattering triggers in time-frequency plane at

LLO. Each “arch” contains multiple sub-arches. Fast scattering triggers correlate well with

high ground motion in the 1 - 3 Hz (anthropogenic) band. The top right figure shows the

ground motion in the 1 - 3 Hz band at X and Y end of the detector at LLO on Feb, 9, 2020.

The bottom right figure shows the rate of omicron triggers in the frequency band 10 to 50 Hz

for the same duration.

4.2. Fast Scattering.

The fast scattering triggers shown in Fig. 5a occur with a frequency ∼ 4 Hz [32].

This population of scattering correlates with increased ground motion in the 1 - 3 Hz

(anthropogenic) and 0.1 - 0.3 Hz (microseism) band. It is normally higher in the daytime

during the weekdays. Human activity near the site and trains passing on the track near

the Y end station at LLO shakes the ground in these frequency bands. These triggers

affect the h(t) sensitivity in the band between 10 and 50 Hz.

Properties Slow scattering triggers Fast scattering triggers

Frequency of arches below 0.2 Hz above 4 Hz

Median Peak Frequency 20.6 Hz 34.6 Hz

Median SNR 37.6 11.0

Median duration 3.2 sec 1.3 sec

% of total scattering 40.2 % 59.7 %

Table 1: Comparison of slow and fast scattering triggers in O3a at LLO as identified by

GravitySpy above a confidence of 90% and SNR above 10.
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The striking differences in the glitch morphology, the peak frequency, SNR, and the

duration for slow and fast scattering triggers suggest that they have separate mechanisms

through which the noise couples to the detector. Fig. 6 shows the SNR and duration

of total scattering triggers in O3a. Both distributions reveal the presence of more than

one population of scattering triggers. We concentrate in this paper on slow scattering

triggers and will not investigate fast scattering further. In the next section, we provide

a detailed description of slow scattering noise.

(a) SNR distribution for scattering in O3a. (b) Duration distribution of scattering in O3a.

Figure 6: The SNR and duration histograms for total scattering in O3a at LLO reveal the

presence of two populations the fast and slow scattering. Slow scattering tends to be louder

and long duration. During notably high micro-seismic motion, there are several more slow

scattering arches, that causes the third bump in the duration plot.

5. Slow Scattering noise mechanism

For most of the first three aLIGO observing runs, slow scattering noise occasionally

polluted the h(t) spectra during periods of high ground motion in 0.1-0.3 Hz band.

The characteristic scattering arches indicated that there were wavelength-scale or larger

modulations of the scattering path. As described in Sec. 2 an external drive is applied

to the test mass chain to keep the optical cavities on resonance. Because the ground

moves differently at the ends of the 4 km long cavities, this drive can lead to micron-

scale relative motion between the end test mass (ETM) and other objects in its vicinity,

making this region a good candidate for the source of scattering arches.

Several clues pointed specifically towards a scattering path involving the annular

end reaction mass (AERM): first, the presence of several harmonics of the arches or

scattering shelves, indicated that significant fractions of the light traversed the scattered

light path more than once. This eliminated several potential paths, such as to light

baffles or enclosure walls, because imperfect reflections on these other paths would

likely cause the loss of much more than 90% of the power in each successive round

trip. Second, the observation of similar harmonic series of arches at both LHO and

LLO suggested that the noise was not due to an improbable alignment. And, third,

micron-scale relative motions were recognized between upper stages of the test mass

and reaction mass chains, suggesting that the scattering surfaces were likely between
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the chains. The relative movement between the ETM and AERM, δxsc in Eq. 2, is

Figure 7: The reaction chain pushes on the main chain to keep the detector on resonance.

Control is applied via coil actuators as shown in Fig. 2 and electrostatic drive as shown here.

This fluctuates the distance between the AERM shown on the left and ETM shown on the

right. A part of the light reflected back from the gold electrostatic drive joins the main beam

in the arm with an additional phase. The changing difference in the phase between the two

beams introduces noise by causing light modulation at the gravitational wave detection port.

Multiple bounces between the ESD trace and the end test mass show up as multiple arches in

the h(t) spectrograms.

not directly sensed, but at low frequencies (relative to the .45 Hz pendulum resonance )

the motion between the ETM and AERM is similar to the motion that is sensed at the

penultimate (PUM) stage of the compound pendulum. This allows us to approximate

the motion between the end test mass and the reaction mass with that of PUM stage.

As shown in Fig. 8a the fringe frequency of the PUM stage motion and its higher

harmonics, calculated using Eq. 4, match scattering arches in h(t) spectrograms.

During operations, most of the light transmitted through the ETM goes through

the reaction mass hole and onto the other side of the reaction chain as shown in Fig. 7.

A small fraction of this Gaussian beam hits the gold trace electro-static drive (ESD),

referred in Sec. 2, on the AERM. Due to its high reflectivity, almost all of the light is

back scattered towards the test mass and a fraction of that is transmitted back to the

arm through the ETM. This back scattered field with an additional phase shift, given

by Eq. 2, interferes with the main beam in the arms and introduces phase noise in h(t).

Let E0 be the field in the arms and Eesd is the part of this field backscattered from

the end reaction mass at the point E0 is computed. We can calculate the total field in

the arms:

Etot = E0 + Eesd (5)

Eesd = E0Ae
iδφ(t), A = Tend

√

fr (6)

Etot = E0[1 + Aeiδφ(t)] (7)

Tend is the ETM transmission (4e−6), fr is the fraction of the power incident on the
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gold trace ESD. The calculation for Eesd involves two transmissions through the ETM

and one reflection from the ESD.

The phase noise hph(f) and the radiation noise hrad(f) due to this back scattered

field is given by the Eq. 1 and Eq. 3 respectively. The total effective displacement

power spectrum S(f) can be obtained by adding the individual contributions:

S(f) =
√

hph(f)2 + hrad(f)2 (8)

(a) PUM stage fringe frequency overlaid on h(t)
scattering arches.

(b) PUM stage amplitude spectral density overlaid on
h(t) spectrum.

Figure 8: In the left figure, we have overlaid the multiple harmonics of the fringe frequency

due to the penultimate (PUM) stage motion onto scattering arches. In the right figure, we

have plotted the DARM spectrum during the scattering noise shown in the left figure and

the spectrum calculated from the PUM stage motion using Eq. 8. DARM spectrum during

a quieter time is shown as the black curve for comparison. The arches in the spectrogram on

the left show up as shelves in the spectra on the right. Also, notice that the height for each

successive shelf falls by a factor of 10.

Fig. 8b shows the total power spectrum for a scattering event on Jan 6, 2020 at

LLO. The first shelf in the h(t) spectrum matches for
√
fr = 2e−4, roughly consistent,

within an order of magnitude with a previous estimation [33]. The coefficient for second

and third shelf are 5e−5 and 5e−6 respectively, about an order of magnitude reduction

for each higher harmonic. We performed similar analysis for several scattering triggers

and did not find significant deviations in the magnitude of these coefficients for each

shelf. The amplitude of the scatter shelf for (n + 1)th harmonic is approximately 10%

of nth harmonic, as suggested by these reflection coefficients. This can also be observed

in Fig. 8b.

6. Noise mitigation using suspensions control system

Scattered light due to the large relative motion between the test mass chain and reaction

chain during high ground motion has adversely affected the sensitivity of the detector.

One way to reduce this noise coupling is by reducing the relative motion between the

ETM and AERM while keeping the intended relative motion between the ETM and the

input test mass (ITM) in the arm cavity. This can be achieved by sending a part of
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the drive from the PUM stage and feeding it to the top stage as shown in Fig. 2. This

will cause the two chains to move together and hence will reduce the relative motion

between them. The reaction chain “tracks” the main chain and we call this RC tracking

[34]. The reduced relative motion effectively decreases the frequency at which scattering

creates shelves in h(t) spectrum.

RC tracking was implemented on Jan 7, 2020, at LLO [35]. To understand the

impact of the tracking on slow scattering caused by ETM-AERM relative motion, we

measured the SNR of scattering triggers and ground motion in the earthquake and

microseism band between Nov 1, 2019, the start of O3b and Feb 8, 2020. We analyze

triggers that are classified as scattering by Gravityspy with a confidence above 0.9. We

divided this data into Pre and Post RC, where for LLO Pre RC is from Nov 1, 2019, to

Jan 6, 2020, and Post RC is from Jan 10, 2020, to Feb 8, 2020, and for LHO Pre RC is

from Nov 1, 2019, to Jan 14, 2020, and Post RC is from Jan 15, 2020, to Feb 28, 2020.

The analyzed data is normalized by the observing duration of Post RC considered in

this study, which is ∼ 21 days for LLO and ∼ 34 days for LHO. Next, we considered

time segments during which the ground motion in the microseismic band is similar Pre

and Post RC tracking and plotted the SNR distribution of scattering triggers during

these time segments. We found a clear reduction in the SNR of the scattering triggers

at LLO and LHO for the Post RC scattering [36]. At LLO for example, the number

of triggers in the SNR bin 20-25 after RC tracking is 89, while for the same bin, before

RC tracking, LLO registered 1127 scattering triggers. The SNR comparison is shown in

Fig. 9a and Fig. 9b.

We also compared the rate of scattering triggers against the microseismic ground

motion for Pre and Post RC tracking. Here again, we found that for similar levels of

microseism above 1µm/s, the Post RC glitch rates are considerably lower as shown in

Fig. 9c. and Fig. 9d [37].

7. Relative motion between test mass and transmitted light monitors

As mentioned in Sec. 2, the control drive sent to the end test mass chain creates relative

motion between the test mass and all other objects in its vicinity, such as the AERM, the

TMS, vacuum chamber walls, or mechanical structures. When motion is high enough,

the phase modulation from this path length difference can show up as scattering arches

in both h(t) and the transmitted light monitors, labelled QPD in Fig. 2. The motion

between the main and reaction chain is twice compared to the motion between test mass

and all other objects. Thus, the scattering shelf/arch due to ETM-TMS relative motion

is observed at one-half the frequency of the scattering shelf/arch due to ETM-AERM

relative motion. This can be seen in Fig. 10a where the first harmonic due to ETM-

AERM scattering is at 40 Hz and the scattering arch due to ETM-TMS scattering is at

20 Hz. Before RC tracking, a scattering shelf in transmitted light monitor at f Hz will

predict scattering shelves in h(t) at f Hz due to ETM-TMS coupling and at 2f , 4f , 6f

and so on due to ETM-AERM coupling. Following RC tracking, a shelf in transmitted
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(a) SNR comparison at LLO. (b) SNR comparison at LHO.

(c) Glitch rate comparison at LLO. (d) Glitch rate comparison at LHO.

Figure 9: The top images compares the SNR of scattering triggers before and after RC

tracking for LLO and LHO. The SNR distribution is plotted during similar levels of before

and after ground motion in the microseism band. The bottom plots compare the scattering

glitch rates for different levels of microseismic ground motion before and after RC tracking.

For the Pre RC tracking microseism ground motion data considered for LHO in this study,

no data was found above 1500µm/s. The scattering triggers for these plots were fetched from

GravitySpy with confidence above 0.9 and SNR above 10.

light monitor at f Hz only corresponds to a shelf in h(t) at the same frequency.

Fig. 10c shows a slow scattering arch in the time-frequency representation, after the

RC tracking was implemented. The lack of multiple arches suggests that the scattering

path does not involve multiple traversals between the test mass and the scatterer. The

TMS-ETM scatter mechanism was confirmed experimentally. Low frequency motion

was injected at the Y end seismic isolation table, forcing the DARM loop to respond by

inducing large motion at the X end test mass and creating a scatter shelf in h(t). The

TMS was then fed the same motion, reducing the relative motion in between it and the

optic and the h(t) scatter shelf disappeared [38–40].

With RC tracking the higher frequency scattering shelves due to ETM-AERM

coupling have gone away. Fig. 11 compares the scattering shelves in h(t) and X

end transmitted light monitor for scattering events before and after RC tracking. The

DARM control signal is sent to one test mass and this results in large relative motion

between the test mass and its surroundings. One remedy to reduce the ETM-TMS

relative motion is to split and apply this control drive at all four test masses forming

the LIGO arm cavities. This will reduce the relative motion by a factor of 4. Further

reduction can be employed by making the TMS follow the test mass chain like in the
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(a) Scattering in h(t) before RC tracking. (b) Scattering in X end QPD before RC tracking.

(c) Scattering in h(t) after RC tracking. (d) Scattering in X end QPD after RC tracking.

Figure 10: The top left plot shows scattering arches in h(t) during a day with very high

microseism. Multiple reflections between the test mass and reaction mass generates the

multiple harmonics. The first harmonic of the light scattering due to ETM-AERM relative

motion is close to 40 Hz with higher harmonics present at ∼ 80 Hz, ∼ 120 Hz. Since the

relative motion between the test mass and TMS is one-half of the ETM-AERM motion, the

scattering arch due to ETM-TMS scattering is at ∼ 20 Hz. The top right plot shows this

scattering arch in the transmitted light monitor. Due to RC tracking the noise due to ETM-

AERM relative motion has reduced considerably. And thus during high ground motion post

RC tracking, only the ETM-TMS noise coupling shows up as scattering arches in h(t) and the

transmitted light monitor as shown in the bottom plots.

test described above and we intend to implement this for the next observing run.

8. Using transmitted light monitors to identify scattering

GravitySpy is an image recognition tool that uses machine learning to classify the variety

of omicron triggers that show up as transient noise in the strain data. It is a citizen

science project and volunteers help to generate the training dataset by assigning one of

the several glitch classes to the spectrogram images. The algorithm assigns each image

a glitch class and a confidence score which represents the probability that the image

belongs to that specific glitch class. We can identify times of transients due to scattered

light by looking at the output of GravitySpy [41, 42].

Another way of identifying the potential scattering triggers is by monitoring the

motion of OSEMS and then correlating it with the presence of the same triggers in the

gravitational wave strain channel in 10 Hz - 60 Hz frequency band. This is accomplished
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Figure 11: The left image shows scattering shelves in X end transmitted light monitor and

h(t) before RC tracking was implemented. The scattering shelf at 10 Hz in h(t) correlates with

ETM-TMS noise coupling, while the higher frequency shelves at ∼ 20 Hz and ∼ 40 Hz are

due to ETM-AERM scattering. The image on the right is for a Post RC tracking scattering

event and higher frequency shelves are absent in h(t) due to reduced relative motion between

the main chain and the reaction chain.

using an algorithm called - gwdetchar-scattering [43].

GravitySpy, even though does not provide any information with regards to where

the scatterer might be located, identifies a larger subset of scattering triggers compared

to that identified by motion in OSEMs. On the other hand, optics motion can be a

more direct method of locating the source of scattering noise since it can identify which

mirror is moving with the velocity required. It thus makes sense to see if we can make

gwdetchar-scattering more “efficient” by adding better scattering witnesses to the

algorithm. In this section, we explore such a witness that can be used to identify the

scattering noise. A method based on Hilbert Huang transform has also been developed

to catch scattering surfaces [44].

In Sec. 7, we showed that the transmitted light monitors serve as a witness of

scattering noise in h(t). Fig. 12 shows a time correlation between the scattering triggers

in h(t) as identified by GravitySpy and the noise in the transmitted light monitor below

20 Hz. Due to the presence of this temporal coincidence of triggers, the noise in this

auxiliary channel can be used to identify the scattering noise in h(t). These channels

can be added to the list of optics, over which the algorithm gwdetchar-scattering

iterates to find scattering in h(t).
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Figure 12: Noise correlation between X end transmitted light monitor and slow scattering

in h(t) channel during the first three months of O3a at LLO. The top plot shows scattering

triggers identified by GravitySpy above a confidence of 0.95 in h(t) and the bottom plot shows

the omicron triggers in X end transmitted light monitor during the same time period. The

vertical lines show the correlation between the scattering in h(t) channel and noise in the

transmitted light monitor channel.

Apart from slow scattering, “Extremely Loud triggers”, which is another class of

triggers characterized by typically high SNR, also makes its way to the transmitted

light monitors. The source of these loud triggers is not well understood but it is not

believed to be related to scattered light, so we would like to remove these triggers from

our analysis. To differentiate the presence of slow scattering noise in h(t) from loud

triggers, we can look at the frequency content of the coincident noise in the transmitted

light monitors. The scattering noise in these witness channels appears in the range 4

- 10 Hz while the triggers coincident with loud glitches in h(t) typically appear with

higher peak frequency.

8.1. Band-limited RMS

To capture the scattering triggers in h(t), we use whitened band-limited root mean

square (RMS) segments constructed from the raw time-series of the transmitted light
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monitors, in the frequency band of interest. A scattering trigger in h(t) shows up as

a spike in these band-limited RMS (BLRMS). By choosing a suitable threshold, we

can create BLRMS segments and then use time coincidence with the Omicron triggers

in h(t) to identify the scattering triggers. Any h(t) triggers that coincide with these

band-limited segments are then written to a file as potential scattering trigger times.

This process is shown in Fig. 13. Before finding time coincidence between the h(t)

triggers and BLRMS segments, we filter the triggers by SNR (between 15 and 200) and

frequency (between 10 Hz and 60 Hz), thus excluding the loud triggers that can pollute

the algorithm.

Figure 13: Flowchart of the process to capture scattering in h(t) by using segments generated

from whitened transmon BLRMS. Transmon or transmitted light monitor’s time series is

whitened and band-passed following which any values above a threshold are converted to

segments. We then look for coincidence between these BLRMS segments and h(t) omicron

triggers filtered by SNR and frequency.

We performed the analysis for O3a, from April 1, 2019, to Sep 30, 2019. The

BLRMS segments identified 3864 h(t) triggers as scattering at LLO while GravitySpy

found 3663 scattering triggers above confidence of 0.8. Three-fourth of the GravitySpy

scattering match with scattering triggers caught by BLRMS segments. 71% of the 3864

triggers caught by BLRMS segments match with GravitySpy output. This suggests that

29% of 3864 or approximately 1120 triggers are false positive with respect to GravitySpy.

The time-frequency spectrograms of 57 randomly chosen trigger times from these 1120

triggers showed that as many as 40 of these were scattering triggers, but they were not
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labelled as scattering by GravitySpy above confidence of 0.8.

(a) (b)

Figure 14: For O3a, the first pie chart shows that most of the triggers vetoed by

BLRMS segments are identified as scattering by GravitySpy above a confidence of 0.8. The

spectrograms of a subset of false positives show most of them are scattering but were labeled

with a confidence lower than 0.8 by GravitySpy. The second pie chart shows that BLRMS

segments caught close to 75 % of the slow scattering that GravitySpy identified above a

confidence of 0.8.

Figure 15: Comparing efficiency over deadtime between OSEMs and BLRMS segments.

This shows that for slow scattering that occurred on Apr 13, May 13 and June 25, 2019,

transmmited light monitor’s band limited RMS segments perform a better job than OSEMs

in identifying it.

We also examined the performance of BLRMS segments against OSEM time series

on 3 days in O3a dominated by slow scattering noise. Fig. 15 shows the efficiency over

dead time for Apr 13, 2019, May 13, 2019, and June 25, 2019. Efficiency is the fraction of

filtered h(t) triggers that coincide with BLRMS segments. Deadtime refers to the total

duration of the segments as a fraction of the total observing duration for that day. A
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large value of efficiency over deadtime is preferred as the goal is accurate identification of

noise. For all the three days, BLRMS segments register higher efficiency over deadtime

than OSEMs scattering segments. The gwdetchar-scattering algorithm with just

OSEMSs as scattering witnesses, is designed to capture the motion of optics throughout

the interferometer. As we have identified the likely location of scattering, we can use a

more specific approach by employing the transmitted photodiodes BLRMS segments to

capture the noise.

Of the two separate noise couplings mentioned in Sec. 5 and Sec. 7, the PUM

stage OSEM is sensitive to only first of these, the ETM-AERM relative motion. And

in principle we expect it to identify as much noise as the BLRMS segments. Following

RC tracking however, the scattering impact due to ETM AERM relative motion has

been reduced whilst having no effect on ETM TMS noise which the PUM stage is not

sensitive to. Post RC tracking slow scattering noise can thus still be identified using the

BLRMS segments.
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9. Summary and discussion

Scattering noise affects the data quality of the Advanced LIGO detectors. Upconversion

of the low-frequency noise due to large optic motion reduces the sensitivity of the

detector in 10 - 120 Hz band. We use witnesses that identify times in the data when

scattering noise is present as well as, when possible, identifying and eliminating the

scatter mechanism in the instrument detector itself.

We analyzed light scattering in LLO during O3 and we found the presence of

two different populations of scattering noise, slow scattering, and fast scattering. We

investigated slow scattering that appears with a typical arch shape in the time-frequency

representation and we found two different paths through which this noise couples to the

detector simultaneously. We were able to implement a solution for the louder noise

coupling that resulted in a substantial reduction of the noise and we discussed possible

remedies for the second one. One of these solutions, the TMS feed forward, we plan to

implement in O4.

In order to identify the times when this noise is present in the gravitational wave

channel, we suggested using the band-limited time-series data of an auxiliary channel.

This channel, monitors the light transmitted through the end test mass and we showed it

identifies a larger subset of scattering triggers as compared to other scattering witnesses.
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