
This is a postprint version of the following document:

Malandrino, F., Chiasserini, C., Einziger, G. y Scalosub, G. (2019).
Reducing Service Deployment Cost Through VNF Sharing. IEEE/
ACM Transactions on Networking, 27(6), pp. 2363-2376.

DOI: https://doi.org/10.1109/TNET.2019.2945127

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

1

Reducing Service Deployment Cost

Through VNF Sharing
Francesco Malandrino, Senior Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,

Gil Einziger, Member, IEEE, Gabriel Scalosub, Senior Member, IEEE

Abstract—Thanks to its computational and forwarding capa-
bilities, the mobile network infrastructure can support several
third-party (“vertical”) services, each composed of a graph of
virtual (network) functions (VNFs). Importantly, one or more
VNFs are often common to multiple services, thus the services
deployment cost could be reduced by letting the services share
the same VNF instance instead of devoting a separate instance to
each service. By doing that, however, it is critical that the target
KPI (key performance indicators) of all services are met. To this
end, we study the VNF sharing problem and make decisions
on (i) when sharing VNFs among multiple services is possible,
(ii) how to adapt the virtual machines running the shared VNFs
to the combined load of the assigned services, and (iii) how to
prioritize the services traffic within shared VNFs. All decisions
aim to minimize the cost for the mobile operator, subject to
requirements on end-to-end service performance, e.g., total delay.
Notably, we show that the aforementioned priorities should be
managed dynamically and vary across VNFs. We then propose
the FlexShare algorithm to provide near-optimal VNF-sharing
and priority assignment decisions in polynomial time. We prove
that FlexShare is within a constant factor from the optimum
and, using real-world VNF graphs, we show that it consistently
outperforms baseline solutions.

I. INTRODUCTION

Emerging mobile networks do not only forward data, but

they can also process the data: based on the software-defined

networking (SDN) and the network function virtualization

(NFV) paradigms, they run virtual (network) functions (VNFs)

and perform network-related (e.g., firewalls) or service-specific

(e.g., video transcoding) tasks. Such processing at the edge

of the network infrastructure allows for lower latency, higher

efficiency, and lower costs compared to current cloud-based

architecture. These new capabilities of network systems bring

forth a new relationship between mobile network operators

(MNOs) and third-party companies (“verticals”) providing the

services. On the one hand, verticals make business agreements

with MNOs, specifying (i) the service they wish to run, defined

by a VNF graph, i.e., the set of VNFs composing the service,

properly connected to each other; (ii) the end-to-end target

key performance indicators (KPIs), e.g., throughput, delay,

or reliability for each service. On the other hand, MNOs

seek to maintain the target KPIs of the deployed services

F. Malandrino and C.-F. Chiasserini are with CNR-IEIIT, Italy. C.-F.
Chiasserini is with Politecnico di Torino, Italy. G. Einziger and G. Scalosub
are with Ben-Gurion University of the Negev, Israel.

This work was supported by the EU Commission through the 5GROWTH
project (grant agreement no. 856709). The work of G. Scalosub has been
supported by the Israel Science Foundation (grant No. 1036/14) and the
Neptune Consortium, administered by the Israeli Ministry of Economy and
Industry.

while minimizing their deployment cost. Inefficiently-used

infrastructure can indeed result into significant costs for the

MNO, thus jeopardizing its revenue: as an example, [1] reports

that idle servers consume 60% of their peak power.

To efficiently support multiple services, the network slicing

paradigm for backhaul infrastructure has been introduced [2].

Under this paradigm, the mobile operator’s backhaul infras-

tructure, e.g., routers and servers, supports services from

different verticals, while guaranteeing isolation and honoring

the target KPIs of each service. Network slicing also supports

composed services (i.e., services whose VNF graphs include

sub-graphs, each corresponding to a child service [3]), thus

enabling the corresponding slices to include common sub-

slices [4], [5]. A typical example of a child service is the

cellular Evolved Packet Core (EPC) [3], which is a common

component of the mobile services required by the verticals.

Upon creating a slice, MNOs must (i) assign it the necessary

resources (e.g., virtual machines and virtual links connecting

them), and (ii) decide which VNFs to run at each host. The

latter problem, known as the VNF placement problem, is often

formulated as a cost minimization problem subject to the target

KPIs. Importantly, significant cost savings can be achieved by

sharing individual VNFs or sub-slices among services, when-

ever possible. The vast majority of VNF placement studies [6]–

[9] consider scenarios where all placement decisions are made

by a centralized entity, often the NFV Orchestrator (NFVO) in

the ETSI Management and Orchestration (MANO) framework

[5], [10]. Also, such an entity is in the position to make fine-

grained decisions on the usage of individual hosts and links.

However, such a scenario is not typical of real-world

implementations. Indeed, ETSI [11, Sec. 8.3.6] specifies four

granularity levels for placement decisions:

• individual host;

• zone (i.e., a set of hosts with certain common features);

• zone group;

• point-of-presence (PoP), e.g., a datacenter.

Real-world mobile networks implementations, including [12]–

[14], assume that the NFVO, or similar entities, make PoP-

level decisions. Placement and sharing decisions within in-

dividual PoPs, instead, can be made by other entities under

different names and with slight variations between IETF [5,

Sec. 3], the NGMN alliance [15, Sec. 8.9], and 5G-PPP [4,

Sec. 2.2.2]. Without loss of generality, in this work we focus

on the last architecture which includes a Software-Defined

Mobile Network Coordinator (SDM-X) illustrated in Fig. 1.

The SDM-X operates at a lower level of abstraction than

the NFVO and makes intra-PoP VNF placement and sharing

Fig. 1. Architectural view of 5G networks according to 5G-PPP. Source: [3].

decisions. Specifically, for each newly-requested service, the

SDM-X has to make decisions on:

• whether any of the VNFs requested by the new service shall

be provided through existing instances thereof;

• if so, how to assign the priorities to the traffic flows of the

different services using the same VNF instance;

• if not, which virtual machine (VM) to instantiate as a new

VNF instance;

• how to adjust (e.g., scale up/down) the computational capa-

bility of VMs within the PoP.

We remark that our work focuses on this VNF sharing

problem, which is different from the one studied in traditional

VNF placement studies. Fig. 2 presents a simple instance of

the VNF sharing problem: the vertical has requested a new

service s2, and the SDM-X decides at which VM to run each

VNF of s2 (this decision is trivial for v4, as there is no existing

instance of it), and how to prioritize the different services

sharing the same VNF.

Contributions. We make the following main contributions

to the VNF-sharing problem:

• We observe that allowing flexible priorities for each VNF

and service allows the MNO to meet the KPI targets at a

lower cost;

• We present a system model that captures all the relevant

aspects of the VNF-sharing problem and the entities it

involves, including the capacity-scaling and priority-setting

decisions it requires;

• leveraging convex optimization, we devise an efficient inte-

grated solution methodology called FlexShare, which is able

to make swift, high-quality decisions concerning VM usage,

priority assignment, and capability scaling;

• we discuss how FlexShare can handle VNF instantiation and

de-instantiation operations;

• we formally analyze the computational complexity of

FlexShare and its competitive ratio relatively to the opti-

mum;

• we study FlexShare’s performance using real-world VNF

graphs.

In the rest of the paper, we begin by motivating the need

for flexible priorities across VNFs (Sec. II). Then Sec. III

introduces our system model and problem formulation, while

Sec. IV describes the FlexShare solution strategy. Sec. V

service s1

service s2

VM m1 VM m2 VM m3 VM m4 VM m5

v1 v2 v3

v3 v4

Fig. 2. Example of the VNF-sharing problem. A PoP is serving service s1,
with VNFs v1–v3 deployed at VMs m1–m3. It is then requested to deploy s2,
using VNFs v3 and v4. No isolation is requested, so services can share VNFs
if convenient. For v4, the only option is devoting an unused VM to it, m5 in
the example (pink line). For v3, instead, there are three options: re-using the
instance of v3 at m3, giving s2 a lower priority than s1 (dashed line); doing
the same but giving s2 a higher priority (dotted line); devoting m4 – currently
unused – to v3 (dash-dotted line), thus having two VMs running v3.

analyzes FlexShare’s performance with respect to the optimal

solution. Our reference scenarios and numerical results are

discussed in Sec. VI. Finally, we review related work in

Sec. VII, and conclude the paper in Sec. VIII.

II. THE ROLE OF PRIORITIES

Before addressing the problem of whether it is convenient to

share a VNF among multiple services or not, let us highlight

the role of priorities while sharing a VNF instance. Three main

approaches can be adopted for VNF sharing:

• per-service priority, associated with each service and con-

stant across different VNFs;

• per-VNF priority, associated with each service and VNF,

thus, given a service, it may vary across different VNFs;

• per-flow priority, associated with individual traffic flows

(e.g., REST queries) belonging to a service, it may vary

across the different VNFs on a per-flow basis.

In Example 1, we focus on the first two steps of the above

flexibility ladder, and show how flexible priority assignment

can increase the efficiency of handling service flows.

Example 1 (The importance of flexible priorities). Consider

the two services, s1 and s2, depicted in Fig. 3, requested by

a vertical specialized in video surveillance systems. Recall

that services are described as VNF graphs; specifically, s2 in-

cludes two VNFs executing transcoding and motion detection,

respectively, while s1 is composed of s2 and a VNF performing

face recognition. Each VNF should run in its own VM, and

assume network transfer times between VMs are negligible.

Adopting a well-established and convenient approach [7],

[8], let us model VNFs as M/M/1 traffic queues processing

traffic flows, and the services as queuing chains, with arrival

rates �1 = 2flows/ms, and �2 = 1flows/ms respectively.

Also, consider service delay as the main performance metric

and let the target average delay be Dmax
1 = Dmax

2 = 1.1ms
for both services. Then assume that when given the allocated

computation resources, the service rate of the transcoding and

motion detection is µtc = µmd = µ = 5flows/ms, while that

of face recognition is µfr = 9.15 flows/ms.

2

s1

s2

transcoding motion
detection

face
recognition

Fig. 3. Example 1: two video surveillance services, s1 and s2, with
s2 including performing transcoding and motion detection VNFs, and s1

composed of s2 and an additional face recognition stage.

To meet the delay targets, s2 flows must traverse the

transcoding and motion detection with a combined sojourn

time of 1.1ms, while s1 flows must do the same in at most

0.96ms (i.e., the target average delay Dmax
1 minus the sojourn

time at the face recognition VNF of 1
µfr−�1

= 0.14ms). We

now show that there is no way of setting per-service priorities

that allow this.

Case 1: Higher priority to s1. This choice would make intuitive

sense since s1 flows have to go through more processing

stages than s2 flows, within the same deadline. In this case,

s1 flows incur a sojourn time of 1
µ−�1

= 1
5−2 = 0.33ms

for each of the common VNFs, resulting in a total delay

D1 = 0.8ms, well within the target. However, the sojourn time

of s2 flows at each of the shared VNFs becomes [16, Sec. 3.2]:
1/µ

(1−�1
µ)(1−�1+�2

µ)
= 1/5

(1− 2
5)(1−

1+2
5)
⇡ 0.83ms, which results

in a total delay of D2 ⇡ 1.66ms > Dmax
2 .

Case 2: Higher priority to s2. It is easy to verify that giving

higher priority to s2 implies that s1 misses its target delay.

Case 3: Equal priority. Giving the same priority to both

services results in a sojourn time of 1
µ−�1−�2

= 1
5−1−2 =

0.5ms for each of the common VNFs, and in a total delay

of D2 = 1ms < Dmax
2 and D1 = 1ms + 0.14ms > Dmax

1 .

Flexible priorities. Assume that s1 and s2 have priority

in the transcoding and in the motion detection VNF,

respectively. Then, D1=
1

µ−�1
+ 1/µ

(1−�2
µ)(1−�1+�2

µ)
+0.14=

0.33+0.625+0.14=1.095ms < Dmax
1 , and D2=

1/µ

(1−�1
µ)(1−�1+�2

µ)
+ 1

µ−�2
=0.83+0.25 = 1.08ms < Dmax

2 .

In conclusion, the above example shows that relying on

merely per-service priorities may result in violation of KPI

requirements. In contrast, assigning different per-VNF priori-

ties allows the MNO to meet the vertical’s requirements while

increasing efficiency in resource usage, hence lowering the

costs. We later show that per-flow priorities result in even

better efficiency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The architecture we consider reflects real-world deploy-

ments of MEC-based networks, as described in the ETSI

specifications [17]. Possible deployments differ in aspects like

the location of the EPC, but all include multiple edge sites, i.e.,

PoPs hosting the MEC servers and some (as in Fig. 4(top)),

or all (as in Fig. 4(bottom)), of the EPC network functions.

As mentioned, the network and computing resources avail-

able in the MEC in Fig. 4 have to be properly orchestrated and

managed. In particular, referring to the 5G architecture in [4],

the SDM-X has to use the VMs under its control to provide

SGW

PGW

MME HSS

MEC
edge site 1

eNB 1UE 1 Internet

eNB 2UE 2

SGW

MEC
edge site 2

core site

SGW PGW

MME HSS
MEC

edge site 1eNB 1UE 1

Internet

SGW PGW

MME HSS
MEC

edge site 2eNB 2UE 2

Fig. 4. Two of the possible architectures for MEC-based networks discussed
in [17]: distributed EPC (top) and local breakout (bottom). Orange and purple
lines correspond to data and control traffic, respectively.

the newly-requested services with the required KPIs and at the

minimum cost. It should thus make decisions on (i) whether

existing VNF instances should to be shared; (ii) if so, how to

assign the priorities to different services sharing the same VNF

instance; and last (iii) scaling the computational capabilities

of the VMs if needed and possible.

We choose to focus on single PoP decisions and account for

the system overheads, which, in general, are given by network

delays and processing times. However, a study of the ongoing

work in the datacenter networking community (see, e.g., [18])

suggests that switching is highly optimized, hence network

delays are often minimal. Also, network topologies tend to

be highly regular, hence delays are similar across any pair of

VMs. Therefore, it is fair to neglect the network delays within

a single PoP, and consider the processing times only.

Below, we describe the model and the entities that are

involved in the VNF-sharing problem (Sec. III-A), followed

by defining the problem objective and constraints (Sec. III-B).

A. System model

The system model includes VMs m 2M, and VNFs v 2
V 1. Each VM runs (at most) one VNF, modeled as an

M/M/1 queue with FIFO queuing and preemption, as widely

assumed in recent works [7], [8], [19]. Also, let C(m) be

the maximum computation capability to which VM m can

be scaled up. We underline that, although in this work we

focus on computational capability, we could adjust our model

to focus on memory and storage as well. We refer to a VM

as active if it hosts a VNF, and we express through binary

variables y(v,m) whether VM m runs VNF v.

VNFs vary in computational requirements, which are mod-

eled through parameter l(v), expressing how many units of

1VNFs can, in general, include multiple virtual deployment units (VDUs);
without loss of generality, we assume that each VNF includes only one VDU.
Also, we assume that no VNF requires isolation.

3

TABLE I
NOTATION († DENOTES VARIABLES OF THE MODIFIED PROBLEM

DESCRIBED IN SEC. IV-B)

Symbol Type Meaning

M = {m} Set Set of VMs

V = {v} Set Set of VNFs

S = {s} Set Set of services

C(m) Parameter Maximum capability to which

VM m can be scaled up

l(v) Parameter Computational capability needed to

process one flow unit for VNF v
�(s, v) Parameter Arrival rate of flows of service s for

VNF v
Dmax(s) Parameter Target delay for service s
f (m) Parameter Fixed cost incurred when activating

VM m
p(m) Parameter Proportional cost incurred when us-

ing one unit of computational capa-

bility for VM m
p(s, v) Parameter Per-VNF priority of service s at

VNF v
µ(m) Decision variable Computational capability to use for

VM m
y(v,m) Decision variable Whether VM m runs VNF v
x(s, v,m) Decision variable Whether flows of service s use

the instance of VNF v running at

VM m

Λ̃(s, v) Decision variable.† Arrival rate of flows for VNF v on

the same VM as the one servicing

s, that are given priority over flows

of service s
S(s, v) Auxiliary decision variable Sojourn time of flows of service s

for VNF v
Λ(s, v) Auxiliary decision variable Arrival rate of flows for VNF v on

the same VM as the one servicing

s, that are given priority over flows

of service s
⇡(s, v) Random variable Describes the priority assigned to

flows of service s upon entering

VNF v

computational capability are needed to process one flow for

VNF v per time unit. For example, a VNF with require-

ment l(v) = 1 running on a VM m with capability µ(m) = 1
takes l(v)/µ(m) = 1 time unit to process a flow. Using the

same VM for a VNF with requirement l(v) = 2 yields a

processing time of l(v)/µ(m) = 2 time units per flow. Note

that l(v) values do not depend on the actual service using

VNF v, but on v only.

Services s 2 S include one or more VNFs, and flows

belonging to service s arrive at VNF v with a rate �(s, v);
VNFs that are not used by a certain service have �-values

equal to 0. Through the �(s, v) parameters, we can account for

arbitrarily complex service (VNF) graphs where the number

of flows can change between VNFs, and some flows may visit

the same VNF more than once. For sake of simplicity, in this

paper we focus on the maximum average delay Dmax(s) of

service s as the target KPI2.

Each VM uses a quantity µ(m)  C(m) of computational

capability that can be dynamically adjusted. Given µ(m),

VNF v deployed at VM m processes flows at rate
µ(m)
l(v) .

Finally, binary variables x(s, v,m) express whether service s
uses the instance of VNF v at VM m; this allows us to model

the assignment of distinct services requiring the same VNF to

different VMs that run the VNF. For clarity, we summarize

the above parameters and variables in Tab. I.

2Note that our model can be extended to additional KPIs.

B. Problem formulation

We now discuss the objective of the VNF-sharing problem

and the constraints we need to satisfy.

Objective. The high-level goal of the MNO is to minimize

its incurred cost, which consists of two components: a fixed

cost, f (m), paid if VM m is activated, and a proportional

cost, p(m), paid for each unit of computational capability

used therein. The objective is then given by:

min
y,µ

X

m∈M

f (m)
X

v∈V

y(v,m) + p(m)µ(m)

!

. (1)

VM capability and VNF instances. We must account for

the maximum value C(m) to which the capability µ(m) of

each VM m can be scaled up:

µ(m)  C(m) 8m 2M. (2)

Also, at most one VNF can run in any single VM:
X

v∈V

y(v,m)  1, 8m 2M, (3)

and only active VMs can be used for handling flows, i.e.,

y(v,m) � x(s, v,m), 8s 2 S, v 2 V,m 2M.

Service times. Each service s has a maximum average

service time Dmax(s) that must be maintained. Since we

assume that processing time is the dominant component of

service time, this is equivalent to imposing:
X

v∈V

S(s, v)  Dmax(s), 8s 2 S, (4)

where S(s, v) is the sojourn time (i.e., the time spent waiting

or being served) experienced by flows of service s for VNF v.

By convention, we set S(s, v) = 0 if service s does not require

VNF v.

As detailed below, sojourn times, in turn, depend on:

• the computational capability l(v) required for handling any

flow for a VNF;

• the traffic flow arrival rate at the VNFs �(s, v);
• the priority of the traffic flows at the traversed VNFs (to be

detailed in the sequel);

• the computational capability µ(m) assigned to the VM

hosting the VNF instance processing the flow.

Using [16, Sec. 3.2] and [20], we can generalize the expression

used in Example 1 and write the sojourn time of flows of

service s for VNF v as:

S(s, v)=
l(v)

µ(m̄)

1

1� l(v)Λ(s,v)
µ(m̄)

1

1� l(v)Λ(s,v)+�(s,v)
µ(m̄)

, (5)

where m̄ is the VM hosting the instance of VNF v used by

service s, i.e., where x(s, v, m̄) = 1.

In (5), Λ(s, v) represents the arrival rate of flows (of any

service) for the instance of VNF v hosted on m̄, that are

given a priority higher than a generic flow of service s for

VNF v. Let ⇡(s, v) be the random variable describing the

priority assigned to flows of service s at VNF v, then:

Λ(s, v) =
X

t∈S

P (⇡(t, v) > ⇡(s, v))�(t, v). (6)

4

The intuitive meaning of (6) is that Λ(s, v) grows as it

becomes more likely that flows of other services t 6= s are

given higher priority over flows of service s.

The expression of Λ(s, v) depends on the type of the

⇡(s, v) variables. In App. A, we show how Λ(s, v) values

can be computed for the two priority assignments discussed

in Sec. II, i.e., per-VNF priorities and uniform, per-flow

priorities.

Problem complexity. In the general case, the expression

of Λ(s, v) is not guaranteed to be linear, convex, or even

continuous. It follows that no hypothesis can be made about

the complexity of the problem of setting the priorities so

as to optimize (1): solving such a problem may require to

search over all possible distributions of ⇡(s, v), which would

be prohibitively complex even in small-scale scenarios.

Indeed, it is possible to reduce any instance of the bin-

packing problem, which is NP-hard, to a simplified instance

of our problem where (i) there is only one type of VNF, (ii)

all services have the same target KPIs, and (iii) p = 0 for all

VMs. Specifically:

• VMs correspond to bins;

• the capability of VMs correspond to the size of the capacity

of the bin they are associated with;

• services correspond to items;

• traffic flow arrival rates �(s, v) correspond to the size of

items.

Non-negligible network delays. As mentioned earlier, net-

work delay within individual PoPs are very small compared to

processing times, hence, our model neglects them. However, it

is worth stressing that our model can be extended to account

for arbitrary-delay scenarios, by introducing the following new

parameters:

• for each pair (m1,m2) of VMs in M, a network de-

lay d(m1,m2);
• for each pair (v1, v2) of VNFs in V , a parameter ⇢(v1, v2) 2
[0, 1] expressing the fraction of traffic that visits v2 imme-

diately after visiting v1.

Given the above parameters, the total network delay is:
X

m1,m2∈M

X

v1,v2∈V

d(m1,m2)y(v1,m1)y(v2,m2)⇢(v1, v2).

(7)

Eq. (7) can be read as follows: a network delay d(m1,m2)
is incurred when (i) a VNF v1 is deployed at m1, and (ii)

the subsequent VNF v2 is deployed at m2. The quantity

in (7) should then be added to the first member of the

delay constraint (4), thereby ensuring that the combination of

processing and network delays is below the delay target Dmax.

IV. THE FLEXSHARE SOLUTION STRATEGY

In light of the problem complexity, we propose a fast, yet

highly effective solution strategy named FlexShare, which runs

iteratively and consists of four main steps as outlined in Fig. 5.

The algorithm considers services one by one, adjusting its

solution for every new service being deployed. The first step,

detailed in Sec. IV-A, consists of building a bipartite graph

including the VNFs of the new service that are to be deployed,

(1) Create
bipartite graph

(2) Hungarian alg.
(x, y variables)

(3) Scaling, priority
(µ, Λ̃ variables)

(4) Prune
graph

if infeasible

solution

Fig. 5. The FlexShare strategy. Step 1 builds a bipartite graph showing which
VMs could run each VNF. Step 2 runs the Hungarian algorithm on such a
graph to obtain the optimal values for the x- and y-variables. Step 3 solves a
convex variant of the original problem in Sec. III-B. If feasible, its variables

(µ, Λ̃) are used to determine the scaling and the priorities; otherwise, the
bipartite graph is pruned (step 4) and the procedure restarts from step 2.

and the VMs that are active or can be activated. The edges

of the graph express the possibility of using a VM to provide

a VNF, either by sharing an existing instance of the VNF

or by deploying a new one. Edges are labeled with the cost

associated with each decision, i.e., the p and/or f terms

contributing to the objective (1). In step 2, also described

in Sec. IV-A, we use the Hungarian algorithm [21] on the

generated bipartite graph to get the optimal minimum-cost

assignment of VNFs to VMs, i.e., the x- and y-variables.

Given these decisions, step 3 aims at assigning the priorities

and finding the amount of computational capability to use in

every VM. To this end, a simpler (namely, convex) variant of

the problem defined in Sec. III-B is formulated and solved, as

detailed in Sec. IV-B.

If step 3 results in an infeasible problem, we prune the

bipartite graph (step 4). The underlying intuition is that a cause

for infeasibility is overly aggressive sharing of existing VNF

instances. Therefore, as detailed in Sec. IV-C, we prune from

the bipartite graph edges that result in an overload of VMs.

After pruning, the algorithm starts a new iteration with step 2.

Moving from one iteration to the next means reducing the

likelihood that VNF instances are shared between services,

and thus increasing the cost incurred by the MNO, due to

the f fixed cost terms. The procedure stops as soon as it

finds a feasible solution. Without loss of generality, we present

FlexShare in the case where there are sufficient resources, i.e.,

enough VMs, to deploy all the requested services.

A. Steps 1–2: Bipartite graph and Hungarian algorithm

The bipartite graph. The bipartite graph represents (i) the

possible VNF assignment decisions, i.e., which VNFs can be

provided at which VMs and which VNFs can be shared among

services, and (ii) the associated cost incurred by the MNO.

More formally, the bipartite graph is created according to

the following rules:

1) a vertex is created for each VNF and for each VM;

2) an edge is drawn from every VNF to every unused VM;

3) an edge is drawn from every VNF to every VM currently

running the same VNF, provided that the maximum com-

putational capability of the VM is sufficient to guarantee

stability.

Denote by s̄ the service now being deployed. For every

VNF v required by s̄, and every VM m either running v or

5

m1

m2

m3

m4

m5

v3

v4

Fig. 6. The bipartite graph generated when trying to deploy service s2, as
shown in Fig. 2. Graph vertices correspond to VNFs in s2 (left) and VMs
(right); edges represent the possible assignment decisions. Edges connecting
currently-unused VMs, i.e., v4 and v5, are thicker because they are associated
with a higher cost (due to the κf component).

not yet activated, m can satisfy the request of s̄ for v while

ensuring stability if

l(v)
X

s∈S

[(x(s, v,m) + 1s=s̄)�(s, v)] < C(m), (8)

i.e., if the total load on VM m is no larger than its maximum

capability C(m).

Note that (8) does not imply that s̄, or any other existing

services, can be served in time, i.e., while satisfying their

delay constraints; indeed, this depends on the priority and

computational capability assignment decisions, and cannot be

checked at the graph generation time. The purpose of step 1

is to generate a graph accounting for all possible assignment

options, that may potentially result in a feasible solution. Fig. 6

provides an example of a bipartite graph, representing the

options available in the scenario depicted in Fig. 2: VNF v3
can be provided at VMs m3 (which already runs v3), or at

m4 or m5 (which are both currently yet inactive); VNF v4
can only be run on either m4 or m5.

The cost of each edge connecting VM m with VNF v is

given by the following expression:

1�
X

v

y(v,m)

!

f (m) + p(m) (l(v)�(s̄, v) + ✏) . (9)

In (9), the first term is the fixed cost associated with activating

VM m, which is incurred only if m is not already active (the

summation can be at most 1, as per (3)). The second term is the

proportional cost associated with the additional computation

capability needed at VM m to guarantee stability, with ✏ being

a positive, arbitrarily small value.

Hungarian algorithm and assignment decisions. The

Hungarian algorithm [21] is a combinatorial optimization

algorithm with polynomial (cubic) time complexity in the

number of edges in the graph. When applied to the bipartite

graph we generate, it selects a subset of edges such that

(i) each VNF is connected to exactly one VM, and (ii) the

total cost of the selected edges is minimized.

Selected edges map to assignment decisions. Specifically,

for each selected edge connecting VNF v and VM m, we

set y(v,m) 1 and x(s̄, v,m) 1, i.e., we activate m
(if not already active) deploying therein an instance of v,

and use it to serve service s̄. The obtained values for the x

and y-variables are used in step 3 to decide priorities and

computational capability assignment, as set out next.

B. Step 3: Priority and scaling decisions

The purpose of step 3 of the FlexShare procedure is to

decide the priorities to assign to each VNF and service, as well

as any needed scaling of VM computation capability. Since the

complexity of the problem stated in Sec. III-B depends on the

presence of the ⇡(s, v) variables, we proceed as follows:

1) we formulate a simplified problem, which contains no

random variables and is guaranteed to be convex;

2) we use the variables of the simplified problem to set

the µ(m) variables of the original problem, as well as the

parameters of the distribution of the ⇡(s, v) variables.

Convex formulation. To avoid dealing with probability

distributions, we replace the Λ(s, v) auxiliary variables of

the original problem with independent variables Λ̃(s, v), thus

dispensing with (6). Given x and y, the decision variables

of the modified problem are Λ̃(s, v) and µ(m), while the

objective is still given by (1). Having Λ̃(s, v) as a variable

means deciding (intuitively) how many higher-priority traffic

flows each incoming flow will find. Such values are later

mapped to the parameters of the distributions of ⇡(s, v).
If we solve the modified problem with no further changes,

the optimal solution would always yield Λ̃(s, v) = 0, 8s, v,

i.e., no flow ever encounters higher-priority ones, which is

clearly not realistic. To avoid that, we mandate that the average

behavior, i.e., the average number of higher-priority flows met,

is the same as in the original problem:

X

s∈S

Λ̃(s, v) =
|S|

2

X

s∈S

�(s, v), 8v 2 V. (10)

The intuition behind (10) is that each Λ(s, v)-value (in the

original problem) is the sum of several �-values, i.e., the

services arrival rates. The �-value associated with the highest-

priority service will contribute to |S| � 1 Λ(s, v)-values, the

one associated with the second-highest-priority service will

contribute to |S| � 2 Λ(s, v)-values, and so on. On average,

each �-value contributes to
|S|
2 Λ(s, v)-values. Finally, recall

that �(s, v) = 0 if service s does not use VNF v.

It can be proved that the modified problem is convex:

Property 1. The problem of minimizing (1) subject to con-

straints (2)–(4) and (10), is convex.

Proof: For the problem to be convex, the objective and all

constraints must be so. Our expressions are linear, and thus

convex. However, (4) contains S(s, v)-terms, which have to

be proven to be convex. We do so by computing the second

derivative of the expression S(s, v) in the µ(m) and Λ(s, v)
variables. It is easy to verify that, since the quantities Λ̃(s, v),
µ(m), �(s, v) and l(v) are all positive and the system is stable

(i.e., l(v)Λ(s, v) < µ(m) and l(v)(Λ(s, v)+�(s, v)) < µ(m)),
both derivatives are positive, which proves the thesis.

Note that the above property implies that the modified

problem is solvable in polynomial time (in the problem size,

which depends on the number of VNFs, VMs, and already-

deployed services) through off-the-self, commercial solvers.

6

Setting the variables of the original problem. After

solving the convex problem described above, we can use the

optimal solution thereof to make scaling decisions, i.e., to set

the µ(m) variables in the original problem, as well as the

priorities, i.e., the parameters of the distribution of ⇡(s, v).
For µ(m), we can simply use the corresponding variables in

the simplified problem, which have the same meaning and are

subject to the same constraints.

As far as priorities are concerned, the procedure to follow

depends on the priority assignment adopted in the system at

hand, hence, on the type of the variables ⇡(s, v). With refer-

ence to the per-VNF and per-flow priority assignments used

in Sec. II and to the computations performed in Appendix A,

the following holds:

• when per-VNF priorities are used, we set the p(s, v) values

in Appendix A in such a way that services associated with

a higher Λ(s, v) have lower priority, e.g., by imposing that

p(s, v) �Λ̃(s, v);
• when per-flow priorities are supported, then we can solve

a system of linear equations where the Λ̃(s, v) from the

solution of the simplified problem are known terms, the

r(s, v) quantities are the unknowns, and equations have the

form of (15) and (16) in Appendix A.

Regardless the way priorities are assigned, it is important

to stress that our approach has general validity and can be

combined with any type of priority distribution.

C. Step 4: graph pruning

If the problem we solve in step 3 (priority and scaling

decisions) is infeasible, a possible cause lies in the decisions

made in step 2, i.e., the x and y variables. Thus, we restart

from step 2 considering a different bipartite graph, more likely

to result in a feasible problem.

To this end, we consider the irreducible infeasible set [22]

(IIS) of the problem instance solved in step 3, i.e., the set

of constraints therein that, if removed, would yield a feasible

problem. Given the IIS, we proceed as follows:

1) we identify constraints in the IIS of type (2), thus, a set of

VMs that would need more capability;

2) among such VMs, we select those that are used by the

newly-deployed service s̄;

3) among them, we identify the one that is the closest

to instability, i.e., the VM m? minimizing the quan-

tity C(m) �
∑

s∈S x(s, v?,m)l(v?)�(s, v?), where v? is

the VNF deployed at m;

4) we prune from the bipartite graph the edge (v?,m?).

The intuitive reason for this procedure is that a cause for delay

constraints violations is that the newly-deployed service s̄
is causing one of the VMs it uses to operate too close

to instability, and thus with high delays. By removing the

corresponding edge from the bipartite graph, we ensure that

VM m? is not used by service s̄.

Note that we are guaranteed that the IIS contains at least

one constraint of type (2) thanks to the following result:

Theorem 1. Every infeasible instance of the modified problem

presented in Sec. IV-B includes at least one constraint of type

(2) in its IIS.

Proof: The constraints of the modified problem are of

type (2)–(4) and (10). Proving that there is a constraint of

type (2) in the IIS is equivalent to proving that we can solve

a violation of the other types of constraint by violating one or

more constraints of type (2). Indeed, if a max-delay constraint

of type (4) is violated, we can make the capacity of the VNF

used by that service arbitrarily high; so doing, we can solve the

violation of (4) at the cost of violating (2). Similarly, solving

a violation of (10) requires increasing the Λ̃-values, which in

turn increases the sojourn times and results in a violation of

(4)-type constraints, thus reducing to the previous case.

FlexShare then restarts with step 2, where the Hungarian

algorithm takes as an input the pruned bipartite graph.

It is worth stressing that the choice of the edge to prune from

the bipartite graph only depends upon the quantity C(m) �
∑

s∈S x(s, v?,m)l(v?)�(s, v?), as specified in item 3 above.

Therefore, such a decision is independent on the order in

which VNFs appear in the VNF graph of the service at hand.

D. Computational complexity

The FlexShare strategy has polynomial worst-case compu-

tational complexity. Specifically:

• step 1 involves a simple check over at most |V||M|
VNF/VM pairs;

• step 2, the Hungarian algorithm, has cubic complexity in

the number of nodes in the graph [21];

• step 3 requires solving a convex problem, as proven in

Property 1, and the resulting complexity is also cubic;

• step 4 iterates over at most |M| constraints of type (2), and

thus it has linear complexity;

• the whole procedure is repeated for (at most) as many times

as there are edges in the original bipartite graph.

E. Managing service de-instantiations

So far we have described how FlexShare deals with re-

quests to instantiate new services. In real-world scenarios,

services have a finite lifetime, hence, they will have to be

de-instantiated as such a lifetime expires. This can lead to

suboptimal situations, such as the one in Example 2.

Example 2 (The effect of de-instantiating services). Consider

three services s1, . . . , s3, all including VNF v1 and all hav-

ing �(s, v1) = 1. Also assume that l(v1) = 1 and that, in order

to meet their deadlines, all services need that the service time

at v1 be lower than Smax(s, v1) = 1ms. Finally, assume that

there are two available VMs, m1,m2, both having maximum

capability C(m) = 5.

Upon receiving the request for s1, FlexShare will create

an instance of v1 in VM m1, resulting in a service time

of S(s1, v1) = 0.25ms. The same VNF instance can be

used for s2, which would get – assuming, without loss of

generality, that it is assigned a lower priority3 – a service

time of S(s2, v1) = 0.42ms. As for s3, re-using the instance

3In this example, all services have the same flow arrival rate and the same
maximum delay, hence, priorities do not influence whether a certain placement
is feasible or not.

7

of v1 at m1 would result in a service time S(s3, v1) = 1.04ms,
exceeding the target delay; therefore, a new instance of v1 is

created at m2.

After its lifetime expires, service s2 is de-instantiated, and

we are left with two VMs, m1 and m2, both running instances

of v1. This is a suboptimal situation, since s3 could now use

the instance of v1 at m1, without the need to keep m2 active.

Situations like the one in Example 2 can happen whenever

services have limited lifetimes, and cannot be avoided a

priori. However, they can be effectively managed a posteriori.

Specifically, we can periodically check whether there are two

VMs, m1,m2, and a VNF v such that (i) both VMs run

instances of v, and (ii) there exists a priority and capability

assignment within m1 such that all the services currently using

the v instance in m2 can use the instance in m1 instead, while

experiencing the same service times. It is easy to see that

such a check can be performed by solving a reduced version

of the problem presented in Sec. IV-B, i.e., in polynomial

time. If the check indicates that services ought to be moved,

then FlexShare indeed moves all services currently using m2

(i.e., x(s, v,m2) = 1) to m1 (i.e., x(s, v,m1) 1) and

deactivates m2 (i.e., y(m2, v) 0). In such a case we say that

the VNF instance deployed in m1 and that deployed in m2

were merged into m1. We recurrently execute this procedure

as long as it reduces the overall cost, in particular, prior to

processing any new service deployment request.

V. COMPETITIVE ANALYSIS

In this section, we analyze FlexShare’s performance in terms

of the number of activated VMs, using a simplified scenario

where (i) all VMs have the same maximum capacity C, and

(ii) it is always cheaper to increase the computation capability

of an existing VM than to activate a new one, i.e., f > Cp.

As FlexShare receives a sequence of service deployment

requests, each requiring multiple VNFs, we analyze the com-

petitive ratio of the algorithm at an arbitrary point within

this sequence, once FlexShare has successfully processed the

VNFs of all previous service requests. The following lemma

shows that no two instances of the same VNF, foreseen within

a FlexShare solution, could be merged in a single VM.

Lemma 1. Consider the deployment of the services deter-

mined through FlexShare upon receiving a new service to

deploy. Let m1 and m2 be two VMs running VNF v and

servings sets of services B1 and B2, respectively. Then any

other deployment that is identical to the one produced by

FlexShare, except for the fact that B1 [B2 are both served

by the same VM, is infeasible.

Proof: We recall that sub-optimalities due to the finite

services lifetime are removed in FlexShare through the pro-

cedure described in Sec. IV-E, which is run prior to every

new request of service deployment. Since f > Cp, if the

procedure in Sec. IV-E ends up de-activating any VMs, then it

necessarily reduces the cost. This implies that no two sets of

service traffic flows, each set running on a different VM, can

be moved and run on a single VM, since otherwise FlexShare

would have performed the merge.

We now focus on the feasible deployments produced by

FlexShare. These necessarily meet the target delay of all

services, i.e., for any service s, the sojourn time associated

with each VNF v composing the service, is such that:

S(s, v) = ⌘(s, v)Dmax(s) s.t.
X

v

⌘(s, v) = 1 .

Note that in the above expression equality holds since, other-

wise, the service deployment cost could be further reduced.

Given any delay value d and VNF v 2 V , we define the

load gap implied by d as ✓v(d) =
q

Cv

d , where Cv = C
l(v) .

The following lemma shows a sufficient (but not necessary)

condition for a VM to provide a delay of at most d for all

services sharing a VNF v running on the VM.

Lemma 2 (✓v-load gap). Let v be a VNF that runs on VM

m, and let L(m, v) denote the load on m. If the normal-

ized computation capability (µ(m, v) = µ(m)/l(v)) satisfies

L(m, v) + ✓v(d)  µ(m, v)  Cv , then the sojourn time

associated with any VNF v composing s and running on m,

is at most d.

Proof: By simple algebraic manipulation of (5), we obtain

S(s, v) = l(v)
µ(m)

1

1−l(v)
Λ(s,v)
µ(m)

1

1−l(v)
Λ(s,v)+�(s,v)

µ(m)

= 1
µ(m,v)

1

1−
Λ(s,v)
µ(m,v)

1

1−
Λ(s,v)+�(s,v)

µ(m,v)

= µ(m, v) 1
(µ(m,v)−Λ(s,v))

1
(µ(m,v)−Λ(s,v)−�(s,v)) .

By definition of L(m, v) and assumption on µ(m, v),

µ(m, v)� Λ(s, v) � µ(m, v)� Λ(s, v)� �(s, v) (11)

� µ(m, v)� L(m, v) (12)

� ✓v(d), (13)

and also µ(m, v)  Cv .

Using 11) into the equivalent of (5) shown above, we obtain

that the sojourn time of flows of service s for VNF v running

on m is at most

µ(m, v)
1

[µ(m, v)� Λ(m, v)]
2  Cv

1

✓v(d)2
= d,

as required.

For each VNF v, let dv = mins S(s, v), and let ✓v =
✓v(dv). Intuitively, dv is the smallest sojourn time at VNF v
for any of the services using v, and ✓v is the load gap implied

by dv . Our competitive ratio analysis consists in showing a

bound to the average load on each VM activated by FlexShare

(Lemma 3). To this end, we define Nv (resp. N?
v) to be the

number of VMs running v based on the decisions made by

FlexShare (resp. the optimal decisions). Also, let Lv (resp. L?
v)

denote the average load in the solution produced by FlexShare

(resp. the optimal solution).

Lemma 3. If FlexShare uses more than one VM for running

VNF v, then the average load Lv over the VMs running VNF v
in FlexShare is at least Cv−✓v

2 .

Proof: Consider the case where FlexShare uses more than

one VM for running VNF v. Assume by contradiction that the

8

average load Lv is strictly less than Cv−✓v

2 . Consider the two

least-loaded VMs in the solution produced by FlexShare. By

assumption, one of them must have a load strictly less than
Cv−✓v

2 . If the sum of loads on these two VMs is less than

Cv � ✓v , then the services running on these two machines

could have been rearranged to run on a single machine while

meeting the delay constraints of all services (by the definition

of ✓v and Lemma 2). This would however contradict Lemma 1,

thereby proving the claim.

Lemma 3 shows a lower bound to the load of activated VMs

in FlexShare. Theorem 2 leverages this lower bound, and de-

rives an upper bound on the competitive ratio of FlexShare in

terms of the number of activated VMs. Since, in the simplified

scenario we consider for our analysis, capacities and costs are

the same for all VMs and f > Cp, minimizing the number

of active VMs also minimizes the cost function (1). There is

no guarantee that this is the case in general scenarios; however,

the pricing structure [23] and energy consumption [24] of real-

world virtualized computing facilities do suggest that fixed

cost indeed represents the main contribution to the total cost.

Theorem 2. The competitive ratio of FlexShare in terms of

the number of VMs activated for running VNF v is 2+ 2✓v
Cv−✓v

.

Proof: Lemma 3 shows that Nv
Cv−✓v

2  NvLv whenever

at least two VMs are activated by FlexShare4.

The optimal algorithm must serve the same load as

FlexShare, hence: NvLv = N?
vL

?
v . Furthermore, since the

load of a VM cannot exceed its maximum capability, then

N?
vL

?
v  N?

vCv . Combining all inequalities, we have:

Nv 
2

Cv � ✓v
N?

vL
?

v


2Cv

Cv � ✓v
N?

v =
2(Cv + ✓v � ✓v)

Cv � ✓v
N?

v

=

✓

2 +
2✓v

Cv � ✓v

◆

N?

v . (14)

From (14), we obtain FlexShare’s competitive ratio in terms

of VMs activated for running VNF v, i.e., Nv

N?
v
 2 + 2✓v

Cv−✓v
.

It is interesting to observe that the ratio guaranteed by

Theorem 2 tends to the constant value 2 as the maximum

capability of VMs C grows – a trend that is already in place,

and is likely to continue as network equipment increases in

computational capability.

VI. NUMERICAL RESULTS

In this section, we describe the reference scenarios and

benchmark solutions we consider (Sec. VI-A), followed by

our numerical results obtained under the synthetic and realistic

scenarios (Sec. VI-B and Sec. VI-C, respectively), and by a

discussion of the running times (Sec. VI-D).

A. Reference scenarios and benchmarks

In this section, we present the two reference scenarios

we consider for our performance evaluation, as well as the

4Note that if FlexShare uses less than two VMs for running VNF v, then
this is the minimal number of VMs possible for running v, which implies that
FlexShare is optimal with respect to v.

TABLE II
SERVICES IN THE SYNTHETIC SCENARIO

Service Arrival rate [flows/ms] Max. delay [ms]

s1 2 10

s2 1.5 7.5

s3 1 5

v1

v2

v3

v4

v5

s1
s2

s3

Fig. 7. VNF graphs in the synthetic scenario.

benchmark strategies we compare against. Without loss of

generality, we consider that each service is requested exactly

once, i.e., there is one service request per service.

Synthetic scenario. The synthetic scenario we use for per-

formance evaluation includes three services s1, . . . , s3, sharing

five VNFs v1, . . . , v5 as depicted in Fig. 7. All VNFs have

coefficient l(v) = 1, while the arrival rate and maximum delay

associated with each service are summarized in Tab. II. The

scenario includes M = 10 VMs whose fixed and proportional

costs are f = 8 and p = 0.5 units, respectively, and whose

capability is randomly distributed between 5 and 10 units.

Such a scenario is small enough to allow a comparison

against optimal priority assignments found by brute-force; at

the same time, it contains many interesting features, including

different combinations of services sharing different VNFs and

different cost/capability trade-offs.

Realistic scenario. We consider five services, connected to

the smart-city and smart-factory domains:

• Intersection Collision Avoidance (ICA): vehicles period-

ically broadcast a message (e.g., CAM) including their

position, speed, and acceleration; a collision detector checks

if any pair of them are on a collision course and, if so, it

issues an alert;

• Vehicular see-through (CT): cars display on their on-board

screen the video captured by the preceding vehicle, e.g., a

large truck obstructing the view;

• Urban sensing, based on the Internet-of-Things (IoT);

• Smart robots: a set of robots working in a factory are

controlled in real-time through the 5G network;

Fig. 8. VNF graph of the ICA service, as described in [25].

9

TABLE III
REALISTIC SCENARIO: TRAFFIC FLOW ARRIVAL RATE AND

COMPUTATIONAL LOAD ASSOCIATED WITH EVERY VNF

VNF Rate �(s, v) Requirement l(v)

Intersection Collision Avoidance (ICA)

eNB 117.69 10−4

EPC PGW 117.69 10−4

EPC SGW 117.69 10−4

EPC HSS 11.77 10−4

EPC MME 11.77 10−3

Car information management (CIM) 117.69 10−3

Collision detector 117.69 10−3

Car manufacturer database 117.69 10−4

Alarm generator 11.77 10−4

See through (CT)

eNB 179.82 10−4

EPC PGW 179.82 10−4

EPC SGW 179.82 10−4

EPC HSS 17.98 10−4

EPC MME 17.98 10−3

Car information management (CIM) 179.82 10−3

CT server 179.82 5 10−3

CT database 17.98 10−4

Sensing (IoT)

eNB 50 10−4

EPC PGW 50 10−4

EPC SGW 50 10−4

EPC HSS 5 10−4

EPC MME 5 10−3

IoT authentication 20 10−4

IoT application server 20 10−3

Smart factory (SF)

eNB 50 10−4

EPC PGW 50 10−4

EPC SGW 50 10−4

EPC HSS 5 10−4

EPC MME 5 10−3

Robotics control 50 10−3

Video feed from robots 5 10−4

Entertainment (EN)

eNB 179.82 10−4

EPC PGW 179.82 10−4

EPC SGW 179.82 10−4

EPC HSS 17.98 10−4

EPC MME 17.98 10−3

Video origin server 17.9 10−3

Video CDN 179.82 10−4

• Entertainment: users consume streaming contents, provided

with the assistance of a content delivery network (CDN)

server.

Tab. III, based on [26]–[28], reports the VNFs used by each

service and the associated arrival rates. All services share the

EPC child service, which is itself composed of five VNFs.

Furthermore, the car information management (CIM) database

can be shared between the ICA and the CT services. It is

worth stressing that, as exemplified in Fig. 8 describing the

ICA service, the VNF graphs in the realistic scenarios are not

simple chains but rather generic graphs.

We leverage the mobility trace [29], combining the real-

world topology of Luxembourg City with highly realistic

mobility patterns. We focus on an intersection in the downtown

area, and assume that all services are deployed at an edge site

located at the intersection itself. Specifically,

• all vehicles within 50m from the intersection are users of

the ICA service, and send a packet (i.e., a CAM message)

every 0.1 s;

• all vehicles within 100m from the intersection are users of

the CT service, and send a packet (i.e., refresh their video)

every 200ms, i.e., the see through video has 5 fps;
• those same vehicles use the entertainment video service,

each consuming a 25 fps-video;

• a total of 200 sensors are deployed in the area, each

generating, according to the traffic model described in the

3GPP standard [30], one packet every 100ms;
• the smart factory contains a total of 50 robots, each requiring

real-time control, and 10% of which provides a video feed.

To tackle the most challenging scenario, we consider peak-

time conditions, obtaining the request rates summarized in

Tab. III, which also reports the load l(v) associated with

each VNF. As discussed in Sec. III, the �(s, v) values also

incorporate the fact that not all flows visit all VNFs of a

service, e.g., all ICA flows visit the local ICA server but only

one in ten visits the remote one.

Finally, we assume that the PoP contains 10 VMs, each

of which can be scaled up to at most C(m) = 1000 units,
and each associated with fixed and proportional costs of f =
1000 units and p = 1unit, respectively.

Benchmark strategies. We study the performance of the

following strategies, in increasing order of flexibility:

• service-level priorities (indicated as “service” in plots):

priorities are assigned on a per-service basis, with lowest-

delay services having the highest priority;

• VNF-level priorities with FlexShare (“VNF/FS”): priorities

are assigned on a per-VNF basis , and FlexShare is used to

determine the VNF-level priorities p(s, v) (see Appendix A

and Sec. IV-B);

• VNF-level priorities with brute-force (“VNF/brute”): pri-

orities are assigned on a per-VNF basis, and all possible

combinations of priorities are tested;

• flow-level priorities (“req./FS”): priorities are assigned on

a per-flow level, and FlexShare is used to determine them.

Both FlexShare and the benchmark strategies are imple-

mented in Python, and all tests are run on a Xeon E5-2640

server with 16 GByte of RAM.

B. Results: synthetic scenario

We start by considering the synthetic scenario and, in order

to study different traffic conditions, multiply the arrival rates

by a factor of n, ranging between 1 and 2.

Fig. 9(left) focuses on the main metric we consider, namely,

the total cost incurred by the MNO. We can observe that,

as one might expect, higher traffic translates into higher

cost. More importantly, more flexibility in priority assignment

results in substantial cost savings. As for per-VNF priorities,

they exhibit an intermediate behavior between per-service

and per-flow ones, with virtually no difference between the

case where FlexShare is used to determine the priorities

(“VNF/FS”) and that where all possible options are tried

out in a brute-force fashion (“VNF/brute”). This highlights

the effectiveness of the FlexShare strategy, which can make

optimal decisions in almost all cases with low complexity.

Fig. 9(center) shows the average number of services sharing

a VNF instance. It is clear that a higher flexibility in pri-

ority assignment results in more sharing, hence fewer VNF

10

Fig. 9. Synthetic scenario: total cost (left); average number of services sharing a VNF instance (center); used and maximum VM capability (right). Per-VNF
and per-flow priorities are assigned via FlexShare; per-service priorities are assigned by giving higher priorities to lower-delay services.

Fig. 10. Synthetic scenario, n = 1.8: VNF capability compared to its
maximum (i.e., maximum capability of the hosting VM) and minimum (i.e.,
required for stability) values. Per-VNF and per-flow priorities are assigned
via FlexShare; per-service priorities are assigned by giving higher priorities
to lower-delay services.

instances deployed. As n increases, the number of services per

instance decreases: scaling up (i.e., increasing the capability

of VMs) is insufficient, and scaling out (i.e., increasing the

number of VNF instances) becomes necessary.

This is confirmed by Fig. 9(right), depicting the total used

VM capability (i.e.,
∑

m∈M µ(m)) as well as the sum of the

maximum values to which the capability of active VMs can

be scaled up (i.e.,
∑

m∈M C(m)y(m)), denoted by solid and

dotted lines, respectively. Both quantities grow with n and

decrease as flexibility becomes higher. This makes intuitive

sense for the maximum capability: Fig. 9(left) shows that

combining FlexShare with higher-flexibility strategies results

in fewer VNF instances, hence fewer active VMs. Importantly,

used capability values, i.e., µ(m), also decrease with flexi-

bility. Indeed, higher flexibility makes it easier to match the

computational capability obtained by each service within each

VNF, with its needs.

Fig. 10, obtained for n = 1.8, provides further insights of

this phenomenon. For each VNF instance deployed by each

strategy, the dotted line represents the minimum capability

needed by that instance to meet target delays, the dashed

one corresponds to the maximum capability C(m) that the

VM can be scaled up to, and the solid line depicts the as-

signed capability µ(m). We can observe that higher-flexibility

strategies correspond to assigning capability values closer to

the corresponding minimum, hence, less wasted capability

and lower costs. Also, note how different strategies result in

different numbers of created VNF instances, from 5 with flow-

level priorities (the minimum possible value, as there are five

VNFs) to 7 with service-level priorities. In the latter case,

two instances are created for each of v3 and v5, which is not

unexpected as those VNFs are shared by multiple services and

hence serve higher traffic (see Fig. 7).

Fig. 11 provides a qualitative view of how priorities

are assigned to different services across different VNF in-

stances. When priorities are assigned on a per-service basis

(Fig. 11(left)), services with lower target delay invariably have

higher priority. If priorities are assigned on a per-VNF basis,

as in Fig. 11(center), the priorities of different services can

change across VNF instances, e.g., s2 has priority over s1
in the v1 instance deployed at VM m2, but the opposite

happens in the v3 instance deployed at VM m1. Fig. 11(right)

shows that if per-flow priorities are possible, services can be

combined in any way at each VNF instance.

C. Results: realistic scenario

We now move to the realistic scenario, again multiplying

the arrival rates reported in Tab. III by a factor of n, varying

between 1 and 2. Recall that, owing to the larger scenario size,

no comparison with the brute-force strategy is possible.

Fig. 12(left) shows how the total cost yielded by the

different strategies has the same behavior as in the synthetic

scenario (Fig. 9(left)): the higher the flexibility, the lower the

cost. Furthermore, for very high values of n, all strategies yield

the same cost; in those cases, few or no VNF instances can

be shared, regardless of how priorities are assigned.

Fig. 12(center) shows that VNF instances are shared among

services; by comparing it to Fig. 9(center) we can observe

how the behavior of per-VNF priorities tends to be closer to

per-flow priorities than to per-service ones. This suggests that,

even in large and/or complex scenarios, per-VNF priorities can

be a good compromise between performance and implemen-

tation complexity.

Fig. 12(right) shows a much larger difference between used

and maximum capabilities compared to Fig. 9(right). This is

due to the fact that, as can be seen from Tab. III, there are

fewer VNFs that are common among different services, and

thus fewer opportunities for sharing.

D. Running time

The results presented in Sec. VI-B and Sec. VI-C prove

that FlexShare is effective, i.e., it is able to make high-quality

11

Fig. 11. Synthetic scenario, n = 1.8: priorities assigned to each service with per-service (left), per-VNF (center), and per-flow priorities (right). Per-VNF
and per-flow priorities are assigned via FlexShare; per-service priorities are assigned by giving higher priorities to lower-delay services.

Fig. 12. Realistic scenario: total cost (left); average number of services sharing a VNF instance (center); used and maximum VM capability (right). Per-VNF
and per-flow priorities are assigned via FlexShare; per-service priorities are assigned by giving higher priorities to lower-delay services.

TABLE IV
RUNNING TIME (IN MINUTES) OF OUR FLEXSHARE IMPLEMENTATION, IN

THE SYNTHETIC AND REALISTIC SCENARIOS

Traffic multiplier Synthetic scenario Realistic scenario

1 4 6

1.2 5 7

1.4 6 6

1.6 5 10

1.8 7 9

2 7 12

(indeed, often optimal) decisions. Although its worst-case

computational complexity has been proven to be polynomial

in Sec. IV-D, it is natural to wonder how long FlexShare takes

to make its decisions, in the two scenarios we investigate.

The results are summarized in Tab. IV: in our implementa-

tion, FlexShare never takes more than few minutes to make a

decision. It is important to stress that, although such running

times are already adequate for many real-world scenarios, they

can be significantly reduced. Indeed, our Python implementa-

tion of FlexShare leverages the optimization routines included

in the scipy library, which are themselves based on decade-

old FORTRAN libraries: they are adequate for prototyping and

testing, but hardly a match for commercial solvers like CPLEX

and Gurobi. Furthermore, as one may expect, the realistic

scenario is associated with longer solution times; intuitively,

this is connected with the higher number of alternatives to

explore therein.

Finally, it is interesting to note that, although the running

time tends to increase with the traffic, such an increase is not

monotonic. This is because the running time depends on how

many times the cycle represented in Fig. 5 is executed, i.e.,

how many times a potentially viable deployment is found to

be infeasible. This, in turn, is connected to how close to their

maximum capacity VMs are, rather than to how many of them

are needed.

VII. RELATED WORK

5G networks based on network slicing have attracted sub-

stantial attention, with several works focusing on 5G archi-

tecture [3], [31], associated decision-making issues [32], [33],

and security [34], [35].

As one of the most important decisions to make in 5G

environments, VNF placement has been the focus of several

studies. One popular approach is optimizing a network-centric

metric, e.g., load balancing [36] or network utilization [37].

Other papers use cost functions, e.g., [38], [39], possibly

including energy-efficiency considerations [40], [41]. Recent

works, e.g., [42] identify energy consumption as one of the

main source of operational costs (OPEX) for the MNO, and

tackle it by reducing the number of idle (i.e., unused) servers.

The aforementioned works typically result in mixed-

integer linear programming (MILP) models. Others cast VNF

placement into a generalized assignment [43], a resource-

constrained shortest path problem [44], or a set cover prob-

lem [45].

Finally, a preliminary version of this work has been pub-

lished in [46]. Additions with respect to that version include a

formal characterization of FlexShare’s competitive ratio, new

results obtained through real-world VNF graphs, and a more

detailed description of the system model.

Novelty. A first novel aspect of our work is the problem

we consider, i.e., VNF-sharing within one PoP as opposed to

traditional VNF placement. From the modeling viewpoint, we

depart from existing works in three main ways: (i) priorities

are used as a decision variable rather than as an input; (ii)

12

different priority-assignment schemes with different flexibility

are accounted for and compared; (iii) the relationship between

the amount of computational resources assigned to VNFs and

their performance is modeled and studied; (iv) VM capacity

scaling is properly accounted for as a necessary, complemen-

tary aspect of VNF sharing.

VIII. CONCLUSION

We have studied the VNF sharing problem where decision-

making entities managing a single PoP have the option of

sharing VNFs among several services requiring these VNFs.

We have identified priority management as one of the key

aspects of the problem, and found that higher flexibility in

setting priorities translates into lower costs. In view of the

above, we propose FlexShare, an efficient solution strategy

able to make near-optimal decisions.

We have studied the computational complexity and compet-

itive ratio of FlexShare, finding the former to be polynomial

and the latter to be asymptotically constant as the capacity

of VMs increases. Our performance evaluation, carried out

with reference to real-world VNF graphs, has highlighted

how FlexShare consistently outperforms state-of-the-art alter-

natives, and that higher flexibility in setting priority always

yields lower costs.

REFERENCES

[1] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: eliminating
server idle power,” in ACM sigplan notices, 2009.

[2] NGMN Alliance, “Description of network slicing concept,” 2016.
[3] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancale-

pore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega et al., “Network
slicing to enable scalability and flexibility in 5G mobile networks,” IEEE

Comm. Mag., 2017.
[4] 5G PPP Architecture Working Group, “View on 5G Architecture,” 2017.
[5] IETF, “Network Slicing Management and Orchestration,” 2017.
[6] J. Cao, Y. Zhang, W. An, X. Chen, Y. Han, and J. Sun, “VNF Placement

in Hybrid NFV Environment: Modeling and Genetic Algorithms,” in
IEEE ICPADS, 2016.

[7] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015.

[8] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint VNF
Placement and CPU Allocation in 5G,” in IEEE INFOCOM, 2018.

[9] G. Einziger, M. Goldstein, and Y. Sa’ar, “Faster placement of virtual
machines through adaptive caching,” in IEEE INFOCOM, 2019.

[10] ETSI, “Network Functions Virtualisation (NFV); Management and Or-
chestration,” 2014.

[11] ——, “Network Functions Virtualisation (NFV); Management and Or-
chestration; Or-Vnfm reference point – Interface and Information Model
Specification,” 2016.

[12] K. Antevski, J. Martn-Pérez, N. Molner, C. F. Chiasserini, F. Malandrino,
P. A. Frangoudis, A. Ksentini, X. Li, J. X. Salvat, R. Martinez, I. Pas-
cual, J. Mangues-Bafalluy, J. Baranda, B. Martini, and M. Gharbaoui,
“Resource orchestration of 5G transport networks for vertical industries,”
in IEEE PIMRC, 2018.

[13] B. Sayadi, M. Gramaglia, V. Friderikos, D. von Hugo, P. Arnold,
M.-L. Alberi-Morel, M. A. Puente, V. Sciancalepore, I. Digon, and
M. R. Crippa, “SDN for 5G Mobile Networks: NORMA perspective,”
in Springer CROWNCOM, 2016.

[14] A. De la Oliva, X. Li, X. Costa-Perez, C. J. Bernardos, P. Bertin,
P. Iovanna, T. Deiss, J. Mangues, A. Mourad, C. Casetti et al., “5g-
transformer: Slicing and orchestrating transport networks for industry
verticals,” IEEE Communications Magazine, 2018.

[15] NGMN Alliance, “5G Network and Service Management including
Orchestration,” 2017.

[16] L. Kleinrock, Queueing systems: Computer applications. John Wiley
& Sons, 1976.

[17] ETSI, “MEC Deployments in 4G and Evolution Towards 5G,” 2018.

[18] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center
networking (DCN): Infrastructure and operations,” IEEE Comm. surveys

& tutorials, 2017.
[19] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,

“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, 2017.

[20] Malathi Veeraraghavan. (2014) Priority queueing. http://www.ece.
virginia.edu/mv/edu/715/lectures/PQ.pdf.

[21] H. W. Kuhn, “The hungarian method for the assignment problem,” Wiley

Naval Research Logistics, 1955.
[22] J. W. Chinneck, Feasibility and Infeasibility in Optimization:: Algo-

rithms and Computational Methods. Springer, 2007.
[23] Amazon. AWS Greengrass. https://aws.amazon.com/greengrass/.
[24] Intel. Power Management States: P-States, C-States, and

Package C-States. https://software.intel.com/en-us/articles/
power-management-states-p-states-c-states-and-package-c-states.

[25] Q.-H. Nguyen, M. Morold, K. David, and F. Dressler, “Adaptive Safety
Context Information for Vulnerable Road Users with MEC Support,” in
IEEE/IFIP WONS, 2019.

[26] C. Casetti, C. F. Chiasserini, N. Molner, J. Martin-Perez, T. Deiss, C.-T.
Phan, F. Messaoudi, G. Landi, and J. B. Baranzano, “Arbitration among
vertical services,” in IEEE PIMRC, 2018.

[27] T. Taleb, A. Ksentini, and A. Kobbane, “Lightweight mobile core
networks for machine type communications,” IEEE Access, 2014.

[28] T. Taleb, I. Afolabi, and M. Bagaa, “Orchestrating 5g network slices to
support industrial internet and to shape next-generation smart factories,”
IEEE Network, 2019.

[29] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)
Scenario: 24 hours of mobility for vehicular networking research,” in
IEEE VNC, 2015.

[30] 3GPP, “3GPP specification: 37.868; RAN improvements for machine-
type communications,” Tech. Rep., 2014.

[31] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C.
Leung, “Network slicing based 5G and future mobile networks: mobility,
resource management, and challenges,” IEEE Comm. Mag., 2017.

[32] K. Samdanis, S. Wright, A. Banchs, A. Capone, M. Ulema, and
K. Obana, “5G Network Slicing – Part 2: Algorithms and practice,”
IEEE Comm. Mag., 2017.

[33] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,
L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorithmic aspects
of network slicing,” IEEE Comm. Mag., 2017.

[34] M. A. S. Santos, A. Ranjbar, G. Biczók, B. Martini, and F. Paolucci, “Se-
curity requirements for multi-operator virtualized network and service
orchestration for 5g,” in Guide to Security in SDN and NFV. Springer,
2017.

[35] X. Li, J. Mangues-Bafalluy, I. Pascual, G. Landi, F. Moscatelli, K. An-
tevski, C. J. Bernardos, L. Valcarenghi, B. Martini, C. F. Chiasserini
et al., “Service orchestration and federation for verticals,” in IEEE

WCNC Workshops, 2018.
[36] A. Hirwe and K. Kataoka, “LightChain: A lightweight optimization of

VNF placement for service chaining in NFV,” in IEEE NetSoft, 2016.
[37] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai, “Deploying chains

of virtual network functions: On the relation between link and server
usage,” in IEEE INFOCOM, 2016.

[38] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for
the placement of service function chains,” IEEE Trans. on Network and

Service Management, 2016.
[39] L. Gu, S. Tao, D. Zeng, and H. Jin, “Communication cost efficient

virtualized network function placement for big data processing,” in IEEE

INFOCOM Workshops, 2016.
[40] A. Marotta and A. Kassler, “A power efficient and robust virtual network

functions placement problem,” in IEEE ITC, 2016.
[41] N. E. Khoury, S. Ayoubi, and C. Assi, “Energy-Aware Placement and

Scheduling of Network Traffic Flows with Deadlines on Virtual Network
Functions,” in IEEE CloudNet, 2016.

[42] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware
and energy-efficient vnf placement for service chaining: Joint sampling
and matching approach,” IEEE Transactions on Services Computing,
2017.

[43] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015.

[44] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5G,” in IEEE Net-

Soft, 2015.
[45] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably efficient

algorithms for placement of service function chains with ordering
constraints,” in IEEE INFOCOM, 2018.

13

[46] F. Malandrino and C. F. Chiasserini, “Getting the most out of your
VNFs: flexible assignment of service priorities in 5G,” in IEEE WoW-

MoM, 2019.

[47] Dimitrios Milios, “Probability Distributions as Program Variables,”
Master’s thesis, University of Edinburgh, UK, 2009.

APPENDIX A

COMPUTING Λ(s, v) FOR RELEVANT PRIORITY

ASSIGNMENTS

The quantity Λ(s, v), defined in Sec. III-B, represents the

arrival rate of traffic flows (of any service) arriving at VNF v,

whose priority is higher than a generic flow of service s
arriving at the same VNF v. In the following, we show

how such quantities can be computed under the two priority

assignments discussed in Example 1, i.e., per-VNF priorities

and uniformly-distributed, per-flow priorities.

A. Per-VNF priorities

We recall that, if per-VNF priorities are supported as

in Sec. II, then all flows of each service s for VNF v
are given the same deterministic priority, which we denote

by p(s, v). Thus, in the per-VNF case, ⇡(s, v) is always dis-

tributed according to a Dirac delta function centered in p(s, v),
i.e., � (⇡(s, v)� p(s, v)). Hence, Λ(s, v) is discontinuous and

given by:

Λ(s, v) =
X

t∈S

H (p(t, v)� p(s, v))�(t, v),

where H(·) is the Heaviside step function. Indeed, intu-

itively a flow of service s will be queued after all flows

of services t with higher priority than s (since H(p(t, v) �
p(s, v)) = 1 if p(t, v) > p(s, v)), after half of the flows

of services with the same priority as s (since H(p(t, v) �
p(s, v)) = 0.5 if p(t, v) = p(s, v)), and before all other flows

(since H(p(t, v)� p(s, v)) = 0 if p(t, v) < p(s, v)).

B. Per-flow priorities

This case corresponds to higher flexibility and implies that

priorities could follow any distribution. Below, we focus on

the simple, yet relevant, case where priorities are distributed

uniformly between r(s, v)�j and r(s, v)+j. In this case, let us

define the quantity q(s, t, v) = P(⇡(t, v) > ⇡(s, v)), whose

value can be computed through the convolution of the pdfs

of ⇡(s, v) and ⇡(t, v). Through algebraic manipulations [47]

we get:

q(s, t, v) = P(⇡(t, v) > ⇡(s, v))

= P (⇡(t, v)� ⇡(s, v) > 0)

=

8

>

<

>

:

1 if r(t, v)�r(s, v) > 2j
1
2+

r(t,v)−r(s,v)
4j if � 2jr(t, v)�r(s, v)2j

0 if r(t, v)�r(s, v) < �2j .

(15)

Once the q(s, t, v) are known, the Λ(s, v) values can be

computed by replacing (15) in (6), obtaining:

Λ(s, v) =
X

t∈S

q(s, t, v)�(t, v). (16)

We can further prove that, in this case, the choice of the

variation j to use in defining the variable ⇡(s, v) has no

influence on the possible decisions.

Property 2. If per-flow, uniformly-distributed priorities are

used, then the choice of the variation j has no impact over

the solution space.

Proof: The variation j only appears in the q(s, t, v) quan-

tity used in (15); thus, proving the property is equivalent

to showing that, if it is possible to obtain a certain value

of q(s, t, v) with a certain variation j1, then it is possible to

obtain the same value with any other variation j2 6= j1.

We provide a constructive proof of this, showing that scaling

all per-VNF priorities p(s, v) by j2
j1

yields the same values

of q(s, t, v), hence the same decisions. Focusing on the second

case of (15), and re-writing j2 as j2
j1
j1, we have:

2
j2+j2

j1
r(t,v)−

j2
j1

r(s,v)

j1
j1

4 j2
j1
j1

=
2j1 + r(t, v)� r(s, v)

4j1
.

14

	Página en blanco

