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Despite many studies conducted to investigate the VVC and other

sources of cybersickness as well as the growing concerns about

the usage of head-mounted displays [Rebenitsch and Owen 2016],

prevention or reduction of the effect still poses many challenges.

One solution to reduce the VVC is to limit the virtual camera motion

to movements that are performed in the real world. This, however,

quickly becomes impractical due to space requirements. Redirected

walking [Dong et al. 2017; Langbehn et al. 2018; Razzaque et al. 2002;

Sun et al. 2018, 2016] addresses this problem, but is constrained by

the currently available hardware, such as tethered headsets and

stationary tracking cameras. Under stationary physical conditions,

simulator sickness can be reduced on a per-frame basis, for example,

by introducing independent visual background [Prothero et al. 1999],

manipulating peripheral vision [Yao et al. 2014], or changing the

field of view [Fernandes and Feiner 2016]. Unfortunately, these

methods can also reduce the sense of presence.

In this work, we take a different approach and address the prob-

lem for the common stationary VR usage. Our goal is to alter the

camera trajectory such that it provides a more comfortable view-

ing experience. The problem is related to camera control which

has been extensively studied for graphics applications [Bell et al.

2001; Christie et al. 2008; He et al. 1996]; however, maintaining

perceptual comfort remains an unexplored challenge. Motivated

by physiology research, vision science, and many techniques that

exploit perception to improve display quality [Masia et al. 2013;

Weier et al. 2017], we design a series of experiments to validate the

visual factors inducing visually induced motion sickness (VIMS),

and construct a quantitative perceptual model to estimate VIMS.

Based on this model, we further propose a path optimization method

for automatic virtual camera control to reduce simulator sickness

while maintaining the original design intentions. Our perceptual

model and camera control can respond to dynamic scenes and users’

head movements in each frame. We evaluate our perceptual model

and camera control with a variety of applications (e.g., space flight,

car racing, fighter simulator, colonoscopy) and usage scenarios (e.g.,

passive animation and active navigation), and demonstrate better

perceptual comfort and intention matching than alternative solu-

tions, such as smoothing or slowing down camera movements.

The contributions of this work include:

• perceptual studies of the relationship between simulator sick-

ness and visual cues from virtual scenes and camera trajec-

tory,

• a perceptual model for quantifying discomfort which is based

on our perceptual studies,

• a real-time, online optimization for virtual camera control

which reduces simulator sickness while maintaining original

navigation designs.

2 RELATED WORK

2.1 Motion Perception and Simulator Sickness

Human brain infers motions of the body and surrounding objects

based on visual, vestibular, and proprioceptive information. While

the first one comes from observed images, the latter two depend

solely on the physical motion of the subject. A human’s motion per-

ception from different motion cues are usually combined [DeAngelis

and Angelaki 2011]. When the visually induced motion perception

conflicts with physically induced motion perception, people may ex-

perience motion sickness [Keshavarz et al. 2015], such as carsickness

and seasickness. Similarly, in VR, motion sickness can be induced

when the movement of the user’s avatar in virtual world is incon-

sistent with the user’s physical movement in real world [McGill

et al. 2017; Riecke et al. 2012; Xiao and Benko 2016]. According to

one of the widely accepted explanations for the initiation of motion

sickness, the sensory conflict theory [Reason and Brand 1975], this

mismatch is especially agitating when translational acceleration or

rotation occurs in the virtual world. Specifically, in human’s vestibu-

lar system, each otolith organ acts primarily as an accelerometer

measuring linear acceleration and each semicircular canal acts pri-

marily as a gyroscope measuring angular velocity [Bos et al. 2008].

In other words, given negligible physical motion input, VVC mainly

comes from the visual stimuli which induce illusory self-acceleration

or self-rotation perception [Bos et al. 2008; LaViola Jr 2000; So et al.

2001a,b].

Both visually induced self-acceleration and self-rotation percep-

tion belong to the illusory self-motion created by the visual stimuli,

also called vection [Ash et al. 2013; Dichgans and Brandt 1978].

Various potential factors affecting vection have been examined. The

object and background hypothesis [Seno et al. 2009] suggests that

the motion of the background induces vection while the motion of

the objects (foreground) reduces the vection induced by the back-

ground because they generate an łinverted vectionž [Nakamura and

Shimojo 2000]. The hypothesis was further confirmed in [Seya et al.

2014]. The studies in [Nakamura et al. 2016] have also demonstrated

that the relative motion between the object and the background

plays an important role in inducing self-motion perception.

In agreement with the background hypothesis, several works

examined the vection induced by objects at different depths [Brandt

et al. 1975; Howard and Heckmann 1989; Nakamura 2006; Seya

et al. 2014]. They show that distant objects are taken as background

and induce direction-consistent vection, while foreground objects

induce little vection. They further argue that the depth order is a

more important factor than the absolute depths at which the objects

are located. The consequence of these observations is the fact that

the direction of self-motion can be often estimated using optical

flow [Lappe et al. 1999], but in some cases, extra retinal signals are

needed to disambiguate problematic situations [Lappe et al. 1999].

A more general perception of object motion is also affected by

scene complexity and rendering [Allue et al. 2016], as well as by

object-wise distances, size, and motion parallax [Distler et al. 2000].

Therefore, these factors also contribute to vection and VIMS. Mo-

tion perception also depends on the localization of the stimulus in

the visual field. Peripheral stimuli have been shown to dominate

motion perception [Brandt et al. 1973; Kim and Kim 2019; Previc and

Donnelly 1993; Seno et al. 2009]. Kim and Kim [2019] specifically

report the retinal periphery is more susceptible to VIMS in VR.

There have been many investigations reporting how vection and

VIMS are related. Although the conclusion is still arguable, it is

widely accepted that vection does not necessarily cause VIMS, and

linear-acceleration-related vection and rotation-related vection can

induce VIMS. Therefore, inspired by the above findings, we model

the above factors affecting the vection of linear acceleration and
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the vection of rotation in our perceptual investigation. Following

the finding of Lappe et al. [1999], we also make direct use of optical

flow information which is available during rendering.

2.2 Reducing Visual-Vestibular Conflict

Simulator sickness is a widely acknowledged problem and a critical

challenge in today’s VR systems. An excellent overview of practical

techniques to reduce the effect of the visual-vestibular conflict is

provided in [Yao et al. 2014]. The most straightforward techniques

try to avoid situations when the conflict can be triggered, for ex-

ample, by avoiding accelerations or introducing different means of

convening movement (e.g., teleportation). Other techniques focus

on manipulating visual stimuli to limit vection. Examples include

limiting the field of view [Fernandes and Feiner 2016] or blurring

the image during rotational movement [Budhiraja et al. 2017]. All

the above techniques have a significant drawback of modifying the

user experience either by introducing substantial changes to the

displayed content or restricting the actions performed by the user.

In contrast, the goal of our work is to maintain the initial design of

the user experience as much as possible, while minimizing the effect

of VVC. We share this goal with the work of Rietzler et al. [2018],

which have proposed to stimulate user’s vestibular system using

rotation impulse in order to induce self-motion that can reduce VVC.

Another related effort is the machine learning approach to estimate

VR cybersickness [Padmanaban et al. 2018]. However, unlike our

approach, their work does not provide a systematical solution for

reducing simulator sickness.

2.3 Camera Path Optimization

Agoal of this paper is to reduce simulator sickness through perception-

aware camera path planning. Different planning approaches have

been extensively proposed in interaction, animation and films pro-

duction [Bell et al. 2001; Christie et al. 2008; He et al. 1996]. For

example, Jardillier et al. [1998] have modeled vantage angle, ram-

ming, and object sizes as constraints. Argelaguet et al. [2010] have

adjusted the speed curve via optical flow and saliency map. Their

perceptual metrics quantifies factors for visually-pleasant anima-

tions. Similarly, other research has been proposed to maximize scene

coverage during a fly-through [Huang et al. 2016]. Those methods

are, however, mainly for story-telling/entertainment and traditional

display platforms.

Optimization-based methods outperform constraint-based ones

with the help of flexible goal-driven modeling in different scenarios,

such as VR locomotion [Sun et al. 2018]. Our idea is most similar to

modeling the scene as a potential field. Hong et al. [1997] and Chiou

et al. [1998] have modeled the destination and collision as attractive

and repulsive fields, respectively. However, the local minimum may

trap the search. To overcome this difficulty, [Burelli and Yannakakis

2010] have applied a stochastic population-based global search in

the potential field. Another way to model the environment is to

discretize the space into cells. For example, [Andújar et al. 2004]

have presented a graph structure that embodies the cell connectivity.

For faster performance, Christie et al. [2008; 2005] have proposed

semantic volumes to reduce the searching space. [Lino and Christie

2015] have introduced the Toric space, a representation to reduce

the search space from 7D to 3D.

To our best knowledge, no existing path planning approach aims

at reducing VR sickness.

3 VISUAL-VESTIBULAR CONFLICT MODEL

In this section, we present a series of perceptual experiments to

investigate scene and camera factors that can potentially affect

VIMS. We then use the collected data to build a computational

model of VIMS. Our studies simulate the common scenarios in which

the user remains seated and explores the virtual environment by

rotating her/his head and translating via hand-held controllers. Such

stationary stances induces negligible vestibular motion sensation

and therefore, VVC mainly comes from relative motion between

the virtual scene and the camera (Section 2). This relative motion is

perceived and interpreted by the human visual system via retinal

optical flows [Warren 2004]. Tomodel visual discomfort, we consider

variables that can impact optical flows such as camera motions and

object depths, and other perceptual factors such as eccentricity due

to the motion sensitivity of peripheral vision (Section 2). Below, we

present experiments analyzing the impact of depth, translational

acceleration and rotational velocity on VIMS. The findings later

motivate and inform our design of a new computational model for

predicting VIMS G from a set of attributes u (Section 3.3):

G = L(u). (1)

The goal of Section 3 is to understand what are the factors defining

u and how they contribute to G.

3.1 Study - Scene Depth

Scene depth is a direct factor on the relative motion between ob-

jects and camera motion. Intuitively, scene/object depth should be

negatively correlated with perceived VVC, since a closer object re-

sults in larger retinal optical flows. In addition to motion parallax

depth cues, head-mounted displays also provide binocular disparity

depth cues, which can contribute substantially to the perception of

scene layout [Cutting and Vishton 1994] and compensate for the

smaller retinal velocities of distant objects. In this experiment, we

evaluate whether depth has indeed a significant impact on VVC in

VR systems.

Stimuli. To test the influence of depth on VVC, we designed three

scenes: Spheres, Forest, and Town (Figure 2), which provide visual

stimuli with different environments, object depths, and field-of-

view coverage. In particular, the Spheres scene provides simple

visual stimuli requiring little cognitive understanding of the spatial

structure of the environment, the Forest scene provides a natural

landscape, while the Town scene provides a simple and yet familiar

urban setting. For each scene, the virtual camera was placed in three

different locations to simulate scene depths (3m, 6m and 9m for

Spheres; 50m, 100m and 150m for Forest; 30m, 45m and 60m for

Town). The camera wasmoving horizontally with the same constant

acceleration resulting in 60-seconds long stimuli. To ensure that

depth was the only factor influencing perception, for each camera

position the geometry was designed to maintain the same projected

on-screen size.
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SPHERES FOREST TOWN

Fig. 2. The scenes used in Section 3.1.

Participants. Twelve subjects (5 female, 7 male) with ages 24-38

participated in the study. They had normal or corrected-to-normal

vision. The participants were naïve to the hypothesis tested in the

experiment.

Task. We used the two-alternative forced choice (2AFC) method,

where each trial consisted of two animations shown sequentially

from the same scene but at different distances using an HTC Vive

headset. The order of the two animations was randomized for all

trials across participants. The participants were instructed to indi-

cate the animation causing stronger discomfort. To avoid discomfort

accumulation there was a no less than 30-second break between

the two animations and no less than 60-second break between con-

secutive trials. The participants were also instructed to take breaks

or terminate the experiment early if they experience any signs of

fatigue. To restrict the length of the experiment, each participant

evaluated two comparisons of each scene, six comparisons in total.

Participants were instructed to look straight ahead with no head

rotation during each animation.

Results. 11 participants completed the experiment. One partici-

pant reported Trypophobia to dense spheres in the Spheres scene.

Thus, his votings in this scene were dropped to avoid the medical

condition reflected on VIMS. We analyzed the results of the experi-

ment using binomial test which revealed a significant effect of depth

on VIMS (p < 0.001). A post-hoc analysis showed that most partici-

pants indicated the animation with smaller camera distance as the

one inducing stronger discomfort. Moreover, the effect size can be

considered large since 84 % of answers agreed with this statement.

Based on this study, we conclude that scene/object depth signifi-

cantly contributes to VIMS in VR. The closer the visual stimuli are

to the camera, the stronger the VIMS. Therefore, in Equation (1), u

should include scene depth as an attribute.

Please note that the scenes in this experiment do not contain clear

foreground/background separation. Also, the only variable differen-

tiating the stimuli is the camera distance. As a result, our analysis

neither investigates nor incorporates the background hypothesis

[Seno et al. 2009], and models only the fact that the same object

located at different distances contributes to VIMS differently. Conse-

quently, our computational model presented in Section 3.3 does not

make an explicit distinction between foreground and background.

3.2 Study - Camera Motion

In this subsection, we analyze how camera motion impacts VIMS.

Since constant velocity usually does not introduce significant dis-

comfort [Yao et al. 2014], we focus on VIMS induced by acceleration.

Specifically, we study the camera acceleration along linear trajec-

tory and camera rotation. Although these factors have been shown

to impact motion sickness (Section 2), our goal is to quantify this

impact.

Stimuli. We have designed a retail store scene (Figure 3a) con-

taining multiple objects. The goal here was to create a scene from

peoples’ daily life, which encourages them to immerse themselves

into a virtual environment. We prepared different viewing condi-

tions. In the first scenario, the virtual camera was moving on a linear

trajectory with five different translational acceleration values T ∈

{1.5, 6.0, 24.0, 48.0, 75.0m/s2}. In the second scenario, the virtual

camera was rotating in yaw with five different rotational velocities

R ∈ {2.0, 8.0, 32.0, 64.0, 100.0 ◦/s}. In addition, the scene with a

static camera served as a minimal-discomfort stimuli. Each of the

11 different stimuli was 10 seconds long. To minimize discomfort

introduced by vergence-accommodation conflicts, the scene content

was designed to lie within the comfort range for our head-mounted

display setup [Shibata et al. 2011].

Participants. 11 subjects (4 females and 7 males, with ages be-

tween 23 and 30) participated in this study. Similar to the previous

experiment, they had a normal or corrected-to-normal vision and

were naïve about the hypothesis tested in the experiment.

Task. Similar to the previous experiment, this study also followed

a 2AFC design. In each trial, two stimuli were sequentially shown

to participants. They were randomly chosen from the two scenarios

described above. Each trial contained one animation with transla-

tional acceleration and one with constant rotational velocity. This

allowed us to compare VIMS induced by translational acceleration

and rotational velocity. The subjects were instructed to indicate one

of the two stimuli with less severe discomfort. The stimuli were

shown with a minimal 30-second in-between break, and there was

a minimal 60-second break between trials. The participants were

free to terminate the experiment early. To ensure proper focus and

consistent experiences, the participants were instructed to keep

their heads stationary (without rotation), fixate on a tumbling letter

łEž positioned in the center of the screen and press the upper-arrow

keyboard key when the letter was oriented upwards. The inter-

and intra-participants sequences were randomized. Each participant

conducted all comparisons once.
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The Cost. Based on the above analysis and discussion, at a given

frame k our goal of minimizing VVC can be expressed as:

minimize
aT ,ωR

Eu (aT ,ωR ) (13)

which is approximately equivalent to:

minimize
vc,k+1, qc,k+1

Eu
(
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(14)

Therefore, finding the optimal vc and qc is the goal of minimizing

VIMS in each frame. In our implementation, we accelerate the pixel-

wise computation cost using a GPU, as detailed in Section 5.

4.2 Preserving Original Path

In a pre-scripted VR navigation, the designers can predefine the

original camera movements. To observe the original path, we con-

sider its parameters represented as camera position (p̂) and forward

direction (τ̂ ). When designing an animation, creators typically spec-

ify target camera positions, a.k.a., points of interest (PoI ), along

the timeline. To enable numerical optimization (with C1 continu-

ity) between these PoIs, we represent the output path as a set of

parameterized 3D Bézier curve p(θk ), where 0 ≤ θk ≤ 1 is the curve

parameter at the k-th frame in each Bézier curve.

For active navigation (via user’s self-control) without a given

original path, we estimate it via existing motion prediction or ex-

trapolation methods. Given a user’s position Pk and velocity vc,k
in the current frame and the user’s input of moving velocity vuser
for the next frame, in our current implementation we estimate the

user’s active navigation path locally via Catmull-Rom spline with 4

control points:

C0 = Pk − Nvc,k∆t ,

C1 = Pk ,

C2 = Pk + Nvuser∆t ,

C3 = Pk + 2Nvuser∆t ,

(15)

where N is used to describe the number of frames with which we

predict the user’s movement. Empirically, we set N = 20 in our

current implementation. Note that other motion prediction methods

(e.g., Kalman filtering) can be orthogonally combined with our sys-

tem. We chose Catmull-Rom spline with 4 control points as it works

reasonably well and is simple to implement. We decompose the

motion preserving goal as two subproblems in spatial and temporal

domains.

Spatial Matching. The goal of this step is to match the overall

camera positions between the original path and the VIMS-optimized

path. Essentially, in this path following problem, given the original

path p̂, this match is to determine the optimal p(θ ) on each frame by

minimizing the contour error and lag error between p̂ and p(θ ) [Lam

et al. 2010]. However, the contour error is not suitable to directly

serve as an error measure in the path following approach, because

it involves in an optimization problem over the entire path [Lam

et al. 2010; Nägeli et al. 2017]. We adapt the contour error and lag

error approximation of [Nägeli et al. 2017] in our spatial matching.

We define the relative vector p̄ as the vector from the camera to the

desired position on the path:

p̄(vc,k+1) ≜ p(θk+1) − p̂(k + 1)

= p(θk ) + ∆tvc,k − p̂(k + 1).
(16)

For every frame, the contour matching error is:

ec (vc,k+1) = ∥p̄ − (p̄ · τ̂k+1)τ̂k+1∥2 , (17)

while the lag error is:

el (vc,k+1) = ∥p̄ · τ̂k+1∥2 . (18)

Temporal Matching. The camera moves dynamically in typical VR

navigation applications. That requires matching the original path in

the temporal domain as well. The temporal matching is defined as

et (vc,k+1) =


θk+1 − p̂−1(k + 1)




2 , (19)

where −1 denotes the inverse mapping from a position p() on the

Bézier curve to parameter θ . In practice, the content creator can

specify PoIs similar to common animation/video editing software.

Our system automatically matches their intention of story-telling

or task design from these key frames.

Overall, the original path preserving formulas are combined as:

Ep (vc,k+1) = αle
2
l
+ αce

2
c + αte

2
t , (20)

where αl , αc and αt are weights. In our evaluation, we set αl = 5,

αc = 0.3 and αt = 8.

4.3 Optimization

We combine the cost energy of VVC discomfort in Equation (14) and

path matching in Equation (20) to model the VR navigation opti-

mization problem. In each frame, the camera position is determined

by conducting the following optimization:

E(vc,k+1, qc,k+1) = Eu + λEp , (21)

where λ is the weight of the cost term which can be tuned based on

different navigation preferences (set as λ = 150 in our experiments).

To stabilize the change of camera velocity on adjacent frames, we

add a regularization term to our cost function:

minimize
vc,k+1, qc,k+1

E(vc,k+1, qc,k+1) + λ0


vc,k+1 − vc,k



2
2

subject to 0 ≤ θk ≤ 1
(22)

where λ0 is the weight of the regularization term (λ0 = 0.003 in our

experiments).

5 IMPLEMENTATION

Optimization strategy. In Equation (22), at each frame k , we esti-

mate the optimized camera position and orientation for the follow-

ing N frames. Only the camera position and orientation for frame

k + 1 is applied in the camera control. This idea is from the opti-

mization strategy in Model Prediction Control [Lam et al. 2010] for
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dynamic smooth control:

minimize
vc,k+i , qc,k+i

N∑
i=1

E(vc,k+i , qc,k+i ) + λ0


vc,k+1 − vc,k+i−1



2
2

subject to 0 ≤ θk ≤ 1

(23)

We used N = 20 in our system.

Object-wise acceleration. In Equation (8), the sum through all pix-

els (i, j) is atomic, thus computationally heavy. Alternatively, we

take advantage of the compute buffer in the GPU to accelerate the

projected area computation. For each frame k , each object’s transla-

tional acceleration ao,k , rotation qo,k , camera facing direction nk ,

camera up direction, and camera position are sent to the rendering

pass. Using this information, each pixel’swc
o,k

are computed in the

object rendering pass. ao,k andwc
o,k

are recorded in each pixel in

a read/write buffer while rendering the objects. At the end of each

scene rendering, this read/write buffer is sent to a compute shader

to compute the sum of weighted translational acceleration as well

as rotation velocity relative to the camera. The summation is imple-

mented in the compute shader using InterlockedAdd() function.

Hardware. The system is driven by a PC with Intel i9-7900X CPU

@ 3.30 GHz, 64GB RAM, and one NVIDIA GTX 1080 Ti graphics

card. The VR navigations are shown to the users through a HTC

Vive headset.

Software. Our rendering system is implemented in Unity Engine®.

The camera control optimization in Section 4 is implemented using

the optimization library FORCES Pro [Domahidi and Jerez 2014].

The C code is generated in Matlab and deployed in Visual Studio

2013. The data communication between Unity and Visual Studio is

developed using an asynchronous messaging library, ZeroMQ [Hin-

tjens 2013].

6 EVALUATION

We evaluate the performance of our technique with a series of

user studies using passive and active path control. The experiments

compare our method with simpler alternatives in terms of induced

discomfort using subjective feedback and the simulator sickness

questionnaire. Additionally, we analyze the deviation of the opti-

mized paths from the original ones.

6.1 Passive Navigation

In this experiment, we evaluate the performance of our method

in a scenario where viewers control camera orientation (via head

rotational tracking) but not motion trajectory.

Stimuli. We designed two scenes (S1 and S2 in Figure 6) for this

experiment. The outer space scene (S1) simulates a static scene while

the racing car scene (S2) simulates a dynamic scene. We compared

four camera trajectories (P , O , U , T ) for each scene. The first is

the original, manually predefined trajectory (P ), that is path and

speed, which presents the intent of the creator. The second (O) is

the trajectory resulting from our automatic camera control applied

to P to minimize VIMS. We also consider simpler alternatives which

can potentially reduce VIMS. The first one (U ) is the trajectory that

follows the predefined path P but with uniform speed along the en-

tire path. The other alternative solution (acceleration-thresholding

navigation, T ) maintains the intention of P but minimizes the ac-

celeration. U , T and P have the same animation duration over the

entire path. The duration of the stimuli was 27 seconds for S1 and

55 seconds for S2. Please see the supplemental video for a preview

of the stimuli.

Participants. 16 subjects (6 females, mean age 28.3) participated

in S1 and S2. They were naïve to the hypothesis of the experiment.

Task. During the experiment, the participants wearing HTC Vive

headset explored our stimuli. They remained seated but were free to

rotate their heads and look around. In each trial, participants were

shown one pair of stimuli sequentially in random order. Each pair

contains our solution (O) and one of the three alternatives (P , U , or

T ). The experiment followed a 2AFC procedure, and the subjects

were asked to choose the sequence in which they felt more comfort-

able. After each navigation condition, the subjects were instructed

to fill out the Simulator Sickness Questionnaire (SSQ) [Kennedy et al.

1993]. To minimize the effect of accumulating discomfort during

the experiment, we enforced at least a 60-second break between the

two conditions in each trial, but the participants were instructed

to take as much time as needed to recover. During the experiment,

there were several cases where the participants took longer breaks

(up to five minutes in extreme cases), but nobody terminated the

test because of the severe discomfort.

Results. The user preference votes are visualized in Figure 7. In all

cases, most subjects rated our optimized condition (O) as being more

comfortable than all alternative solutions. Binomial tests showed

that differences between conditions O and P as well as O and T are

statistically significant (p=.0013). Despite the difference in votes, the

result was not statistically significant for the comparison between

O andU .

The results of the SSQ were interpreted as nausea, oculomotor,

disorientation, and total severity (TS) (Table 1) following [Kennedy

et al. 1993]. We analyzed the data using ANOVA test to investi-

gate the significance of the differences in TS scores between our

method and the alternative solutions. The analysis showed that the

difference between our method (O) and the predefined trajectory

(P ) as well as the difference between ours (O) and the acceleration

threshold (T ) are significant with p = .041 and p = .004, respectively.

The difference between the strategy O andU was not statistically

significant.

The above results demonstrate that our method can successfully

optimize a predefined trajectory, and outperforms the acceleration

threshold alternative. Even though the difference between our tech-

nique and the uniform speed alternative was not statistically signif-

icant, we will demonstrate later in Section 6.3 that our technique

better follows the predefined trajectory.

6.2 Active Navigation

In the second experiment, users are allowed to actively control

the navigation in addition to head rotation. This is to simulate

real-world interactive scenarios, such as gaming. The magnitude of
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adaptively manipulating virtual content, such as character motion

or task object distribution, can be another interesting direction to

explore.

To minimize VIMS induced by the camera-object relative mo-

tion, our method accelerates/rotates more slowly/gradually than the

original in a static scene (e.g., the colonoscopy in Section 6.2 or ani-

mated example in the supplemental video). Since our optimization

introduces local changes to the path, the resulting camera motion

may look unnatural in some cases. For instance, when scene objects

move with very high acceleration, our method may accelerate the

camera to minimize the camera-object relative acceleration. This

might cause significant decelerations in other periods during the

navigation which may be perceive as unnatural motion. To prevent

this, a designer can adjust λ. Alternatively, it might be possible to

update the parameter dynamically.

Despite the complexity of our model, our solution does not re-

ceive significantly higher user preference when compared to the

uniform speed solution in terms of reducing VIMS. It has to be noted,

however, that our technique with the same level of VIMS is able to

achieve significantly better intention matching.

In terms of the method implementation, the current system re-

quires not only original camera motions but also scene object mo-

tions as inputs. This may lead to extra implementation complexity

than the alternatives. However, we believe that the potential benefits

given by such a scene analysis outweigh the additional requirements.

In our work, we assume that the viewer remains stationary, for

example, seated in a chair. In the future, accounting for the lim-

ited, but possible, motion in the physical space would extend the

applications of our technique. In particular, it would be interesting

to combine our online camera path optimization with redirected

walking techniques, such as [Dong et al. 2017; Sun et al. 2018].

8 CONCLUSIONS

While VR head-mounted displays are gaining more attention, the

problem of discomfort induced by such devices starts affecting a

larger number of users. One of the most significant sources of dis-

comfort is simulator sickness. In this work, we present a real-time,

content-aware, and automatic camera control approach, which can

reduce the problem while maintaining the original intent regarding

the camera path. The method is based on a series of perceptual

experiments which allow us to derive a perceptual model for quanti-

fying visually induced motion sickness. We believe that our studies

and methods can also be applied to immersive film production, game

design, and 360 video replay. In those scenarios, the original content

creators, such as directors, designers, or regular customers, may not

be aware of the potential discomfort when their materials are played

in VR platforms. Our method can reduce simulator sickness and

preserve the storytelling motion features encoded in the original

camera path.
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