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Abstract

Inside modern SSDs, a small portion of MLC/TLC

NAND flash memory blocks operate in SLC-mode

to serve as write buffer/cache and/or store hot data.

These SLC-mode blocks absorb a large percentage of

write operations. To balance memory wear-out, such

MLC/TLC-to-SLC configuration rotates among all the

memory blocks inside SSDs. This paper presents a

simple yet effective design approach to reduce write

stress on SLC-mode flash blocks and hence improve the

overall SSD lifetime. The key is to implement well-

known delta compression without being subject to the

read latency and data management complexity penalties

inherent to conventional practice. The underlying

theme is to leverage the partial programmability of

SLC-mode flash memory pages to ensure that the

original data and all the subsequent deltas always

reside in the same memory physical page. To avoid

the storage capacity overhead, we further propose to

combine intra-sector lossless data compression with

intra-page delta compression, leading to opportunistic

in-place delta compression. This paper presents specific

techniques to address important issues for its practical

implementation, including data error correction, and

intra-page data placement and management. We

carried out comprehensive experiments, simulations,

and ASIC (application-specific integrated circuit)

design. The results show that the proposed design

solution can largely reduce the write stress on SLC-

mode flash memory pages without significant latency

overhead and meanwhile incurs relatively small silicon

implementation cost.

1 Introduction

Solid-state data storage built upon NAND flash memory

is fundamentally changing the storage hierarchy for

information technology infrastructure. Unfortunately,

technology scaling inevitably brings the continuous

degradation of flash memory endurance and write

speed. Motivated by data access locality and hetero-

geneity in real-world applications, researchers have well

demonstrated the effectiveness of complementing bulk

MLC/TLC NAND flash memory with small-capacity

SLC NAND flash memory to improve the endurance

and write speed (e.g., see [1–3]). The key is to use

SLC memory blocks serve as write buffer/cache and/or

store relatively hot data. Such a design strategy has

been widely adopted in commercial solid-state drives

(SSDs) [4–6], where SSD controllers dynamically

configure a small portion of MLC/TLC flash memory

blocks to operate in SLC mode. The MLC/TLC-to-SLC

configuration rotates throughout all the MLC/TLC flash

memory blocks in order to balance the flash memory

wear-out.

This paper is concerned with reducing the write

stress on those SLC-mode flash memory blocks in

SSDs. Aiming to serve as write buffer/cache and/or

store hot data, SLC-mode flash memory blocks account

for a large percentage of overall data write traffic [7].

Reducing their write stress can directly reduce the

flash memory wear-out. Hence, when these SLC-mode

memory blocks are configured back to operate as

normal MLC/TLC memory blocks, they could have

a long cycling endurance. Since a specific location

tends to be repeatedly visited/updated within a short

time (like consecutive metadata updates or in-place

minor revisions of file content), it is not uncommon

that data written into this SLC-mode flash based cache

have abundant temporal redundancy. Intuitively, this

feature makes the delta compression an appealing

option to reduce the write stress. In fact, the abundance

of data temporal redundancy in real systems has

inspired many researchers to investigate the practical

implementation of delta compression at different levels,

such as filesystems [8, 9], block device [10–13] and FTL

(Flash Translation Layer) [14]. Existing solutions store

the original data and all the subsequent compressed

deltas separately at different physical pages of the
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storage devices. As a result, to serve a read request,

they must fetch the original data and all the subsequent

deltas from different physical pages, leading to inherent

read amplification, particularly for small read request

or largely accumulated delta compression. In addition,

the system needs to keep the mapping information for

the original data and all the compressed deltas, leading

to a sophisticated data structure in the filesystem and/or

firmware. These issues inevitably lead to significant read

latency and hence a system performance penalty.

This paper aims to implement delta compression for

SLC-mode flash memory blocks with small read latency

penalty and very simple data management. First, we

note that the read latency penalty inherent to existing

delta compression design solutions is fundamentally

due to the per-sector/page atomic write inside storage

devices, which forces us to store the original data and

all the subsequent deltas across different sectors/pages.

Although per-sector atomic write is essential in hard

disk drives (i.e., hard disk drives cannot perform

partial write/update within one 4kB sector), per-page

atomic write is not absolutely necessary in NAND flash

memory. Through experiments with 20nm MLC NAND

flash memory chips, we observed that SLC-mode pages

can support partial programming, i.e., different portions

of the same SLC-mode page can be programmed at

different times. For example, given a 16kB flash

memory page size, we do not have to write one entire

16kB page at once, and instead we can write one portion

(e.g., 4kB or even a few bytes) at a time and finish

writing the entire 16kB page over a period of time. This

clearly warrants re-thinking the implementation of delta

compression.

Leveraging the per-page partial-programming support

of SLC-mode flash memory, we propose a solution

to implement delta compression without incurring

significant read latency penalty and complicating data

management. The key idea is simple and can be

described as follows. When a 4kB sector is being written

the first time, we always try to compress it before writing

to an SLC-mode flash memory page. Assume the flash

memory page size is 16kB, we store four 4kB sectors

in each page as normal practice. The use of per-sector

lossless compression leaves some memory cells unused

in the flash memory page. Taking advantage of the

per-page partial-programming support of SLC-mode

flash memory, we can directly use those unused memory

cells to store subsequent deltas later on. As a result,

the original data and all its subsequent deltas reside in

the same SLC flash memory physical page. Since the

runtime compression/decompression can be carried out

by SSD controllers much faster than a flash memory

page read, this can largely reduce the data access latency

overhead in the realization of delta compression. In

addition, it can clearly simplify data management since

everything we need to re-construct the latest data is

stored in a single flash page. This design strategy is

referred to as opportunistic in-place delta compression.

For the practical implementation of the proposed

design strategy, this paper presents two different

approaches to layout the data within each SLC-mode

flash memory page, aiming at different trade-offs

between write stress reduction and flash-to-controller

data transfer latency. We further develop a hybrid error

correction coding (ECC) design scheme to cope with the

significantly different data size among original data and

compressed deltas. We carried out experiments and sim-

ulations to evaluate the effectiveness of proposed design

solutions. First, we verified the feasibility of SLC-mode

flash memory page partial programming using a PCIe

FPGA-based flash memory characterization hardware

prototype with 20nm MLC NAND flash memory

chips. For the two different data layout approaches,

we evaluated the write stress reduction under a variety

of delta compression values, and quantitatively studied

their overall latency comparison. To estimate the silicon

cost induced by the hybrid ECC design scheme and

on-the-fly compression/decompression, we further

carried out ASIC (application-specific integrated circuit)

design, and the results show that the silicon cost is not

significant. In summary, the contributions of this paper

include:

• We for the first time propose to cohesively integrate

SLC-mode flash memory partial programmability,

data compressibility and delta compressibility to

reduce write stress on SLC-mode pages in SSDs

without incurring significant read latency and

storage capacity penalty;

• We develop specific solutions to address the data er-

ror correction and data management design issues

in the proposed opportunistic delta-compression de-

sign strategy;

• We carried out comprehensive experiments to

demonstrate its effectiveness on reducing write

stress at small read latency overhead and show its

practical silicon implementation feasibility.

2 Background and Motivation

2.1 Write Locality

The content temporal locality in storage system implies

that one specific page could be visited for multiple times

within a short time period. To quantitatively investigate

this phenomenon, we analyzed several typical traces

including Finance-1, Finance-2 [15], Homes [16] and

Webmail Server traces [16], and their information

is listed in Table 1. We analyzed the percentage of

repeated LBA (logical block address) in the collected

traces. Figure 1 shows the distribution of repeated
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overwrite times within one hour. In the legend, ’1’

means a specific LBA is only visited once while ’2-10’

means an LBA is visited more than twice and less than

10 times. We can find more than 90% logical blocks are

updated more than once in Finance-1 and Finance-2.
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Figure 1: Percentage of repeated overwrite times of

several typical workload traces.

Table 1: Disk traces information

Name duration # of unique LBAs # of total LBAs

Finance-1 1h 109,177 3,051,388

Finance-2 1h 31,625 571,529

Homes 24h 20,730 28,947

Webmail 24h 6,853 16,514

Another noticeable characteristic in most applica-

tions is the partial page content overwrite or update.

Authors in [17] revealed that more than 60% of write

operations involve partial page overwrites and some

write operations even only update less than 10 bytes.

This implies a significant content similarity (or temporal

redundancy) among consecutive data writes to the same

LBA. However, due to the page-based data write in flash

memory, such content temporal redundancy is however

left unexplored in current conventional practice.

2.2 Delta Compression

Although delta compression can be realized at different

levels spanning filesystems [8, 9], block device [10–13]

and FTL [14], their basic strategy is very similar and can

be illustrated in Figure 2. For the sake of simplicity, we

consider the case of applying delta compression to the

4kB content at the LBA of La. Let C0 denote the original

content at the LBA of La, which is stored in one flash

memory physical page P0. At time T1, we update the 4kB

content at LBA of La with C1. Under delta compression,

we obtain the compressed delta between C0 and C1, de-

noted as d1, and store in another flash memory physical

page P1. At time T2, we update the content again with C2.

To maximize the delta compression efficiency, we obtain

and store the compressed delta between C2 and C1, de-

noted as d2. The process continues as we keep updating

the content at the LBA of La, for which we need to keep

the original content C0 and all the subsequent deltas (i.e.,

d1, d2, · · · ).

  



 



  

 



 



 



 



Figure 2: Illustration of conventional method for

realizing temporal redundancy data compression.

Clearly, conventional practice could result in notice-

able read latency penalty. In particular, to serve each

read request, we must fetch the original data and all

the deltas in order to re-construct the current content,

leading to read amplification and hence latency penalty.

In addition, it comes with sophisticated data structure

and hence complicates data management, which could

further complicate flash memory garbage collection. As

a result, although delta compression can very naturally

exploit abundant temporal redundancy inherent in many

applications, it has not been widely deployed in practice.

2.3 Partial Programming

Through experiments with flash memory chips, we ob-

served that SLC-mode NAND flash memory can readily

support partial programming, i.e., different portions

in an SLC flash memory page can be programmed at

different time. This feature can be explained as follows.

Each SLC flash memory cell can operate in either erased

state or programmed state, corresponding to the storage

of ‘1’ and ‘0’, respectively. At the beginning, all the

memory cells within the same flash memory page are

erased simultaneously, i.e., the storage of each memory

cell is reset to be ‘1’. During runtime, if we write a

‘1’ to one memory cell, memory chip internal circuits

simply apply a prohibitive bit-line voltages to prevent

this cell from being programmed; if we write a ‘0’ to

one memory cell, memory chip internal circuits apply

a programming bit-line voltage to program this cell

(i.e., move from erased state to programmed state).

Meanwhile, a series of high voltage are applied to the

word-line to enable programming. This can directly

enable partial programming as illustrated in Figure 3: At

the beginning of T0, all the four memory cells m1, m2,
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m3 and m4 are in the erased state, and we write ‘0’ to

memory cell m3 and write ‘1’ to the others. Internally,

the memory chip applies programming bit-line voltage

to m3 and prohibitive bit-line voltage to the others, hence

the storage content becomes {‘1’, ‘1’, ‘0’, ‘1’}. Later at

time T1, if we want to switch memory cell m1 from ‘1’ to

‘0’, we write ‘0’ to memory cell m1 and ‘1’ to the others.

Accordingly, memory chip applies prohibitive bit-line

voltage to the other three cells so that their states remain

unchanged. As a result, the storage content becomes

{‘0’, ‘1’, ‘0’, ‘1’}.


 










  

  

  

 

Figure 3: Illustration of the underlying physics enabling

SLC-mode flash memory partial programming.

Therefore, we can carry out partial programming

to SLC-mode flash memory pages as illustrated in

Figure 4. Let Is denote an all-one bit vector with the

length of s. Given an erased SLC flash memory page

with the size of L, we first write [d1, · · · ,dn,IL−n] to

partially program the first n memory cells and leave the

rest L− n memory cells intact. Later on, we can write

[In,c1, · · · ,cm,IL−n−m] to partially program the next m

memory cells and leave all the other memory cells intact.

The same process can continue until the entire page has

been programmed.

 … 



 …  …

 … 





 …  
… … …





Figure 4: Illustration of SLC-mode flash memory partial

programming.

Using 20nm MLC NAND flash memory chips, we car-

ried out experiments and the results verify that the chips

can support the partial programming when being oper-

ated in the SLC mode. In our experiments, we define

“one cycle” as progressively applying partial program-

ming for 8 times before one entire page is filled up and

then being erased. In contrast, the conventional “one cy-

cle” is to fully erase before each programming. Figure 5

demonstrates the bit error rate comparison of these two

schemes. The flash memory can be used for 8000 cy-

cles with the conventional way. The progressive partial

programming can work for more than 7100 cycles. And

this modest endurance reduction indicates that the partial

programming mechanism does not bring noticeable extra

physical damage to flash memory cells.
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Figure 5: Comparison of the bit error rate of conventional

programming and progressive partial programming.

3 Proposed Design Solution

Leveraging the partial programmability of SLC-mode

flash memory, very intuitively we can deploy in-place

delta compression, as illustrated in Figure 6, to eliminate

the read latency penalty inherent to conventional design

practice as described in Section 2.2. As shown in

Figure 6, the original data content C0 and all the

subsequent deltas di’s are progressively programmed

into a single physical page. Once the physical page is

full after the k-th update, or the number of deltas reaches

a threshold T (we don’t expect to accumulate too many

deltas in case of a larger retrieval latency), we allocate a

new physical page, write the latest version data Ck+1 to

the new physical page, and reset the delta compression

for subsequent updates. This mechanism can guarantee

that we only need to read a single flash memory page to

retrieve the current data content.

In spite of the very simple basic concept, its practical

implementation is subject to several non-trivial issues:

(i) Storage capacity utilization: Suppose each flash

memory page can store m (e.g., 4 or 8) 4kB sectors.

The straightforward implementation of in-place delta

compression explicitly reserves certain storage capacity

within each SLC flash memory page for storing deltas.

As a result, we can only store at most m−1 4kB sectors

per page at the very beginning. Due to the runtime
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Figure 7: Illustration of opportunistic in-place delta compression and two different data placement strategies.
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Figure 6: Illustration of the basic concept of in-place

delta compression.

variation of the delta compressibility among all the

data, these explicitly reserved storage space may not be

highly utilized. This clearly results in storage capacity

penalty. In addition, by changing the number of 4kB

sectors per page, it may complicate the design of FTL.

(ii) Error correction: All the data in flash memory must

be protected by ECC. Due to the largely different size

among the original data and all the deltas, the ECC

must be devised differently. In particular, the widely

used low-density parity-check (LDPC) codes are only

suitable for protecting large data chunk size (e.g., 2kB

or 4kB), while each delta can only be a few tens of

bytes. In the remainder of this section, we present

design techniques to address these issues and discuss the

involved trade-offs.

3.1 Opportunistic In-place Delta Com-

pression

To eliminate the storage capacity penalty, we propose to

complement delta compression with intra-sector lossless

data compression. In particular, we apply lossless data

compression to each individual 4kB sector being written

to an SLC-mode flash memory page, and opportunisti-

cally utilize the storage space left by compression for s-

toring subsequent deltas. This is referred to as oppor-

tunistic in-place delta compression. This is illustrated in

Figure 7, where we assume the flash memory page size

is 16kB. Given four 4kB sectors denoted as A, B, C, and

D, we first apply lossless data compression to each sector

individually and obtain Ac, Bc, Cc, and Dc. As shown in

Figure 7, we can place these four compressed sectors in-

to a 16kB SLC-mode flash memory page in two different

ways:

1. Clustered placement: All the four compressed sec-

tors are stored consecutively, and the remaining s-

pace within the 16kB page can store any deltas as-

sociated with these four sectors.

2. Segmented placement: Each 16kB SLC-mode flash

memory page is partitioned into four 4kB segments,

and each segment is dedicated for storing one com-

pressed sector and its subsequent deltas.

These two different placement strategies have different

trade-offs between delta compression efficiency and read

latency. For the clustered placement, the four sectors

share a relatively large residual storage space for storing

subsequent deltas. Hence, we may expect that more

deltas can be accumulated within the same physical

page, leading to a higher delta compression efficiency.

However, since the storage of original content and deltas

of all the four sectors are mixed together, we have to

transfer the entire 16kB from flash memory to SSD

controller in order to reconstruct the current version of

any one sector, leading to a longer flash-to-controller

data transfer latency. On the other hand, in the case of

segmented placement, we only need to transfer a 4kB

segment from flash memory to SSD controller to serve

one read request. Meanwhile, since the deltas associated

with each sector can only stored within one 4kB

segment, leading to lower delta compression efficiency

compared with the case of clustered placement. In

addition, segmented placement tends to have lower

computational complexity than clustered placement,

which will be further elaborated later in Section 3.3.
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3.2 Hybrid ECC and Data Structure

The above opportunistic in-place delta compression de-

mands a careful design of data error correction and over-

all data structure. As illustrated in Figure 8, we must s-

tore three types of data elements: (1) compressed sector,

(2) delta, and (3) header. Each compressed sector and

delta follows one header that contains all the necessary

metadata (e.g., element length and ECC configuration).

Each element must be protected individually by one EC-

C codeword. In addition, each header should contain an

unique marker to identify a valid header. Since all the

unwritten memory cells have the value of 1, we can use

an all-zero bit vector as the header marker.













Figure 8: Illustration of three types of data elements, all

of which must be protected by ECC.

Since all the elements have different different size, the

ECC coding must natively support variable ECC code-

word length, for which we can use the codeword punc-

turing [18]. Given an (n,k) ECC that protects k-bit user

data with (n− k)-bit redundancy. If we want to use this

ECC to protect m-bit user data um (where m< k), we first

pad (k−m)-bit all-zero vector Ok−m to form a k-bit vec-

tor [um,Ok−m]. We encode the k-bit vector to generate

(n− k)-bit rn−k of redundancy, leading to an n-bit code-

word [um,Ok−m,rn−k]. Then we remove the (k−m)-bit

all-zero vector Ok−m from the codeword to form an (n+
m− k)-bit punctured ECC codeword [um,rn−k], which is

stored into flash memory. To read the data, we retrieve

the noisy version of the codeword, denoted as [ũm, r̃n−k],
and insert (k−m)-bit all-zero vector Ok−m back to form

an n-bit vector [ũm,Ok−m, r̃n−k], to which we apply ECC

decoding to recover the user data um.

In order to avoid wasting too much coding redun-

dancy, the ratio of m/k in ECC puncturing should not

be too small (i.e., we should not puncture too many

bits). Hence, instead of using a single ECC, we should

use multiple ECCs with different codeword length to

accommodate the large variation of data element length.

To protect relatively long data elements (in particular the

compressed 4kB sectors), we can use three LDPC codes

with different codeword length, denoted as LDPC4kB,

LDPC2kB, and LDPC1kB. The code LDPC4kB protects

all the elements with the length bigger than 2kB, the

code LDPC2kB protects all the elements with the length

within 1kB and 2kB, and the code LDPC1kB protects

all the elements with the length within 512B and 1kB.

Thanks to recent work on versatile LDPC coding system

design [19, 20], all the three LDPC codes can share the

same silicon encoder and decoder, leading to negligible

silicon penalty in support of multiple LDPC codes.

Since LDPC codes can only work with relatively large

codeword length (i.e., 1kB and beyond) due to the error

floor issue [21], we have to use a set of BCH codes

to protect all the elements with the length less than

512B. BCH codes with different codeword length are

constructed under different Galois Fields, hence cannot

share the same silicon encoder and decoder. In this work,

we propose to use three different BCH codes, denoted

as BCH4B, BCH128B, and BCH512B, which can protect

4B, 128B, and 512B, respectively. We fix the size of

element header as 4B, and the BCH4B aims to protect

each element header. The code BCH512B protects all the

elements with the length within 128B and 512B, and the

code BCH128B protects all the non-header elements with

the length of less than 128B.

3.3 Overall Implementation

Based upon the above discussions, this subsection

presents the overall implementation flow of the proposed

opportunistic in-place delta compression design frame-

work. Figure 9 shows the flow diagram for realizing

delta compression to reduce write stress. Upon a request

of writing 4kB sector Ck at a given LBA within the SLC-

mode flash memory region, we retrieve and re-construct

the current version of the data Ck−1 from an SLC-mode

physical page. Then we obtain the compressed delta

between Ck and Ck−1, denoted as dk. Accordingly we

generate its header and apply ECC encoding to both the

header and compressed delta dk, which altogether form

a bit-vector denoted as pk. If there is enough space in

this SLC-mode page and the number of existing deltas is

smaller than the threshold T , we write pk into the page

through partial programming; otherwise we allocate a

new physical page, compress the current version Ck and

write it to this new page to reset the delta compression.

In addition, if the original sector is not compressible, like

video or photos, we simply write the original content

to flash memory without adding a header. Meanwhile,

we write a special marker bit to the reserved flash page

metadata area [22]. During the read operation, if the

controller detected the marker, it will know that this

sector is written uncompressed.

The key operation in the process shown in Figure 9

is the data retrieval and reconstruction. As discussed

in Section 3.1, we can use two different intra-page

data placement strategies, i.e., clustered placement

and segmented placement, for which the data retrieval
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Figure 9: Flow diagram for realizing delta compression.

and reconstruction operation involves different la-

tency overhead and computational complexity. In

short, compared with clustered placement, segmented

placement has shorter latency and less computational

complexity. This can be illustrated through the following

example. Suppose a single 16kB flash page contains four

compressed 4kB sectors, Ac, Bc, Cc, and Dc. Associated

with each sector, there is one compressed delta, dA,1,

dB,1, dC,1, and dD,1. Each of these eight data elements

follows a header, hence we have total eight headers.

Suppose we need to read the current content of sector

B, the data retrieval and reconstruction process can be

described as follows:

• In the case of clustered placement, the SSD

controller must retrieve and scan the entire 16kB

flash memory page. It must decode and analyze all

the eight headers to determine whether to decode

or skip the next data element (compressed sector

or delta). During the process, it carries out further

ECC decoding to obtain Bc and dB,1, based upon

which it performs decompression and accordingly

reconstruct the current content of sector B.

• In the case of segmented placement, the SSD con-

troller only retrieves and scans the second 4kB from

from the 16kB flash memory page. As a result, it

only decodes and analyzes two headers, and accord-

ingly decodes and decompresses Bc and dB,1, and

finally reconstructs the current content of sector B.

From above simple example, it is clear that, compared

with clustered placement, segmented placement largely

reduces the amount of data being transferred from flash

memory chips to SSD controller, and involves a fewer

number of header ECC decoding. This leads to lower

latency and less computation. On the other hand, clus-

tered placement tends to have a better storage efficiency

by allowing different sectors to share the same storage

region for storing deltas.

Thus the proposed design solution essentially elimi-

nates read amplification and filesystem/firmware design

overhead, which are two fundamental drawbacks inher-

ent to conventional practice. Meanwhile, by opportunis-

tically exploiting lossless compressibility inherent to da-

ta content itself, this design solution does not incur a s-

torage capacity penalty on the SLC-mode flash memory

region in SSDs.

Based upon the above discussions, we may find that a

noticeable write traffic reduction could be expected with

a good compression efficiency and delta compression

efficiency. So if the data content is not compressible (like

multimedia data or encrypted data), the reduction would

be limited. In addition, another application condition is

that the proposed design solution favors update-in-place

file system because only the write requests to the same

LBA have a chance to be combined to the same physical

page. Therefore, the proposed technique could not be

very conveniently applied to some log-structured file

system like F2FS, LFS because the in-place update is

not inherently supported in the logging area of these

file systems. And besides, the proposed design solution

can be integrated with other appearing features of SSD

such as encryption. SSDs are using high performance

hardware modules to implement encryption. And

the data/delta compression will not be affected if the

encryption module is placed after compression.

4 Evaluations

This section presents our experimental and simulation

results to quantitatively demonstrate the effectiveness

and involved trade-offs of our proposed design solution.

4.1 Per-sector Compressibility

To evaluate the potential of compressing each original

4kB sector to opportunistically create space for deltas,

we measured the per-4kB-sector data compressibility on

different data types. We collected a large amount of 4kB

data sectors from various database files, document files,

and filesystem metadata. These types of data tend to be

relatively hot and frequently updated, hence more likely

reside in the SLC-mode region in SSDs.

We use the sample databases from [23, 24] to test

the compressibility of MySQL database files. MySQL

database uses pre-allocated data file, hence we ignored

the unfilled data segments when we measured the

compression ratio distribution. The Excel/Text datasets

were collected from an internal experiment lab server.

We used Linux Kernel 3.11.10 source [25] as the source

code dataset. We collected the metadata (more than
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34MB) of files in an ext4 partition as the metadata

dataset. Figure 10 shows the compressibility of different

data types with LZ77 compression algorithm. The

compression ratio is defined as the ratio of the size

after compression to before compression, thus a smaller

ratio means a better compressibility. As shown in

Figure 10, data compression ratio tends to follow a

Gaussian-like distribution, while different datasets have

largely different mean and variation. Because each delta

tends to be much smaller than 4kB, the results show

that the simple LZ77 compression is sufficient to leave

enough storage space for storing multiple deltas.
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Figure 10: Compression ratio distribution of different

data types with LZ77 compression.

4.2 Write Stress Reduction

We further evaluated the effectiveness of using the

proposed opportunistic in-place delta compression to

reduce the flash memory write stress. Clearly, the

effectiveness heavily depends on the per-sector data

compressibility and delta compressibility. Although

per-sector data compressibility can be relatively easily

obtained as shown in Section 4.1, empirical measure-

ment of the delta compressibility is non-trivial. Due

to the relative update regularity and controllability of

filesystem metadata, we empirically measured the delta

compressibility of metadata, based upon which we

analyzed the write stress reduction for metadata. To

cover the other types of data, we carried out analysis by

assuming a range of Gaussian-like distributions of delta

compressibility following prior work [10, 13].

4.2.1 A Special Case Study: Filesystem Metadata

To measure the metadata delta compressibility, we

modified Mobibench [26] to make it work as the

I/O workload benchmark under Linux Ubuntu 14.04

Desktop. We use a large set of SQLite workloads

(create, insert, update, delete) and general

filesystem tasks (file read, update, append) to

trigger a large amount of file metadata updates. To

monitor the characteristics of metadata, based upon the

existing tool debugfs [27], we implemented a metadata

analyzer tool [28] to track, extract, and analyze the

filesystem metadata. We use an ext4 filesystem as the

experimental environment and set the system page cache

write back period as 500ms. Every time before we

collect the file metadata, we wait for 1s to ensure that

file metadata are flushed back to the storage device. For

each workload, we collected 1000 consecutive versions

of metadata.
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Figure 11: Delta compression ratio of consecutive

versions of metadata for different workloads.

Based on the collected consecutive versions of meta-

data, we measured the delta compressibility as shown in

Figure 11. The number inside the bar indicates the av-

erage number of bytes needed to store the difference be-

tween two consecutive versions of metadata, while the

complete size of ext4 file metadata is 256 byte. The av-

erage delta compression ratio is 1:0.087 with the stan-

dard deviation of 0.0096. The results indicate that the

delta compression ratio is quite stable with a very small

deviation.
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Figure 12: Number of flash memory pages being

programmed for storing 1000 consecutive versions of

metadata. (In comparison with conventional practice, we

need at most 1000 pages to store these versions. )

The results in Figure 11 clearly suggest the significant

data volume reduction potential by applying delta com-

pression for metadata. To estimate the corresponding
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Figure 13: Reduction of the number of programmed flash memory pages under different workloads and over different

data compressibility.

write stress reduction, we set that each SLC-mode flash

memory page is 16kB and stores four compressed 4kB

sectors and their deltas. Figure 12 shows the average

number of flash memory pages that must be programmed

in order to store 1000 consecutive versions of metadata

pages. We considered the use of both segmented

placement and clustered placement design strategies

as presented in Section 3.1. Thanks to the very good

per-sector compressibility and delta compressibility of

metadata, the flash memory write stress can be reduced

by over 20×. In addition, by allowing all the four sectors

share the space for storing deltas, clustered placement

can achieve higher write stress reduction than segmented

placement, as shown in Figure 12.

4.2.2 Analytical Results for General Cases

Prior work [10, 13, 14] modeled delta compressibility to

follow Gaussian-like distributions. To facilitate the eval-

uation over a broader range of data types, we follow this

Gaussian distribution based model in these work as well.

Let Rdata denote the mean of the per-sector compression

ratio of original data, and let Rdelta denote the mean of

delta compression ratio. Based upon the results shown

in Section 4.1, we considered three different values of

Rdata, i.e., 0.2, 0.4, and 0.7. scenarios. According to pri-

or work [10,13,14], we considered three different values

of Rdelta, i.e., 0.1, 0.3, and 0.6. Meanwhile, we set the

value of deviation to 10% of the corresponding value of

mean according to our measurements in Section 4.1.

In this section, we carried out simulations to estimate

the flash memory write stress reduction over different

workloads, and the results are shown in Figure 13. We

chose the following four representative workloads:

• Webmail Server: We used Webmail Server block

trace from [16], which was obtained from a

department mail sever and the activities include

mail editing, saving, backing up, etc.

• Repeated File Update: We enhanced the benchmark

in [26] to generate a series of file updating in an

Android Tablet, and accordingly captured the block

IO traces.

• Home: We used the Homes Traces in [16], which

include a research group activities of developing,

testing, experiments, technical writing, plotting,

etc.

• Transaction: We executed TPC-C benchmarks (10

warehouses) for transaction processing on MySQL

5.1 database system. We ran the benchmarks and

use blktrace tool to obtain the corresponding traces.

As shown in Figure 13, the write stress can be

noticeably reduced by using the proposed design

solution (a smaller value in figure indicates a better

stress reduction). In the “Repeated File Update” and

TPC-C workloads, the number of programmed flash

memory pages can be reduced by over 80%. The results

clearly show that the flash memory write stress reduction

is reversely proportional to Rdata and Rdelta, which can
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be intuitively justified. When both the original data and

delta information cannot be compressed efficiently (such

as Rdata is 0.7 and Rdelta is 0.6), the write stress can be

hardly reduced because the compressed delta cannot be

placed in the same page with the original data. However,

with the clustered data placement strategy, some deltas

could be placed because of a larger shared spare space.

Thus the clustered data placement strategy has a better

performance than the segmented approach in most of

the cases, especially when the compression efficiency is

relatively poor.

The write stress reduction varies among different

workloads and strongly depends on the data update op-

eration frequency. For example, with a large percentage

of data updates than “Homes”, “Repeated File Update”

can achieve noticeably better write stress reduction as

shown in Figure 13. In essence, there exists a upper

bound of write stress reduction, which is proportional to

the percentage of update operations. This explains why

the write stress reduction cannot be further noticeably

reduced even with better data compressibility, as shown

in Figure 13.

4.3 Implementation Overhead Analysis

This subsection discusses and analyzes the overhead

caused by the proposed design solution in terms of read

latency, update latency, and SSD controller silicon cost.

4.3.1 Read Latency Overhead

Figure 14 illustrates the read process to recover the

latest data content. After the flash memory sensing

and flash-to-controller data transfer, the SSD controller

parses the data elements and accordingly carries out

the ECC decoding and data/delta decompression, based

upon which it combines the original data and all the

subsequent deltas to obtain the latest data content.

As explained in Section 3.2, different segments are

protected by different ECC codes (LDPC codes or

BCH codes) according to the length of information bits.

Hence the controller must contain several different ECC

decoders.
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Figure 14: Illustration the process to obtain the latest data

content.

Let τsen denote the flash memory sensing latency(the

latency to read out the data content from flash cells us-

ing sensing circuits [29]), τx f er(Ω) denote the latency of

transferring Ω amount of data from flash memory chip to

SSD controller, τ
(dec)
LDPC and τ

(dec)
BCH denote the LDPC and

BCH decoding latency, τ
(dec)
sec and τ

(dec)
delta denote the la-

tency of decompressing the original data and deltas, τcom

denote the latency to combine the original data and all

the deltas to obtain the latest data content, and τsata de-

note the latency of transferring 4kB from SSD to host.

In the conventional design practice without delta com-

pression, to serve a single 4kB read request, the overall

latency can be expressed as:

τread = τsen + τx f er(4kB)+ τ
(dec)
LDPC + τsata. (1)

When using the proposed design solution to realize

delta compression, the read latency can be expressed as:

τread =τsen + τx f er(n ·4kB)+max(τ
(dec)
LDPC,τ

(dec)
BCH )

+max(τ
(dec)
sec ,τ

(dec)
delta )+ τcom + τsata,

(2)

where n denotes the number of 4kB sectors being

transferred from flash memory chip to SSD controller.

We have that n = 1 in the case of segmented placement,

and n is the number of 4kB in each flash memory

physical page in the case of clustered placement. Since

there could be multiple elements that are decoded by

the LDPC decoder or the same BCH decoder, τ
(dec)
LDPC

and τ
(dec)
BCH in Eq. 2 are the aggregated LDPC and BCH

decoding latency. In addition, τ
(dec)
delta in Eq. 2 is the

aggregated delta decompression latency because there

could be multiple deltas to be decompressed by the same

decompression engine.

We can estimate the read latency based on the follow-

ing configurations. The SLC-mode sensing latency τsen

is about 40µs in sub-20nm NAND flash memory. We set

the flash memory physical page size as 16kB. Under the

latest ONFI 4.0 flash memory I/O specification with the

throughput of 800MB/s, the transfer latency τx f er(4kB)
is 5µs. We set the throughput of both LDPC and BCH

decoding as 1GBps. Data decompression throughput is

set as 500MBps, and delta decompression throughput is

set as 4GBps due to its very simple operations. When

combining the original data and all the deltas, we simply

use parallel XOR operations and hence set τcom as 1µs.

Under the SATA 3.0 I/O specification with the through-

put of 6Gbps, the SSD-to-host data transfer latency τsata

is set as 5.3µs.

Based upon the above configurations, we have that, to

serve a 4kB read request, the overall read latency is 54µs

under the conventional practice without delta compres-

sion. When using the proposed design solution, the over-

all latency depends on the number of deltas involved in

the read operation. With the two different data placement
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Table 2: Read/Update latency overhead comparison of

different cases.

Operation Technique
Average-case

( sµ )

Worst-case

( sµ )

Read

Conventional 54

Clustered 76 102

Segmented 56 63

Update

Conventional 186

Clustered 246 272

Segmented 226 233

 

strategies, we estimate the worst-case and average-case

read latency as shown in Table 2:

• Clustered placement: In this case, the flash-to-

controller data transfer latency is τx f er(16kB)=20µs.

In the worse case, the compressed 4kB sector being

requested and all its deltas almost completely

occupy the entire 16kB flash memory physical

page, and are all protected by the same ECC

(LDPC or BCH). And the total information bit

length will be nearly 32kB at most due to ECC

code word puncturing (as explained in Section 3.2).

As a result, the decoding latency is 32µs at

most and delta decompression latency is 4µs.

Hence, the overall worst-case read latency is

102µs, representing a 88% increase compared

with the conventional practice. In the average

case, the latency of decoding/decompressing

the original 4kB sector is longer than that of

its deltas. Assuming the original 4kB sector is

compressed to 3kB, we can estimate the decoding

and decompression latency as 4µs and 6µs. Hence,

the overall average-case read latency is 76µs,

representing a 41% increase compared with the

conventional practice.

• Segmented placement: In this case, the flash-to-

controller data transfer latency is τx f er(4kB)=5µs.

The worst-case scenario occurs when the data

compressibility is low and hence the compressed

sector is close to to 4kB, leading to the decoding

and decompression latency of 4µs (using LDPC4kB)

and 8µs, respectively. Hence, the worst-case

overall read latency is 63µs, representing a 17%

increase compared with the conventional practice.

Under the average case, the compression ratio is

modest and multiple deltas are stored, for which the

latency could be about 2∼4µs. Hence the average-

case overall latency is about 56µs, representing a

4% increase compared with conventional practice.

4.3.2 Update Latency Overhead

In conventional practice without using delta compres-

sion, a data update operation simply invokes a flash

memory write operation. However, in our case, a data

update operation invokes data read, delta compression,

and flash memory page partial programming. Let τread

denote the latency to read and reconstruct one 4kB sector

data (as discussed in the above), τ
(enc)
delta denote the delta

compression latency, and τprogram denote the latency

of flash memory page partial programming. Hence the

update latency can be expressed as:

τwrite = τread + τ
(enc)
delta + τ

(enc)
ecc + τx f er + τprogram (3)

Based upon our experiments with sub-20nm NAND

flash memory, we set τprogram as of 150µs. We set

the delta compression throughput τ
(enc)
delta as 4GBps

and the ECC encoding throughput τ
(enc)
ecc as 1GBps.

Therefore, the overall of writing one flash memory page

is 186µs. When using the proposed design solution, as

illustrated in Table 2, the value of τread could largely

vary. In the case of clustered placement, the worst-case

and average-case update latency is 272µs and 246µs,

representing 32% and 46% increase compared with

the conventional practice. In the case of segmented

placement, the worst-case and average-case update

latency is 233µs and 226µs, representing 25% and 22%

increase compared with the conventional practice.

4.3.3 Silicon Cost

Finally, we evaluated the silicon cost overhead when us-

ing the proposed design solution. In particular, the SSD

controller must integrate several new processing engines,

including (1) multiple BCH code encoders/decoders, (2)

per-sector lossless data compression and decompression

engines, and (3) delta compression and decompression

engines. As discussed in Section 3.2, we use three

different BCH codes, BCH4B, BCH128B, and BCH512B,

which protect upto 4B, 128B, and 512B, respectively.

Setting the worst-case SLC-mode flash memory bit error

rate (BER) as 2× 10−3 and the decoding failure rate as

10−15, we constructed the code BCH4B as the (102, 32)

binary BCH code over GF(27), BCH128B as the (1277,

1024) binary BCH code over GF(211), and BCH512B as

the (4642, 4096) binary BCH code over GF(213). To

evaluate the entire BCH coding system silicon cost, we

carried out HDL-based ASIC design using Synopsys

synthesis tool set and results show that the entire BCH

coding system occupies 0.24mm2 of silicon area at the

22nm node, while achieving 1GBps throughput.

Regarding the per-sector lossless data compression

and decompression, we chose the LZ77 compression
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algorithm [30], and designed the LZ77 compression

and decompression engines with HDL-based design

entry and Synopsys synthesis tool set. The results show

that the LZ77 compression and decompression engine

occupies 0.15mm2 of silicon area at the 22nm node

(memory costs included), while achieving 500MBps

throughput. Regarding delta compression and decom-

pression, since they mainly involve simple XOR and

counting operations, it is reasonable to expect that their

silicon implementation cost is negligible compared with

BCH coding and LZ77 compression. Therefore, we

estimate that the overall silicon cost for implementing

the proposed design solution is 0.39mm2 at the 22nm

node. According to our knowledge, the LDPC decoder

module accounts for up to 10% of a typical SSD

controller, meanwhile our silicon cost (including the

logical resources such as gates, registers, memory,

etc) is about 1/3 of an LDPC decoder. Therefore, we

can estimate that the involved silicon area in proposed

solution will occupy less than 5% of the silicon area

of an SSD controller, which is a relatively small cost

compared to the entire SSD controller.

5 Related Work

Aiming to detect the data content similarity and store the

compressed difference, delta compression has been well

studied in the open literature. Dropbox [31] and Github

use delta compression to reduce the network bandwidth

and storage workload using a pure application software

level solution. Design solutions in [10,11,13] reduce the

waste of space by detecting and eliminating the duplicate

content in block device level while the proposed solution

could further reduce the redundancy of similar but not

identical writes. The FTL-level approach presented

in [14] stores the compressed deltas to a temporary

buffer and commits them together to the flash memory

when the buffer is full, thus the number of writes could

be reduced. Authors of [32] proposed a design solution

to extend the NAND flash lifetime by detecting the

identical writes. Authors of [33] developed an approach

to utilize the content similarity to improve the IO

performance while the proposed techniques pay more

attention on the write stress reduction to extend the SSD

lifetime. To improve the performance of data backup

workloads in disks, authors of [9] proposed an approach

to implement delta compression on top of deduplication

to further eliminate redundancy among similar data. The

key difference between proposed solution and existing

solutions is that we can make sure the deltas and original

data content locate in the same physical flash memory

page, which will eliminate the read latency overhead

fundamentally.

General-purpose lossless data compression also has

been widely studied in flash-based storage system.

The authors of [34, 35] presented a solution to realize

transparent compression at the block layer to improve

the space efficiency of SSD based cache. A mathematic

framework to estimate how data compression can

improve NAND flash memory lifetime is presented

in [12]. The authors of [36] proposed to integrate

database compression and flash-aware FTL to effectively

support database compression on SSDs. The authors

of [37] evaluated several existing compression solutions

and compared their performance. Different from all the

prior work, we for the first time present a design solution

that cohesively exploits data compressibility and SLC-

mode flash memory page partial-programmability to

implement delta compression at minimal read latency

and data management overhead.

6 Conclusion

In this paper, we present a simple design solution to

most effectively reduce the write stress on SLC-mode

region inside modern SSDs. The key is to leverage the

fact that SLC-mode flash memory pages can naturally

support partial programming, which makes it possible

to use intra-page delta compression to reduce write

stress without incurring significant read latency and

data management complexity penalties. To further

eliminate the impact on storage capacity, we combine

intra-page delta compression with intra-sector lossless

data compression, leading to the opportunistic in-place

delta compression. Its effectiveness has been well

demonstrated through experiments and simulations.
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