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Abstract 

Lymphocytic myocarditis is a common condition associated with both infectious diseases 

and immunological disorders, and is often associated with severe morbidity and 

mortality, but few effective treatments. In many cases, the pathophysiology involves a 

failure of central and/or peripheral immune tolerance leading to a cardiac-specific 

autoimmune T cell response. Previous studies indicate that the PD-1:PD-L1 axis plays an 

important role in limiting inflammation in the heart. CpG ODN are TLR9 agonists with 

known immunoregulatory capacity, in part through their potent induction of type I IFN, a 

known inducer of PD-L1. In this study, we used human tissue to determine the signature 

of PD-L1 expression in myocarditis. Furthermore, we investigated the in vitro activity of 

CpG ODN as an inducer of PD-L1 in the heart, and tested if this activity is dependent on 

type I IFN. Lastly, we sought to establish the cardioprotective potential of CpG ODN in a 

CD8+ T cell-mediated adoptive transfer model of myocarditis in mice. Myocarditic 

human hearts demonstrate elevated PD-L1 relative to healthy hearts, indicating a possible 

feedback inhibition on inflammation of translational relevance. CpG ODN robustly 

upregulates PD-L1 and interferon-related genes in the myocardium, though our data is 

equivocal as to whether this is a type I IFN-dependent process. Pretreatment of mice with 

CpG ODN significantly reduced the extent of CD8+ T cell-medaited disease as measured 

by both histology and serology. Though results did not reach statistical significance, 

preliminary data suggests that this cardioprotection may not be fully dependent upon PD-

1:PD-L1 activity. CpG ODN is known to have other immunoregulatory properties, and 

our data on gene expression in hearts of treated mice suggest other regulatory 

mechanisms by which CpG ODN may regulate autoimmunity in the heart. Irrespective of 
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the mechanism of action, this study provides evidence of the possible therapeutic utility 

of CpG ODN as a targeted therapy for myocarditis.  
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Introduction 

The myocardium requires a sterile environment for proper functioning and host survival. 

Inflammation of cardiac myocytes, or myocarditis, can be caused directly by several 

“primary” etiologies, including infectious, toxic, or autoimmune. Most commonly, 

myocarditis is caused by viral infection; in the United States, the dominant infectious 

agent is the Coxsackie B3 virus (CVB3), while in certain other geographic locations, 

parasitic infection with Trypanosoma cruzi or bacterial infection with Borrelia 

burgdorferi are common causes (1). Certain drugs, such as antiepileptics, penicillin 

derivatives, and sulfonamides, can precipitate hypersensitivity eosinophilic myocarditis 

(2). In the setting of ineffective immunosuppression, allograft rejection may result in 

fulminant alloimmune myocarditis. From a clinical perspective, myocarditis can manifest 

as a mild disorder, with self-limiting symptoms such as chest pain or dyspnea on 

exertion, or on the other end of the spectrum, cardiovascular collapse and sudden cardiac 

death (3). In the case of fulminant myocarditis, inflammation of the left ventricle reduces 

contractile function and can lead to acute decompensated heart failure. Alternatively, 

involvement of the conduction system can precipitate acute ventricular arrhythmias and 

cause sudden cardiac death. In cases where myocarditis does resolve acutely, pathologic 

remodeling can adversely affect long-term cardiac function and may progress to dilated 

cardiomyopathy (DCM) (3). Prevalence estimates of myocarditis vary considerably, as 

definitive diagnosis requires invasive endomyocardial biopsy; however, a Global Burden 

of Disease working group estimated that myocarditis accounted for 0.5% to 4% of cases 

of heart failure worldwide (4, 5). Among young adults in particular, myocarditis and 

DCM represent major causes of heart failure and sudden death worldwide (6). 
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Unfortunately, even with this significant global morbidity and mortality and an improved 

understanding of the pathophysiology of myocarditis and DCM, there are relatively few 

treatment options available (1). For patients with DCM, prognosis remains quite poor, 

with 40% of patients dying or requiring cardiac transplantation (7). This figure has 

remained virtually unchanged over the last few decades despite advances in 

cardiovascular therapeutics for other conditions. 

 

Despite the diversity of upstream precipitants for myocarditis, following these primary 

insults, many of these entities converge upon a shared disease phenotype that is primarily 

driven and regulated by the immune system (8). Following myocyte death, the innate 

immune system mediates the clearance of pathogens and necrotic debris. During this 

process, the clinical course may take one of two divergent trajectories (1). With rapid 

neutralization of the inflammatory precipitant and reconstitution of the immunoregulatory 

environment in the myocardium, patients can experience a self-limited disease course 

with few long-term sequelae (9). However, the initial inflammatory insult to the heart, 

even if relatively minor in and of itself, may initiate a “post-viral” immune-driven 

myocarditis, potentially precipitated by molecular mimicry between myocyte self-

antigens and the infectious agent (8). In this setting, even when the offending agent is 

completely cleared by the immune system, cardiac inflammation may persist wherein an 

extinguished, exogenous precipitant potentiates a self-propagating, endogenous, 

autoimmune response. Therefore, the immune system represents a double-edged sword in 

the pathophysiology of myocarditis, requisite for disease resolution but also capable of 

exacerbating an otherwise minor insult. Currently, it is not possible to delineate a priori 
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which of these two courses an individual patient’s immune system will take (1). Indeed, 

relatively small differences at the onset of disease may lead to markedly different clinical 

trajectories (10). An improved understanding of the cellular and molecular mechanisms 

involved in the immunologic response to inflammation in the heart may provide guidance 

as to possible immunomodulatory strategies to avoid the initiation of autoimmunity (11).  

 

This Jekyll-and-Hyde nature of the immune system in myocarditis is significantly 

impacted by the role of tolerance. The immune system has two primary strategies for 

preventing the development of autoimmunity, central and peripheral tolerance. For T 

cells, central tolerance refers to the deletion of self-reactive T lymphocytes as they 

develop in the thymus, whereas peripheral T cell tolerance refers to the varied 

immunoregulatory mechanisms that suppress mature T cell reactivity towards self-

antigen after these cells have left the thymus (12). The pathophysiology of myocarditis 

involves a breakdown of both types of tolerance (13). 

 

This “two-hit” model with impaired central and peripheral tolerance begins with 

incomplete clonal deletion of alloreactive lymphocytes. Lv and colleagues have shown 

that transgenic NOD mice with the human DQ8 major histocompatibility complex 

(MHC) II allele develop spontaneous myocarditis (14). In this model, the predominant 

autoantigen is alpha-myosin heavy chain (αMyHC; Myh6), an isoform of myosin heavy 

chain found exclusively in myocytes. Notably, these NOD mice do not express αMyHC 

on medullary thymic epithelial cells (mTECs), suggesting that there is no central 

tolerance to αMyHC. Furthermore, transgenic expression of αMyHC in mTECs prevents 
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the development of myocarditis. Humans with and without myocarditis also both lack 

αMyHC expression in mTECs and have circulating αMyHC-specific lymphocytes, with 

myocarditis patients having much higher αMyHC-specific T cell titers. These data 

suggest that impaired central tolerance allows for at least some heart antigen-autoreactive 

lymphocytes to escape central tolerance mechanisms, setting up the potential that they 

will be activated by heart antigens and cause myocarditis (15). 

 

However, peripheral tolerance mechanisms can also prevent the development of 

autoimmune myocarditis. At baseline, compared to other organs, the heart is relatively 

immune privileged and is notably devoid of any significant lymphocytic presence. This 

suggests that evolutionary selective pressures have established higher threshold in the 

heart than many other tissues for initiating local immune-driven inflammation, which 

could otherwise disrupt the continuous electrophysiological function of the myocardium 

that is necessary for survival (13, 16). Alternatively, as discussed below, mice deficient in 

T cell inhibitory (“checkpoint”) molecules are much more susceptible to autoimmune 

lymphocytic myocarditis compared to mice that express these immunosuppressive 

molecules (17). These findings point to peripheral mechanisms in place to prevent 

alloreactive T cells from initiating autoimmunity in the heart. 

 

However, the myocardium exists in an unstable equilibrium with regards to self-

tolerance, wherein this tolerance is susceptible to disruption. Binding of pathogen- or 

damage-associated molecular patterns (PAMPs or DAMPs, respectively) to pattern 

recognition receptors (PRRs) on antigen-presenting cells (APCs) such as dendritic cells 
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(DCs) leads to increased APC expression of costimulatory molecules such as CD80 

(B7.1) and CD86 (B7.2) (13). Simultaneously, these cells also increase presentation of 

cardiac self-antigens, such as αMyHC, on MHC II molecules. Autoreactive T cells that 

have escaped clonal deletion in the thymus are then activated through interactions with 

both costimulatory proteins and MHC II molecules on APCs. In sum, these changes lead 

to activation and clonal proliferation of T cells with specificity to heart antigens. As 

activity of effector T cells leads to further cell death and DAMP-stimulated PRR 

activation, an initial inflammatory stimulus may ignite a vicious cycle wherein T cell 

activity potentiates itself through activated DCs. This process may overwhelm baseline 

mechanisms for maintaining peripheral tolerance in the heart, as described below. Thus, 

incomplete central tolerance coupled with disrupted peripheral tolerance provides a “two-

hit” mechanism whereby, in the context of an insult, a normally immunoprivileged 

environment is recognized as foreign and runaway inflammation ensues. 

 

Although the development of an autoimmune response involves both the innate and 

adaptive arms of the immune system, a number of findings point to the centrality of T 

cells in mediating the pathophysiology in the heart (8). Several mouse models of 

myocarditis recapitulate many of the cardinal features of myocarditis in humans and are 

driven by a T cell response. Inoculation of A/J and Balb/C mice with CVB3 precipitates 

myocarditis in the mice, and T cells from these mice lyse cardiomyocytes in vitro (18, 

19). These same mouse strains develop CD4+ T cell-dependent myocarditis when 

inoculated with an emulsion of αMyHC peptide and adjuvant, a widely-used mouse 

model of inflammatory heart disease known as experimental autoimmune myocarditis 
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(EAM) (20, 21). Interestingly, both disease models are driven by T cells with TCR that 

recognize αMyHC epitopes and are capable of inducing myocarditis when αMyHC-

specific T cells are injected into susceptible mice (22). Although there is some 

speculation that antibodies may also play an important role in the pathophysiology of 

myocarditis, it is not clear that whether autoantibodies against cardiac antigens are 

causative or merely correlative (8, 9). Given that the significant autoantibodies in 

myocarditis (against αMyHC or β1-adrenergic receptors) are of the IgG class, CD4+ 

helper T cells are still nonetheless involved, due to their integral role in the isotype class 

switching of these antibodies (9). This abundance of murine data has led to the creation 

of diagnostic criteria for myocarditis that include the presence of CD3+ and CD4+ T cells 

on endomyocardial biopsy, as well as the use of anti-T cell therapy for myocarditis in 

humans (1). Nonetheless, these therapies are not consistently effective and there is a need 

for more effective myocarditis treatments that directly target T cells (14). 

 

As T cells represent a central mediator in the pathophysiology of myocarditis, it is crucial 

to understand the molecular mechanisms that govern their activation. While the 

phenotype assumed by T cells is a determined by a complex and incompletely understood 

web of interactions, several key mediators determining whether T cells assume a pro-

inflammatory or tolerogenic phenotype have been identified. The “two signal” model of 

T cell activation posits that T cells require both recognition of their cognate antigen on a 

corresponding APC MHC through their TCR, as well as co-stimulation (23). Many 

costimulatory molecules are included in the B7/CD28 superfamily. Of note, however, this 

superfamily contains proteins with both immunostimulatory as well as regulatory effects. 
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Within the family of CD28-family proteins, the programmed cell death 1 (PD-1): 

programmed death ligand 1 (PD-L1) axis represents perhaps the most promising new 

therapeutic target (24). PD-1 is an inhibitory receptor primarily expressed on lymphoid 

cells, and PD-L1 is the primary ligand of PD-1. Notably, PD-L2 is another characterized 

ligand of PD-1 that inhibits T cell activation (25). However, evidence suggests that the 

PD-1:PD-L2 axis has less relevance at least in the context of murine myocarditis (26). 

PD-L1 is expressed mostly on APCs as well as mesenchymal and endothelial cells (16). 

Although the exact intracellular signaling mechanisms that lie downstream of PD-1 have 

yet to be fully established, its cytoplasmic tail includes inhibitory motifs, including the 

immunoreceptor tyrosine-based shift motif (ITSM), that engage the SHP2 tyrosine 

phosphatase. This leads to inhibition of PTK-dependent singling events downstream of 

the T cell receptor (TCR) and the CD28 costimulatory receptor, including activation of 

PLCγ1, Ras, and PI3K pathways (24). PD-1 activity has been shown to inhibit effector T 

cell cytotoxicity, survival, and cytokine production (13). PD-L1 expression has been 

shown to be required for regulatory T cell (Treg) suppression of alloreactive cells (27). 

Therefore, the PD-1:PD-L1 axis works through multiple mechanisms to inhibit T cell 

activation and effector function. 

 

Furthermore, there is evidence that the PD-1:PD-L1 axis is specifically important in 

limiting autoimmunity in the heart. The myocardial endothelium has increased PD-L1 

expression relative to other tissue beds, suggesting that PD-L1 is perhaps involved in 

maintaining the relatively immune-privileged environment under steady-state conditions, 

possibly through inhibiting extravasation and infiltration of T cells (16). Conversely, the 
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absence of PD-1:PD-L1 signaling has been shown to either cause or exacerbate T-cell 

mediated autoimmunity. PD-1-deficient MRL mice develop spontaneous and fatal 

myocarditis (28). PD-1 has been shown to work synergistically with other immune 

checkpoint molecules to prevent the development of myocarditis in Balb/C mice (29). In 

an antigen-specific T cell adoptive transfer model of myocarditis (described in Methods 

below), the absence of PD-L1in the recipient mouse converts a self-limited disease into a 

fatal one (17). Using the same model, PD-1-deficient transferred T cells exhibit enhanced 

cytotoxicity compared to WT T cells (30).  

 

In addition to these animal studies, there is growing evidence from human cancer 

immunotherapy trials that PD-1:PD-L1 signaling is involved in preventing the 

development of autoimmunity. On one hand, monoclonal antibodies targeting immune 

checkpoint molecules such as PD-1 and PD-L1 have shown marked efficacy in 

potentiating immune responses against a wide variety of cancers (31). However, the de-

inhibition of T cell responses has come at a cost. (32). By preventing PD-1-induced 

anergy and apoptosis of self-reactive T cells, cancer immunotherapy treatments can 

potentiate autoimmune responses (33-35). These adverse events, termed “immune related 

adverse events” (IRAEs), can affect virtually any organ (32). Patients receiving a 

combination of immune checkpoint agents may be unable to continue treatment in as 

many as 40% of cases due to severe IRAEs (36). Additionally, combination immune 

checkpoint blockade treatment has been shown to markedly increase the risk of severe 

myocarditis, and multiple deaths from fulminant myocarditis have been reported (34, 37). 

Furthermore, even in cases where patients withstand immune checkpoint blockade 
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treatment, the long-term sequelae of these medications on the heart is currently unknown 

(32). Therefore, as suggested by both animal and human experiments, PD-1:PD-L1 

signaling may represent an important regulatory mechanism to prevent unchecked T cell 

infiltration, activation and cytotoxicity in the heart.  

 

Because PD-1:PD-L1 activity has been shown to be a central player in protecting the 

myocardium, it is crucial to understand how, where, and when this activity happens. 

Given that PD-1 and PD-L1 are upregulated in response to T cell activation, this suggests 

that the PD-1/PD-L1 axis may act as a negative feedback mechanism to limit 

inflammation (13). The molecular mechanisms governing this feedback effect are still 

being uncovered, but evidence suggests that activation of select Toll-Like Receptors 

(TLRs), a subset of PRRs, may be involved. TLRs are principally known for their role in 

initiating innate immune responses against various classes of pathogens, including 

viruses, bacteria, and parasites (38). However, despite these pro-inflammatory properties, 

TLRs are also known to have counterregulatory immunosuppressive functions (39). 

Partially through the release of interferons (IFN), TLRs have been shown to both initiate 

and then subsequently limit myocardial inflammation (8). On one hand, IFN-γ activity 

has been shown to be required for disease progression in EAM (40). However, PD-L1 is 

upregulated in response to both IFN-γ and lipopolysaccharide, a known agonist of TLR4 

(41). Furthermore, IFN-γ is required for the PD-L1 upregulation that decreases 

myocardial necrosis in a CD8+ T cell-dependent murine model of myocarditis (17). 

Additionally, TLR activation is critical to not only effector T cell maturation, but also 

differentiation into Tregs (42). In a model of atherosclerosis, deletion of MyD88, a TLR 
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adaptor important in effector T cell activation, paradoxically had an overall pro-

inflammatory effect by primarily decreasing the presence of Tregs (43). These 

observations suggest that activation of certain TLRs, in part through the upregulation of 

IFN-γ and subsequent expression of PD-L1, may help regulate the extent of T cell 

activation (44, 45). At the same time, IFN-γ represents an imperfect immunomodulatory 

therapy, due to the risk of exacerbating an autoimmune phenotype through T cell 

activation, in addition to its severe side effect profile (46). 

 

In addition to type II IFNs (i.e. IFN-γ), type I IFNs (e.g. IFN-α and IFN-β) also have a 

combination of pro- and anti-inflammatory properties (47). This result is not surprising 

given the remarkable degree of overlap in the downstream signaling between the two IFN 

families (48). Type I IFNs are known to facilitate viral clearance, increase expression of 

MHC and costimulatory molecules, and induce expression of chemokines. However, type 

I IFNs have also been shown to induce expression of IL-10, an anti-inflammatory 

cytokine, while inhibiting inflammasome maturation and IL-1 production (49). Although 

evidence suggests that IFN-γ is likely a more potent inducer, type I IFNs have also been 

shown to upregulate PD-L1 (44, 48, 50). Consequently, type I IFNs also represent a 

possible immunomodulatory therapy for inflammatory heart disease. 

 

To drive expression of these IFNs, TLR9 ligand are one potentially promising therapeutic 

approach. TLR9 is an endosomal TLR primarily expressed in plasmacytoid DCs (pDCs) 

as well as B cells (51), and recognizes unmethylated CpG oligonucleotides (ODN). The 

response of TLR9 to CpG ODN depends upon the structural characteristics of the 
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particular CpG ODN, which are typically grouped based upon the chemical composition 

of their CpG ODN backbone (phosphorothioated or phosophodiester) and whether the 

DNA is linear or palindromic (51). Binding of type A CpG ODN, composed of a 

phosphorothioate backbone and a palindromic CpG repeat, to TLR9 stimulates robust 

production of type I IFN (52). The recently characterized P-class of ODN also 

demonstrate a robust type I IFN signature (53). Therefore, CpG ODN-TLR9-mediated 

release of type I IFN, as potentiated by IFN-γ, may be pivotal in inducing peripheral 

tolerance in the heart through multiple mechanisms, including induction of PD-L1. 

 

CpG ODN has previously demonstrated potential as an immunomodulatory agent in a 

variety of disease models. Pre-treatment of mice with CpG ODN has been shown to 

reduce the severity of both cardiac and cerebral ischemic/reperfusion injury, likely in part 

through immunomodulatory mechanisms (54, 55). Protective roles for TLR9 agonists 

have also been noted in animal models of asthma, sepsis, viral infection, and heart failure 

(56-59). Notably, TLR9 agonists are already used in clinical trials for various indications 

including infections, cancer, autoimmunity, and allergy (60). Furthermore, unlike direct 

IFN therapies, TLR9 agonists generally have a generally mild toxicity profile (60). 

 

Of note, it has been shown that prophylactic treatment with CpG ODN can attenuate 

CVB3-induced myocarditis (61). However, this study had several limitations. First, the 

authors note that the treatment had an extremely limited therapeutic index. At a dose of 

10 μg, mice demonstrated reduced mortality and an increased level of virus-neutralizing 

antibody. However, at a dose of 20 μg, antibody levels were decreased relative to control 
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and these mouse hearts demonstrated increased viral replication. Furthermore, the authors 

used a C-class CpG ODN, which, relative to A-class ODN, stimulate a more robust B cell 

response, and a less pronounced type I IFN signature (51). Therefore, while C-class ODN 

may be the ideal therapeutic strategy in a pathophysiology with a robust antibody 

response, for a primarily T cell-mediated phenomenon such an approach is likely 

suboptimal. Furthermore, the translational potential of such findings is questionable in 

the light of a narrow therapeutic index. Lastly, as IFNs are known to have potent antiviral 

activity, the protective mechanism of the CpG ODN treatment in a virally-mediated 

model may be explained by inhibition of viral replication, rather than a true 

immunomodulatory therapy. Therefore, the utility of CpG ODN, through a TLR9:type I 

IFN:PD-L1 pathway, shows theoretical potential as an immunomodulatory therapy for 

myocarditis, but has yet to be rigorously evaluated. 

 

Statement of Purpose 

We hypothesized that CpG ODN would mitigate disease burden in a CD8+ T cell-

mediated murine model of myocarditis. Our study evaluates the extent to which pre-

treatment of mice with CpG ODN 24 hours prior to disease onset protects mice from 

fulminant lymphocytic myocarditis. Additionally, if CpG ODN pre-treatment does indeed 

reduce the severity of myocarditis, we seek to better understand the mechanism by which 

this occurs. As previous studies suggest that PD-1:PD-L1 interactions may be a main 

regulator of T cell activity, we aim to establish whether PD-L1 upregulation is the 

primary mechanism of immunomodulation by CpG ODN, and whether this upregulation 

requires type I IFN.  
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Methods 

Unless explicitly stated otherwise, all experiments were completed by the thesis author. 

 

Staining and quantification of human tissue 

Human heart tissue was accessed through the Brigham and Women’s Hospital (BWH) 

pathology tissue repository with CoolPath software (Tucson, AZ). Control samples were 

identified by searching for autopsy specimens from deceased patients under the age of 35 

with the keyphrase “normal myocardium” in the autopsy report. Any mention of atypical 

or abnormal findings in the gross or histologic examination of the heart as documented in 

the final autopsy report disqualified samples from being counted as controls. Myocarditic 

hearts were identified by searching autopsy and explant hearts for the keyphrase 

“lymphocytic myocarditis.” Only hearts described as having “significant,” “severe,” 

“multifocal,” or similar descriptors of disease were included in the myocarditis group. 

Formalin-fixed paraffin-embedded (FFPE) tissue blocks were collected and sent for PD-

L1 staining at the Specialized Histopathology Core (SHP) at BWH. PD-L1 staining was 

quantified with Adobe Photoshop. Staining was quantified by subtracting out non-

myocardial background (e.g. white space, lumen, and lung tissue), and then taking the 

number of positively stained myocardial pixels divided by the total number of myocardial 

pixels. The average threshold for positive staining was compared between control and 

disease groups to detect any inconsistency. All case lists and data related to this study 

were de-identified with respect to patient identification and kept secure. This study was 

conducted under an approved BWH IRB protocol. 
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Mice 

C57BL/6, IFNAR KO, TNFR2 KO, and OT-I mice were obtained from Jackson 

Laboratories (Bar Harbor, ME). OT-I mice are T cell-receptor transgenic mice with 

CD8+ T cells specific for the Ova peptide (SIINFEKL; Ova257-264) on the class I MHC 

H2-Kb. Transgenic Mice with cardiac myocyte restricted membrane-bound ovalbumin 

(cMy-mOva) mice were previously engineered in the Lichtman laboratory (62). Briefly, 

DNA segments encoding Ova257-264 were isolated and cloned. These residues were 

inserted into viral vectors and transfected into fibroblasts. This construct was then cloned 

directly downstream to the mouse cardiac αMyHC promoter. After amplification in 

competent bacteria, the verified sequence was microinjected into C57BL/6 embryonic 

stem cells. RT-PCR data confirms that in cMy-mOva mice, ovalbumin peptide is 

selectively expressed in the myocardium and histologic and ultrasonographic 

examnination of cMy-mOva mice at 2 years of age are consistent with healthy and 

normally functional myocardium (62). In short, cMy-mOva mice are genetically identical 

to C57BL/6 mice except for the presence of ovalbumin peptide in the heart. 

 

All mice used were between 6 and 12 weeks in age. Experiments featured a near-even 

mixture of male and female mice with no noticeable differences in disease parameters 

between sexes. Mice were housed in the New Research Building facility as part of the 

BWH system. All procedures were performed according to protocols approved by the 

Institutional Animal Care and Use Committee (IUCAC) at Harvard University. 
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In Vivo Reagents 

A CpG ODN preparation was created as a combination of two different CpG ODNs. 

ODN 1585 (InvivoGen, San Diego, CA) is an A-class CpG ODN and ODN 21798 

(Miltenyi Biotec, Auburn, CA) is a P-class CpG ODN. Lyophilized CpG ODN was 

reconstituted in TE buffer and sterile PBS. ODN was administered intraperitoneally (i.p.) 

in doses of 20 μg/500 μL total injected volume. PD-1 blockade was accomplished with 

rat anti-mouse PD-1 antibody (29F.1A12, courtesy of Gordon Freeman, Harvard Medical 

School) and IFN-γ blockade was achieved with rat anti-mouse IFN-γ antibody (XMG1.2; 

BioLegend, San Diego, CA). Because of the relevance of PD-1 blockade to IRAEs in 

cancer treatment, we used a similar PD-1 blocking regimen as has been used in basic 

tumor immunology studies of PD-1 immunotherapy (63). 200 μg of anti-PD-1 were 

administered on days 0, 3, and 6 (with day 0 indicating the day of adoptive transfer). For 

IFN-γ blockade use, mice were given 100 μg of XMG1.2 antibody intraperitoneally three 

hours prior to CpG ODN administration in accordance with dosages used in prior studies 

(64). Experiments related to IFN-γ blockade were performed by Nafisa Wara. 

 

OT-I CD8+ T Cell Preparation and Disease Induction 

OT-I CD8+ T cells were prepared with the assistance of Dr. Nir Grabie. Following OT-I 

mouse sacrifice, spleens were surgically removed and homogenized through a filter. 

CD8+ T cells were isolated through CD8a magnetic bead separation (Miltenyi Biotec, 

Auburn, CA), and activated with soluble anti-CD28 and plate-bound anti-CD3 antibody 

(BD-Pharmingen, San Diego, CA), as well as IL-2 and IL-12 (R&D Systems, 

Minneapolis, MN) (62). After 5 days of culture and activation, these cells were 
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adoptively transferred into cMy-mOva mice through intraperitoneal injection at doses 

ranging from 40,000 to 250,000 OT-I. PD-1 KO OT-I CD8+ T cells were prepared in an 

identical manner, and all experiments involving PD-1 KO OT-I CD8+ T cells were 

completed by Nafisa Wara and Dr. Nir Grabie. Mice were then sacrificed either five or 

ten days following adoptive transfer, or earlier if dictated by procedure per IUCAC 

guidelines. For survival analysis, surviving mice were sacrificed 24 days following 

adoptive transfer. 

 

Processing and Analysis of Mouse Tissue 

Mice were euthanized through CO2 asphyxiation and cervical dislocation. Mouse hearts 

were surgically removed. Blood was collected by heparinizing and cutting the inferior 

vena cava. Serum was isolated through centrifugation and sent for cardiac troponin I 

(cTnI) measurement at the Biomarker Research and Clinical Trials laboratory at BWH. 

Serum cytokine measurement was performed by the laboratory of James Lederer, PhD at 

BWH through multiplex bead assays. Heart tissue was then prepared for 

immunohistochemistry (IHC), quantitative real-time RT-PCR (qRT-PCR), or flow 

cytometry. 

 

For frozen section immunohistochemistry, heart tissue was frozen in optimal cutting 

temperature compound, cut into six-micrometer-thick sections and fixed with acetone and 

blocked with hydrogen peroxide. Following primary antibody incubation with rat anti-

mouse Gr-1 antibody (BD-Pharmingen), sections were incubated with biotinylated goat 

anti-rat immunoglobulin (Vector Laboratories, Burlingame, CA). Sections were then 
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incubated with a horseradish peroxidase-avidin-biotin complex (ThermoFisher, Waltham, 

MA) and developed with aminoethyl carbazole (ThermoFisher) prior to counterstaining 

with Gill’s number 2 hematoxylin (Polysciences Inc., Warrington, PA). For FFPE IHC, 

mouse hearts were stored in phosphate buffered formalin and sent to SHP at BWH. H&E 

staining was performed by the Rodent Histopathology Core at BWH on FFPE tissue.  

 

qRT-PCR was performed by first extracting mRNA from approximately 10 mg of mouse 

heart biventricular apices with a QIAGEN RNeasy Mini kit (Qiagen, Germany). mRNA 

was treated with DNAse I prior to elution. Isolated mRNA was confirmed for purity and 

yield with a NanoDrop spectrophotometer (ThermoFisher). The ThermoScript RT-PCR 

system was used to generate cDNA (ThermoFisher). We then used the SYBR Green PCR 

mix (Applied Biosystems, Foster City, CA) to quantify amplification with an Applied 

Biosystems RT-PCR multiplex machine (ThermoFisher). β-actin was used to normalize 

gene expression across samples, as done in previous myocarditis studies by the Lichtman 

laboratory (30). Furthermore, many other studies have used β-actin as a RT-PCR control 

in assessing the effects of CpG ODN (65-67), and proteomic data shows that beta-actin 

levels are not significantly changed in response to CpG ODN (68). 

 

Flow cytometry was performed by Dr. Daniel Engelbertsen, PhD. For flow cytometry, 

whole heart tissue was digested in collagenase mix and then passed through a cell 

strainer. Following osmotic lysis of erythrocytes, cells were stained with Zombie Aqua 

(BioLegend) and anti-CD45.2 to identify viable hematopoetic cells. Cells were also 

stained with anti-Ly6G and anti-CD8 to identify cell populations of interest.  
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Histologic scoring  

Myocarditis was scored on a zero- to four-point scale by examining H&E-stained 

sections (69). 0 indicates no inflammation; 1 indicates between one and five mononuclear 

inflammatory foci occupying less than 5% of the cross-sectional area; 2 indicates more 

than 5 foci with between 5% and 20% of the cross-sectional area involved; 3 indicates 

greater than 20% involvement without cellular necrosis; 4 indicates diffuse, widespread 

inflammation with cellular necrosis. H&E slides were examined in a blinded fashion by a 

trained anatomical pathologist (A.H.L.).  

 

Statistical Analysis 

Statistical analyses were performed with Prism software (Graph Pad, La Jolla, CA). 

Differences between groups were examined with Student’s t test. Significance was 

determined by p < .05. When samples did not meet assumptions necessary for a t test, the 

non-parametric Mann-Whitney U test was used. For Kaplan-Meier survival analysis, a 

log-rank test was used to determine whether there was a statistically significant difference 

in the hazard rate between two groups. 

 

Results 

PD-L1 is upregulated following lymphocytic infiltration of the human heart 

As the protective role of PD-L1 in the human heart is not completely understood, we first 

sought to establish the possible translational relevance of PD-L1 upregulation in the 
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human heart. FFPE specimens from healthy (explant N = 13; autopsy N = 2) and 

inflamed (autopsy only; N = 10) archived human heart tissue as obtained from the BWH 

pathology core, stained for PD-L1 expression by immunohistochemistry, and quantified 

(Figure 1a). To ensure that a consistent threshold was used for positive staining across 

images, the average RGB pixel intensity for pixels identified as staining positively for 

each image was compared (Figure 1c). No significant difference was noted with Red 

(189.5 ± 3.839 versus 191.9 ± 2.799; P = .61) and Green (178.2 ± 3.771 versus 167.2 ± 

3.583; P = .05) pixel intensities between control and diseased hearts. Blue color 

intensities were somewhat higher for the control hearts (164.3 ± 4.642 versus 145 ± 

4.694; P = .011), corresponding to a lighter (i.e. less stringent) color threshold among 

control samples. Positive staining was present in some autopsy samples, suggesting that 

delayed fixation post mortem in autopsies compared to surgical pathology explant 

specimens does not preclude positive staining. Relative to non-diseased hearts, hearts 

with documented myocarditis had significantly higher levels of PD-L1 expression (6.71 ± 

2.90%) than control hearts (0.516 ± .31%) as per a two-tailed Mann-Whitney U Test (U = 

25; P = .0041). Representative images are shown in Figure 1b. Notably, PD-L1 

expression was largely localized to inflammatory foci as identified on H&E stains, but 

included linear staining between myocytes suggestive of endothelial cell staining, as well 

as dense staining on inflammatory cells. 

 

CpG ODN Upregulates PD-L1 in the Murine Myocardium 

As PD-L1 has shown to be an important regulator of inflammation in the murine heart 

and is upregulated in the human heart following inflammation, we next sought to 
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understand whether CpG ODN effectively upregulates PD-L1 in the murine heart, and, if 

so, characterize the spatial dynamics of this upregulation. In addition to quantifying the 

expression of PD-L1, the expression of other IFN-related transcripts was investigated. 

MX-1 and IP-10 are both interferon-inducible genes, whereas IRF1 lies downstream of 

TLR9 activation but upstream of type I IFN production (70, 71). 24 hours following 

intraperitoneal injection of 30 ug of CpG ODN, both Balb/C (N = 6 total) and SCID (N = 

6 total) mice demonstrated significant upregulation of PD-L1 (P < .0001 and P = .0050, 

respectively) and MX-1 (P = .0482 and P < .0001, respectively) (Figure 2a). PD-L1 

upregulation was also found to be significant in C57BL/6 mice (N = 11 total; P = .0058), 

though other transcripts were not investigated in this strain. SCID mice were used so as to 

investigate whether B cell loss would change the transcriptomic signature of CpG ODN 

treatment, given that TLR9 is expressed on both pDCs and B cells (51). Balb/C mice also 

showed a significant upregulation of IRF-1 (P < .0001), though the difference was not 

significant in SCID mice (P = .056). 

 

Immunohistochemistry demonstrated that the upregulation of PD-L1 was present in a 

linear, striated pattern suggesting that the protein may be expressed on endothelial cells 

rather than myocytes (Figure 2b). PD-L1 staining largely corresponded with CD31 

staining, an endothelial cell marker. 

 

CpG ODN-mediated upregulation of PD-L1 may occur in the absence of interferon 

signaling 



 25

We then sought to identify the mediators of PD-L1 upregulation in the murine heart 

following administration of CpG ODN. Because CpG ODN is a known inducer of both 

type I and type II IFNs (72), we hypothesized that PD-L1 transcript upregulation would 

be abrogated with blockade of type I or II IFN signaling. However, IFNAR KO mice 

demonstrated marked upregulation of PDL1 in the context of CpG ODN administration 

(N = 5 ODN versus 4 control; P = .0098) (Figure 3a). IFNAR KO mice showed 

upregulation of IP10 (P = .0011) and IRF1 (P = .0004). As type I IFN signaling has been 

shown to be required for PD-L1 expression (44), we next sought to determine if a 

different receptor may be relaying a type I IFN signal. TNFR2 signaling has been shown 

to initiate autocrine type I IFN signaling within endothelial cells, and therefore may play 

a critical role in connecting CpG ODN administration with interferon-related signaling 

(73). However, in TNFR2 KO mice, CpG ODN administration (N = 4) also markedly 

upregulated PD-L1 relative to controls (N = 3; P < .0001) as well as for IP10 (P = .0005) 

and IRF1 (P < .0001).  

 

To examine the role of type II IFN signaling in CpG ODN-mediated upregulation of PD-

L1, we used an IFN-γ blocking antibody (XMG1.2) in C57BL/6 mice (Figure 3b). No 

difference was detected in PD-L1 upregulation between mice receiving CpG ODN and 

XMG1.2 (N = 4) and just CpG ODN (N = 4; P = .1763). 

 

CpG ODN Treatment Prior to Initiation of CD8+ T Cell-Mediated Myocarditis 

Ameliorates Disease Burden 
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Given that CpG ODN upregulates PD-L1 in the murine heart, we next tested whether 

CpG ODN pre-treatment can protect against lymphocytic myocarditis in a CD8 T cell-

mediated adoptive transfer model of the disease (Figure 4a). At an adoptive transfer dose 

of 105 in vitro activated OT-I cells, mice receiving CpG ODN (N = 10) demonstrated a 

significantly lower (P = .0001) serum cTnI compared to mice receiving PBS (N = 8) at 5 

days after adoptive transfer (263 ± 59 ng/mL versus 776 ± 85.6 ng/mL). Mice without the 

cMy-mOva transgene demonstrated minimal levels of serum cTnI (N = 10; 1.60 ± 1.41 

ng/mL). As several troponin readings were above the maximum detectable threshold of 

1000 ng/mL with an adoptive transfer dose of 105, we next repeated the experiment with 

a transfer dose of 4∙104 OT-I cells. Again, mice receiving CpG ODN pretreatment had a 

significantly lower (P = .03) serum cTnI (N = 12; 51.2 ± 18.2 ng/mL) compared to PBS 

controls (N = 9; 208.9 ± 79.1 ng/mL). From this, we concluded that myocardial damage 

by CTLs is significantly abrogated with CpG ODN treatment. 

 

On histologic analysis at day 5, although mice receiving CpG ODN had fewer intramural 

thrombi, overall histologic scores were not different between the two groups with either 

adoptive transfer dose (unpublished data). We hypothesized that histologic delineation 

may occur at a later time point, as smaller differences in initial cardiac injury may 

magnify into larger differences as inflammation initiates a self-amplifying cycle. 

Therefore, we histologically evaluated mouse hearts at day 10 after adoptive transfer with 

4∙104 OT-I cells (Figure 4b). Mice receiving CpG ODN (N = 10; 1.8 ± .29) had a 

significantly lower average histologic grade of myocarditis compared to mice receiving 

PBS (N = 11; 3.09 ± .25; P = .0031). 



 27

 

As another assay to examine the extent to which CpG ODN ameliorates the burden of 

lymphocytic myocarditis, we next attempted to measure the degree of neutrophilic 

inflammation in the heart, as neutrophil recruitment occurs in the context of myocardial 

cell death, and neutrophils contribute to disease severity in the cMy-mOva model (74, 

75). Mice receiving 4∙104 OT-I cells were sacrificed at day 5 status post adoptive transfer 

and frozen section immunohistochemistry with anti-Gr-1 (anti-Ly6G) was performed on 

myocardial cross-sections (Figure 4c). Pre-treatment with CpG ODN (N = 10; 7.46% ± 

1.86%) led to a significantly less Gr-1 staining compared to PBS-treated controls (N = 8; 

18.3% ± 2.2%; P = .0018). cTnI serology values correlated with percent Gr-1 staining (r2 

= .689), with a linear model slope significantly different from 0 (P < .0001). 

 

Additionally, we assayed neutrophilic infiltrate via flow cytometry on collagenase-

digested hearts (Figure 4d). To increase the number of cells sorted per flow cytometry 

run, heart tissue was combined within groups according to sex (N = 4 hearts per group). 

Viable cells were identified as CD45.2+ ZombieAqua-. Of this population, neutrophils 

were defined as Ly6G+CD8-. Among viable cells in female mice, neutrophils represented 

12.8% and of all live cells in the non-ODN treated population versus 4.14% in the ODN-

treated population. For male mice, the neutrophils made up 8.1% versus 4.87%. CD8+ T 

cells were identified as Ly6G-CD8+. Less significant differences were noted among these 

cells, with ODN treatment increasing the relative percentage of CD8+ T cells in female 

mice from 4.27% to 4.76%, and in male mice increasing the percentage from 2.56% to 
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4.22%. As only one trial was completed and tissue from different mice were combined 

within the group, statistical testing was not done. 

 

To further characterize the extent to which ODN pretreatment changes the cellular milieu 

in the context of lymphocytic inflammation in the heart, we next characterized the 

prevalence of FOXP3+ cells in myocarditic hearts (Figure 4e). FOXP3 is a transcriptional 

regulator protein constitutively expressed in regulatory T cells (Tregs), a subset of T cells 

that have essential suppressor activities on effector T cells, mediated by both cell-cell 

contact with APCs and T cells, and also by the release of immunosuppressive cytokines 

(76). Of note, CpG ODN treatment has been shown to increase the expression of FOXP3 

in other contexts (77). Heart cross-sections were processed as formalin-fixed paraffin-

embedded tissue and stained for FOXP3. FOXP3+ cells were manually counted by a 

blinded technician. To normalize for different heart sizes, the total count of FOXP3 

positive cells was divided by the number of myocardial pixels in each specimen. ODN 

pretreated mice (N = 10) had a significantly larger number of area-normalized FOXP3 

positive cells than control (N = 8) mice at sacrifice 5 days following adoptive transfer 

(1.52∙10-4 ± 6.37∙10-5 cells/pixel versus 8.90∙10-5 ± 3.33∙10-5 cells/pixel; P = .0022). 

 

Lastly, we examined the RT-PCR signatures of several inflammatory mediators and 

markers of interest of hearts from cMy-mOva mice 5 days status-post adoptive transfer of 

4∙104 OT-I T cells with (N = 8) and without (N = 6) pretreatment with ODN (Figure 4f). 

There was no statistically significant difference in IFN-γ, a known inflammatory marker, 

but ODN-treated mice did demonstrate increased transcript levels of FOXP3, TGF-β, and 
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TNF-α. Interestingly, there was no statistically significant difference in PD-L1 transcript 

at day 5 (unpublished data). 

 

CpG ODN Cardioprotection in OT-I-Mediated Myocarditis May Involve Multiple 

Mechanisms Beyond PD-L1 Upregulation 

CpG ODN is known to upregulate several immunoregulatory factors that could putatively 

be protective in a T cell model of myocarditis. For example, we have found that CpG 

ODN administration upregulates 2, 3-indoleamine dioxygenase (IDO) in the murine heart 

(unpublished data), and in other model systems CpG ODN administration suppresses 

adaptive T cell responses in a non-interferon dependent manner (78). Therefore, we next 

sought to establish whether PD-L1 upregulation is required for CpG ODN-mediated 

cardioprotection. 

 

In an initial experiment, cMy-mOva mice received an adoptive transfer of 4∙104 OT-I T 

cells (Figure 5a). In addition, mice were either pretreated prior to adoptive transfer with 

CpG ODN, a course of three treatments of anti-PD-1 blockade, both, or neither (N = 6 for 

each group). Mice were sacrificed at day 10 after adoptive transfer and FFPE H&E stains 

were evaluated blindly for histologic scoring. cTnI readings at day 10 after adoptive 

transfer were indistinguishable from baseline levels (unpublished data). 

 

Though differences did not reach statistical significance, there was a trend toward anti-

PD-1 treatment increasing the burden of disease as measured by blind histologic scoring 

relative to untreated controls (1.67 ± 1.21 versus 2.50 ± .52, P = .26). In fact, follow up 
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CpG ODN tended to reduce the extent of myocarditis in both mice receiving anti-PD-1 

treatment (2.5 ± 1.22 versus 1.17 ± 1.69; P = .083) and mice without anti-PD-1 treatment 

(1.67 ± 1.21 versus 0.67 ± .52; P = .092). Current work is focused on repeating these 

experiments with greater numbers per group. 

 

To further investigate the role of PD-1 dependency in CpG ODN pretreatment, we next 

performed several experiments with PD-1 KO OT-I T cells. First, mice were given an 

adoptive transfer of 4∙104 PD-1 KO OT-I T lymphocytes with or without CpG ODN 

pretreatment (N = 6 versus 6) and survival was documented to an experiment end date of 

24 days, at which point the remaining mice were sacrificed and those data points were 

censored (Figure 5b). A log rank test failed to detect a statistically significant difference 

between the two groups (z = 1.13, P = .26), though CpG ODN pretreatment tended 

towards increasing survival (median 8.5 days versus 23 days). 

 

In a follow-up study also using PD-1 KO OT-I T cells, we assessed for differences in 

histologic and serologic markers of myocardial disease five days after an adoptive 

transfer of 4∙104 PD-1 KO OT-I T cells (N = 6 versus 6; Figure 5c). With respect to 

histologic scoring, CpG ODN pretreatment tended towards decreased disease, but did not 

have a statistically significant effect (2.3 ± .44 versus 2.8 ± .38; P = .37). Likewise, cTnI 

readings were on average lower, though not significantly so (98.9 ± 48.5 versus 198 ± 

94.3; P = .37). 
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Discussion 

There is an unmet need to develop more targeted therapies for myocarditis. As evidence 

suggests that T cells are centrally important in the pathogenesis of the disease, treatments 

that act upon T cells represent one potentially useful translational avenue. In this study, 

we demonstrate that CpG ODN reduces the extent of disease in a CD8+ T cell-mediated 

mouse model of myocarditis. Furthermore, we establish possible translational relevance 

of PD-L1 expression in the context of human myocarditis with histologic evidence 

suggesting a feedback mechanism to limit inflammation in the heart. Lastly, we present 

some preliminary data to suggest the mechanisms by which this cardioprotection occurs. 

 

Our data indicate that PD-L1 is upregulated in human hearts upon inflammation. This 

upregulation occurs irrespective of the initial inflammatory stimulus (e.g. viral versus 

autoimmune), as we received human specimens with a variety of clinical diagnoses and 

selected them solely based upon histologic characterization. Although this data certainly 

cannot show causality, this retrospective analysis does suggest that PD-L1 likely plays a 

protective role, preventing excess cardiac inflammation. Given the known mechanism of 

PD-L1, a hypothesis positing reverse causality (i.e. that PD-L1 expression predisposes 

hearts to myocarditis) is unfounded. 

 

Although in some myocarditic human hearts PD-L1 is expressed on cardiomyocytes, the 

majority of PD-L1 expression was present on endothelial cells. This result corresponds to 

previous studies done by the Lichtman laboratory of mice with CD8+ T cell-mediated 
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myocarditis, as demonstrated by confocal dual-antibody immunohistochemistry with PD-

L1 and CD31 (17). Furthermore, these results are also in line with the PD-L1 staining 

patterns demonstrated by our in vivo mechanistic experiments with CpG ODN. The 

similar spatial arrangement of PD-L1 staining in both cases suggests that CpG ODN may 

be co-opting a similar mechanism to that present in human and mouse hearts with 

lymphocytic inflammation. The possible importance of endothelial PD-L1 is also 

suggested by a previous study showing that globally PD-L1-deficienct mice are not 

rescued with a PD-L1 WT bone marrow transfer, suggesting that deficiency in a non-

hematopoetic cell line is responsible for the increased propensity for severe disease in 

PD-L1-knockout mice (17). Our lab is currently working towards developing mice with 

an endothelial cell-specific PD-L1 deficiency by backcrossing cMy-mOva mice, mice 

with VE-Cad-restricted Cre, and mice with PD-L1fl/fl alleles (79). Usage of this strain in 

an adoptive transfer model would permit the identification of the role of PD-L1 expressed 

specifically on endothelial cells in limiting myocardial inflammation. 

 

CpG ODN robustly upregulated PD-L1 as well as genes upstream and downstream of 

type I IFN production. Notably, the upregulation of PD-L1 also occurs in SCID mice. As 

the major cell types expressing TLR9 are B cells and pDCs, this result suggests that 

pDCs are the likely regulators of the systemic response to CpG ODN. This result 

corresponds to other studies suggesting that pDCs are the predominant cell type 

responsible for the strong IFN upregulation in response to CpG ODN (80). The increased 

expression of IRF1, which lies upstream of type I IFN production, as well as MX-1, an 

IFN-inducible gene, suggests that CpG ODN may be acting through a type I IFN pathway 
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to drive PD-L1 expression. However, we were surprised to see that even in IFNAR KO 

mice there is a marked upregulation of PD-L1 in response to CpG ODN. Furthermore, we 

also noted upregulation of genes both upstream and downstream from type I IFN even in 

this knockout strain. As other work has shown that TNF-α signaling through TNFR2 can 

initiate an autocrine IRF1-IFN-β loop, we next considered the possibility that TNFR2 

signaling may contribute to PD-L1 upregulation, either through an IFN-dependent 

pathway or otherwise (73). Despite other work suggesting that TNF-α can upregulate PD-

L1 on multiple cell lines, we did not observe any effect in TNFR2 KO mice (81-83). 

Although group sizes were too small to definitively conclude one way or the other, 

preliminary data from IFN-γ blockade experiments suggests that PD-L1 expression may 

occur even in the absence of type II IFN signaling. However, it is possible that there was 

ineffective IFN-γ blockade, and repeat experiments will need to confirm effective 

blockade by testing for transcriptomic changes expected with IFN-γ blockade (e.g. 

decreased CXCL10, HLA-DR) (84). Interestingly, studies have reported mixed results as 

to whether CpG-mediated immunosuppression is dependent upon type I IFN signaling 

(78, 85). One possible explanation of our data is that endothelial cells may be able to 

directly respond to CpG ODN without a systemic pDC-driven upregulation of type I IFN. 

Recent work has shown that endothelial cells do express TLR 9 and recognize CpG ODN 

(86). We are currently performing in vitro studies to see if CpG administration directly 

applied to mouse heart endothelial cells can trigger PD-L1 expression. Other explanations 

include insufficient blockade through antibody administration (IFN-γ), and redundancy or 

crosstalk between multiple IFN and TNF signaling pathways leading to no phenotype in 

single-knockout models (87). 
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By treating mice with CpG ODN prior to the inflammatory stimulus, our treatment seeks 

to initiate feedback inhibition prior to the actual inflammatory stimulus, thereby priming 

the heart in anticipation of a forthcoming insult. Mice receiving CpG ODN prior to 

disease initiation had less serologic evidence of disease 5 days after adoptive transfer, as 

well as less histologic evidence of disease 10 days after adoptive transfer. Interestingly, 

there were no histologic differences at day 5 and serologic differences at day 10. This 

may reflect the time course of disease, wherein disease intensity peaks, and then either 

leads to death or begins to resolve. cTnI readings, then, may peak early when cell death is 

most prevalent. During this time, however, histologic delineation may be challenging. A 

simple H&E stain may not sufficiently characterize whether cell death is occurring. For 

example, we have shown that CpG ODN increases the prevalence of FOXP3+ cells in the 

heart (as well as FOXP3 transcript), though with only an H&E stain both groups would 

appear to have indistinguishable lymphocytic infiltrates. Furthermore, on simple H&E 

histology it is not always possible to readily distinguish between luminal, marginated, 

and infiltrating lymphocytes. As our data suggest that CpG ODN upregulates PD-L1 on 

endothelium, one mechanism of cardioprotection may be that CpG ODN limits 

transmigration of T cells into the tissue (41). Alternatively, endothelial PD-L1 may 

provide immunosuppression through deactivating T cells (88). 

 

The results presented above suggest that CpG ODN represents an effective pre-treatment 

for lymphocytic myocarditis. Although previous studies have reported upon this 

immunoregulatory capability of CpG ODN, this result was by no means assured in our 
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study, as CpG ODN is known to both have stimulatory and inhibitory properties (51). 

Some have proposed that the overall effect of CpG ODN treatment depends upon the 

method of delivery, whereby local administration of CpG ODN has a stimulatory effect 

(e.g. as in serving as a vaccine adjuvant) and systemic administration of CpG ODN has a 

largely immunosuppressive signature (78). On a molecular level, the difference may be 

explained by the relative balance of canonical and non-canonical NF-κB signaling (89). 

Our data show that CpG ODN pretreatment decreases histologic markers of 

inflammation, reduces serologic markers or myocardial cell death, increases several 

tolerogenic transcripts, decreases the prevalence of neutrophils while increasing the 

number of Tregs in the heart. No difference in IFN-γ transcript, a marker of inflammation 

used in previous experiments in the Lichtman laboratory, was noted with CpG ODN 

administration (30, 62). However, CpG ODN has been shown to induce IFN-γ in some 

cases, suggesting that in this instance it may not be a reliable marker of inflammation 

(90). Likewise, TNF-α transcript, a marker of inflammation specifically used in PD-L1-

deficiency experiments in the Lichtman laboratory, was elevated in the group receiving 

CpG ODN (30). However, CpG ODN has also been shown to upregulate TNF-α, again 

suggesting that this finding points to the pleiotropic effects of CpG ODN rather than 

contradictory evidence related to relative levels of inflammation between the groups (91). 

 

In addition to determining whether CpG ODN ameliorates lymphocytic myocarditis, a 

major aim of this work is to determine the mechanism by which any immunosuppression 

may occur. Prior studies in our lab indicate that PD-L1 expression plays an important role 

in limiting inflammation in the heart, and our work has shown that PD-L1 is upregulated 
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in the human heart upon inflammation and in the murine heart upon exposure to CpG 

ODN (17, 30). However, our preliminary data is equivocal as to whether PD-L1 

upregulation is the predominant mechanism through which CpG ODN provides 

cardioprotection, suggesting that PD-L1 upregulation may be one of several pertinent 

mechanisms. Though results did not reach statistical significance in a pilot trail, PD-1 

blockade predictably tended towards increasing disease severity among mice not 

receiving CpG ODN pretreatment. However, both anti-PD-1-treated mice and PD-1-

competent mice demonstrated a trend towards less disease when given CpG ODN as 

measured by histologic grade. This result suggests that other mechanisms of 

cardioprotection beyond PD-L1 upregulation may be initiated with CpG ODN treatment. 

To directly investigate the role of PD-L1 in reducing the activity of activated CD8+ T 

cells, we next eliminated the activity of PD-L1 on these cells through adoptive transfer of 

PD-1 KO OT-I T cells. These preliminary experiments, though not yet reaching statistical 

significance, again suggested that CpG ODN pretreatment may have a cardioprotective 

effect even in the absence of PD-1:PD-L1 signaling. Follow up studies will be focused on 

repeating these experiments with larger sample sizes. 

 

Several studies have suggested other mechanisms for immunomodulation other than PD-

L1 upregulation. Many different models have forwarded the upregulation of IDO as the 

primary mechanism by which CpG ODN exerts an immunosuppressive phenotype (78, 

85, 89). These include other tissue-specific models of autoimmunity such as experimental 

autoimmune diabetes (a murine model of type I diabetes mellitus) (92), as well as a 

mouse model of hemophilia A with factor VIII-reactive lymphocytes (93). Indeed, our 
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own data suggests that there is robust upregulation of IDO mRNA in the myocardium in 

response to CpG ODN. Classically, IDO has been shown to mediate immunosuppression 

through enzymatic degradation of tryptophan, an essential amino acid, inducing apoptosis 

of effector T cells (94). However, IDO has also been shown to have non-enzymatic 

properties that lead to TGF-β-mediated induction of Tregs (95). Our results do indicate 

that CpG ODN treatment increases the number of Tregs as well as Treg-associated 

transcripts. Future experiments will investigate the effect of 1-methyltryptophan (1-MT), 

an inhibitor of IDO, on the efficacy of CpG ODN treatment. Previous work has shown 

that 1-MT treatment prevents pDC-mediated, IDO-driven conversion of CD8+ T cells to 

a Treg phenotype (96). 

 

However, other models have discounted the relevance of IDO in the induction of 

immunosuppression as mediated by CpG ODN. In an ovalbumin-mediated model of lung 

inflammation, Mirotti et al. report that the protective effect of CpG ODN involved 

neither type I or II IFN, nor IDO (97). Instead, in this model CpG ODN required 

functional IL-10 and MyD88 signaling to inhibit inflammation. Additionally, several 

studies have commented on the capacity of CpG ODN to upregulate inducible nitric 

oxide synthase (iNOS) and subsequently nitric oxide (NO) (98, 99). NO production has 

been shown to limit T cell activation and induce regulatory T cells (100). iNOS has been 

established as a central mediator of disease severity in experimental autoimmune 

myocarditis, a CD4+ T cell-mediated immunization model of myocarditis (8). Therefore, 

iNOS represents another putative mechanism of cardioprotection, and will be examined 

in future efforts to characterize the cardioprotection seen in our model. 
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 Our study has several limitations. First, our CD8+ T cell adoptive transfer model of 

myocarditis does not fully recapitulate all features of myocarditis in humans, which 

involves a complex interaction of multiple cell types. Second, several results are 

preliminary in nature and do not reach statistical significance, requiring follow-up testing. 

Third, our mechanistic data are largely transcriptomic, and we do not show any 

corroborative proteomic data currently (e.g. ELISA or Western blots). Fourth, we did not 

investigate CpG ODN as a reactive, rather than prophylactic treatment. Thus, the 

translational relevance of this therapy may depend upon an effective screening algorithm 

to identify patients at risk of developing myocarditis. 

 

In conclusion, we show that CpG ODN is an effective prophylactic therapy in a CD8+ T 

cell adoptive transfer murine model of myocarditis. Although CpG ODN upregulates PD-

L1 in the myocardium and data suggests that PD-L1 is important in maintaining tolerance 

in both the human and mouse heart, it is currently unclear if the primary 

immunosuppressive mechanism of CpG ODN is upregulation of PD-L1. This study 

represents a first step towards addressing the need to find targeted T cell therapies for 

myocarditis.  
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Figure 1. PD-L1 staining in inflamed and healthy human hearts. (A) Percent of pixels 

staining positive in myocarditic and healthy hearts. Autopsy samples are colored red and 

explants are colored black. (B) Representative staining images. Top: inflamed heart. 

Middle: control heart. Bottom: high-magnification image of inflammatory foci. (C) 

Average RGB values of pixels identified as being positively stained. 
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Figure 2. Upregulation of PD-L1 and other interferon-related genes 24 hours status-

post intraperitoneal administration of CpG ODN. (A) RT-PCR data from biventricular 

apices of heats from Balb/C, C57BL/6, or SCID mice after administration of ODN or 

PBS. Beta-actin (Actβ) has been used to normalize levels of genes between samples. 

(B) Representative immunohistochemistry from Balb/C mouse hearts. PD-L1 staining 

in a mouse receiving PBS (left) and CpG ODN (middle). The right shows a CD31 stain 

of heart from a Cpg ODN -treated mouse. Scale bar represents 50 μm. 
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Figure 3. CpG ODN-mediated upregulation of PD-L1 may occur in the absence 

of IFN signaling. (A) RT-PCR plots of IP10 (top left), IRF1 (top right), and 

PDL1 (bottom) in murine myocardium 24 hours after administration of CpG 

ODN administration to C57BL/6, IFNAR KO, or TNFR2 KO mice. (B) RT-PCR 

plot of PDL1 expression 24 hours after administration of CpG ODN with or 

without XMG1.2 antibody, an IFNɣ-blocking antibody. 
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Figure 4. CpG ODN pretreatment ameliorates disease burden in a CD8+ T cell 

adoptive-transfer model of myocarditis. (A) cTnI histology from C57BL/6 and cMy-

mOva mice at 5 days after adoptive transfer of 105 (left) or 4∙104 (right) OT-I T cells 

with and without pretreatment with CpG ODN. In the adoptive transfer of 105 OT-I, 

several readings were above the maximum detectable threshold of 1000 ng/mL and 

were counted as 1000 ng/mL for the purposes of statistical testing. (B) Blind histologic 

scoring at day 10 status post adoptive transfer of 4∙104 OT-I T cells in cMy-mOva mice 

with and without pretreatment with ODN. (C) Gr-1 staining analysis of hearts from 

mice receiving 4∙104 OT-I T cells at day 5 (left) and correlation between Gr-1 staining 

and cTnI histology (right). (D) Flow cytometry plot of collagenase-digested hearts from 

male and female cMy-mOva mice sacrificed at day 5 status post 4∙104 OT-I T cell 

adoptive transfer with and without ODN pretreatment. Cells were stained with CD45.2 

and Zombie Aqua as viability markers and then CD8 and Ly6G to identify CD8+ T 

cells and neutrophils. (E) Count of FOXP3+ cells in hearts of cMy-mOva mice 5 days 

after adoptive transfer of 105 OT-I T cells normalized by the size of heart as measured 

by pixel count. (F) qRT-PCR data from cMy-mOva mice with and without ODN 

pretreatment 5 days after adoptive transfer of 4∙104 OT-I T cells. 
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Figure 5. CpG ODN treatment for CD8+ T cell-mediated myocarditis in the 

absence of PD-1:PD-L1 signaling. (A) Myocarditis histology scores of cMy-

mOva mice sacrificed at day 10 following adoptive transfer of 4∙104 OT-I T 

cells. Mice received either CpG ODN 24 hours to adoptive transfer (“ODN”), a 

course of anti-PD1 treatment (“PD1”), both (“PD1 + ODN”), or neither 

(“Control”). (B) Survival analysis of mice receiving an adoptive transfer dose of 

4∙104  PD-1 KO OT-I T cells with and without CpG ODN pretreatment. (C) 

Histologic and serologic analysis of mice receiving 4∙104  PD-1 KO OT-I T cells 

with and without CpG ODN pretreatment at 5 days status post adoptive transfer. 
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