
 Open access Proceedings Article DOI:10.1145/1854273.1854298

Reducing task creation and termination overhead in explicitly parallel programs
— Source link

Jisheng Zhao, Jun Shirako, V. Krishna Nandivada, Vivek Sarkar

Institutions: Rice University, IBM

Published on: 11 Sep 2010 - International Conference on Parallel Architectures and Compilation Techniques

Topics: Cilk, Task parallelism, Data parallelism, Implicit parallelism and Parallel Extensions

Related papers:

 X10: an object-oriented approach to non-uniform cluster computing

 Compiler optimizations for eliminating barrier synchronization

 Chunking parallel loops in the presence of synchronization

 The implementation of the Cilk-5 multithreaded language

 Static Compiler Analyses for Application-specific Optimization of Task-Parallel Runtime Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/reducing-task-creation-and-termination-overhead-in-
18mewv451a

https://typeset.io/
https://www.doi.org/10.1145/1854273.1854298
https://typeset.io/papers/reducing-task-creation-and-termination-overhead-in-18mewv451a
https://typeset.io/authors/jisheng-zhao-4ql27y0rsb
https://typeset.io/authors/jun-shirako-1dgnmn0wn2
https://typeset.io/authors/v-krishna-nandivada-3rl3f2ixuq
https://typeset.io/authors/vivek-sarkar-l27cl14zms
https://typeset.io/institutions/rice-university-2wkk7zxp
https://typeset.io/institutions/ibm-3vfvs9ir
https://typeset.io/conferences/international-conference-on-parallel-architectures-and-dkv6x4xq
https://typeset.io/topics/cilk-2577rgub
https://typeset.io/topics/task-parallelism-1or8ukhz
https://typeset.io/topics/data-parallelism-298zz040
https://typeset.io/topics/implicit-parallelism-1dxzfxn1
https://typeset.io/topics/parallel-extensions-1koyx4tp
https://typeset.io/papers/x10-an-object-oriented-approach-to-non-uniform-cluster-4dbvtkahpt
https://typeset.io/papers/compiler-optimizations-for-eliminating-barrier-7kyf6asc74
https://typeset.io/papers/chunking-parallel-loops-in-the-presence-of-synchronization-1l5i3g8yl2
https://typeset.io/papers/the-implementation-of-the-cilk-5-multithreaded-language-5avvuk65rj
https://typeset.io/papers/static-compiler-analyses-for-application-specific-zfxjne4vr2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/reducing-task-creation-and-termination-overhead-in-18mewv451a
https://twitter.com/intent/tweet?text=Reducing%20task%20creation%20and%20termination%20overhead%20in%20explicitly%20parallel%20programs&url=https://typeset.io/papers/reducing-task-creation-and-termination-overhead-in-18mewv451a
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/reducing-task-creation-and-termination-overhead-in-18mewv451a
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/reducing-task-creation-and-termination-overhead-in-18mewv451a
https://typeset.io/papers/reducing-task-creation-and-termination-overhead-in-18mewv451a

Reducing Task Creation and Termination Overhead in
Explicitly Parallel Programs

Jisheng Zhao
Dept. of CS, Rice University

6100 Main St, Houston TX, USA
jisheng.zhao@rice.edu

Jun Shirako
Dept. of CS, Rice University

6100 Main St, Houston TX, USA
shirako@rice.edu

V. Krishna Nandivada
IBM India Research Laboratory
EGL, Bangalore, 560071, India

nvkrishna@in.ibm.com

Vivek Sarkar
Dept. of CS, Rice University

6100 Main St, Houston TX, USA
vsarkar@rice.edu

ABSTRACT

There has been a proliferation of task-parallel programming sys-
tems to address the requirements of multicore programmers. Cur-
rent production task-parallel systems include Cilk++, Intel Thread-
ing Building Blocks, Java Concurrency, .Net Task Parallel Library,
OpenMP 3.0, and current research task-parallel languages include
Cilk, Chapel, Fortress, X10, and Habanero-Java (HJ). It is desir-
able for the programmer to express all the parallelism intrinsic to
their algorithm in their code for forward scalability and portability,
but the overhead incurred by doing so can be prohibitively large in
today’s systems. In this paper, we address the problem of reducing
the total amount of overhead incurred by a program due to exces-
sive task creation and termination. We introduce a transformation
framework to optimize task-parallel programs with finish, forall

and next statements. Our approach includes elimination of redun-
dant task creation and termination operations as well as strength
reduction of termination operations (finish) to lighter-weight syn-
chronizations (next). Experimental results were obtained on three
platforms: a dual-socket 128-thread (16-core) Niagara T2 system,
a quad-socket 16-way Intel Xeon SMP and a quad-socket 32-way
Power7 SMP. The results showed maximum speedup of 66.7×,
11.25× and 23.1× respectively on each platform and 4.6×, 2.1×
and 6.4× performance improvements respectively in geometric mean
related to non-optimized parallel codes. The original benchmarks
in this study were written with medium-grained parallelism; a larger
relative improvement can be expected for programs written with
finer-grained parallelism. However, even for the medium-grained
parallel benchmarks studied in this paper, the significant improve-
ment obtained by the transformation framework underscores the
importance of the compiler optimizations introduced in this paper.

Categories and Subject Descriptors:

D.3.4 [Programming Languages] Optimizations D.3.4 [Program-

ming Languages] Compiler

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

General Terms:

Algorithms, Experimentation

Keywords:

Optimization, redundant tasks, barriers, useful parallelism, ideal
parallelism

1. INTRODUCTION
Modern languages such as Cilk [5], Chapel [13], Fortress [1],

X10 [9], and Habanero-Java (HJ) [12] have moved from Single
Program Multiple Data (SPMD) models to lightweight dynamic
Task Parallel execution models for improved programmer produc-
tivity. This shift encourages programmers to express the ideal par-
allelism in an application at a fine granularity that is natural for the
underlying domain, while the job of extracting coarser-grained use-

ful parallelism for a given target system is delegated to the compiler
and runtime system.

The fine-grain parallelism specified by the programmer may lead
to the creation of excessive tasks and synchronization operations.
A common occurrence of this overhead can be seen for parallel
loops nested in sequential loops. Figure 1(a) shows a common pat-
tern found in the Java Grande Forum [14] benchmarks and the NAS
Parallel benchmarks [8]. The forall construct is a parallel loop
that creates one task per iteration and waits (via an implicit finish
operation) for all of the tasks to terminate before proceeding to the
statement following the forall. In Figure 1(a), a total of m×n
tasks are created and n finish (join) operations are performed. A
possible translation (assuming that dependences permit) is shown
in Figure 1(b). In this version, only m tasks are created and just one
join operation is performed; for large values of n the performance
impact of this transformation can be overwhelming. In both cases,
the number of parallel tasks at any point of execution is bounded by
m so the decrease in overhead is not accompanied by a loss in par-
allelism. In this paper, we propose a novel transformation frame-
work that helps reduce such task creation and termination overhead
by distilling forall statements in two ways, fine-grained and
coarse-grained, which move forall statements from outside-in
and inside-out respectively1. This framework is presented in the
context of finish, forall and next statements in the HJ research lan-
guage [12], but is also applicable to other task-parallel program-
ming models with similar constructs.

To motivate the challenges in forall distillation, Figure 2(a)
shows the pedagogical One-Dimensional Iterative Averaging pro-

1We discuss differences between our transformation framework
and past work on SPMDization transformations in Section 7.

for(i=0;i<n;++i){

forall(j: [1..m]){

S } }

(a)

forall(j: [1..m]){

for(i=0;i<n;++i){

S } }

(b)

Figure 1: (a) A predominant pattern found in multiple bench-

marks. (b) A possible translation of the pattern (assuming that

dependences permit).

gram discussed in [17]. The forall loop creates n parallel tasks
to execute the loop body. These n tasks terminate and join at the
end of the forall loop. These task creations and terminations are
repeated until the termination of the while loop. Since the while
loop may be repeated a large number of times, such a program in-
curs a large overhead in terms of task creation and termination. A
naive attempt to move the forall header outside the serial loop
(as shown in Figure 2(b)) would lead to an incorrect translation:
in this example, the computation outside the forall (sum and

exchange) in Figure 2(a) should be executed only once per each
iteration of the serial loop, and only after the termination of the
forall loop. In the translated program shown in Figure 2(b) the
sum and exchange code is executed for each iteration of the
serial loop, which in turn is executed once for each parallel itera-
tion of the forall loop, leading to incorrect semantics. A similar
problem would arise if the input program could throw exceptions.
Another problem with the code shown in Figure 2(b) is that there
is a data race on A and newA among the parallel iterations of the
forall loop, and thus needs to be remediated by inserting addi-
tional synchronization operations2.

In this paper, we address the problem of safe optimization of
task creation and termination overheads by forall distillation. It
uses a combination of classical transformations (for example, loop
unswitching, distribution, interchange, fusion) and new transforma-
tions to obtain a semantically equivalent translation with reduced
overhead. For the classical transformations, a key difference from
past work is that the transformations have to be performed on ex-
plicitly parallel programs in our case rather than sequential pro-
grams. Specifically, our paper makes the following contributions:
1. Fine-grain forall distillation: a transformation scheme that
reduces the task creation/termination overhead without introducing
any additional barriers.
2. Coarse-grain forall distillation: a transformation scheme that
replaces task creation/termination operations by lighter-weight bar-
rier synchronizations.
3. Redundant Next/Next-Single Elimination (RNSE): a new algo-
rithm for elimination and strength reduction of barrier operations.
4. Preservation of exception semantics: the transformation frame-
work in this paper respects the exception semantics of the HJ lan-
guage (derived from the X10 v1.5 exception model [9]).
5. Experimental results: this framework has been implemented
within the HJ compilation system [12]. Our experimental results
for five different benchmarks on two different SMP machines show
that (a) compared to the performance of the serial benchmarks on a
2-socket 128-thread (16-core) Niagara T2 SMP, the original medium-
grained parallel benchmarks achieve a geometric mean speedup
of 10.7×, whereas forall distillation of the parallel benchmark
achieves a geometric mean speedup of over 48.5×. Similarly, on
a 4-socket 16-core Intel Xeon SMP, the geometric mean speedups
without and with our optimization are 3.4× and 7.0× respectively.
(b) forall distillation leads to increased scalability with increas-

2Arbitrary usage of barriers can lead to additional challenges [20]
e.g., OpenMP prohibits a barrier region from being nested inside a
loop region.

ing number of processors. (c) forall distillation has a positive
impact on other optimizations such as loop chunking [20].

Our initial focus is on reducing the task creation and termina-
tion overhead in parallel loops because they are commonly used
in many parallel applications, and make a convincing case for per-
formance improvement. However, our overall framework, includ-
ing support for exceptions, should be extensible to other forms of
task parallelism as well. The novelty of our contributions includes
three aspects: (i) transformation of explicitly parallel programs
using a systematic approach consisting of fine-grain and coarse-
grain forall distillations, (ii) redundant next-single elimination
(RNSE), and (iii) extensions for exception semantics. To the best
of our knowledge, there has been no past work with any of these
three attributes.

In Section 2, we introduce the basic HJ language constructs and
the loop transformations used in this paper. Section 3 introduces
the proposed transformation framework. Section 4 discusses ex-
tensions to the framework discussed in Section 3 to support excep-
tions in the context of explicit parallelism. Section 5 discusses key
implementation issues. The empirical evaluation is presented in
Section 6. We discuss related work in Section 7, and conclude in
Section 8.

2. BACKGROUND

2.1 Habanero Java (HJ)
Our input programs are written in HJ [12], which extends the

Java-based version 1.5 of the X10 programming language [9] with
phasers [15] and other modifications. This section provides a brief
summary of HJ’s async, finish, phaser and forall con-
structs. This paper focuses primarily on optimizing the forall
and phaser next statements, and its results are applicable to any
programming model with similar constructs. Additional HJ con-
structs that are not central to the paper have been omitted for sim-
plicity.

async

Async is the HJ construct for creating or forking a new asynchronous
task. The statement async 〈stmt〉 causes the parent task to create
a new child task to execute 〈stmt〉 (logically) in parallel with the
parent task. 〈stmt〉 is permitted to read/write any data in the heap
and to read any final local variable belonging to the parent task’s
lexical environment.

finish

The HJ statement finish 〈stmt〉 causes the parent task to execute
〈stmt〉 and then wait till all sub-tasks created within 〈stmt〉 have
terminated (including transitively spawned tasks). Operationally,
each instruction executed in an HJ task has a dynamically unique
Immediately Enclosing Finish (IEF) statement instance [15].

Besides termination detection, the finish statement plays an
important role with regard to exception semantics. As in X10,
an HJ task may terminate normally or abruptly. A statement ter-
minates abruptly when it throws an exception that is not handled
within its scope; otherwise it terminates normally. If any async task
terminates abruptly by throwing an exception, then its IEF state-
ment also terminates abruptly and throws a multi-exception [20]
formed from the collection of all exceptions thrown by all abruptly-
terminating tasks in the IEF. (This is in contrast with the Java model
where an exception is simply propagated from a thread to the top-
level console.)

delta = epsilon+1; iters = 0;

while (delta > epsilon) {

forall (j : [1:n]) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0;

diff[j] = Math.abs(newA[j]-oldA[j]);

} // forall

// sum and exchange

delta = diff.sum(); iters++;

temp=newA; newA=oldA; oldA=temp;

} // while

(a)

delta = epsilon+1; iters = 0;

forall (j : [1:n) {

while (delta > epsilon) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0;

diff[j] = Math.abs(newA[j]-oldA[j]);

// sum and exchange

delta = diff.sum(); iters++;

temp=newA; newA=oldA; oldA=temp;

} // while

} // forall

(b)

Figure 2: (a) One-dimensional iterative averaging example. (b) Naive forall distillation may be semantically incorrect.

phasers

The phaser construct [15] integrates collective and point-to-point
synchronization by giving each task the option of registering with a
phaser in signal-only/wait-only mode for producer/consumer syn-
chronization or signal-wait mode for barrier synchronization. (The
optimizations in this paper only use signal-wait mode.) In general,
a task may be registered on multiple phasers, and a phaser may have
multiple tasks registered on it. Two operations on phasers that are
most relevant to this paper are:
• new: When an task Ai performs a new phaser() operation, it
results in the creation of a new phaser ph such that Ai is registered
with ph.
• next: The next operation has the effect of advancing each phaser
on which the invoking task Ai is registered to its next phase, thereby
synchronizing all tasks registered on the same phaser. In addition,
a next statement for phasers can optionally include a single state-
ment, next {S}. This guarantees that the statement S is executed
exactly once during the phase transition [23, 15]. The exception se-
mantics for the single statement was unspecified in [15]. We define
the exception semantics of the single statement as follows: an ex-
ception thrown in the single statement causes all the tasks blocked
on that next operation to terminate abruptly with a single instance
of the exception thrown to the IEF task3.

forall

The statement forall (point p : R) S supports parallel
iteration over all the points in region R by launching each iteration
as a separate async, and including an implicit finish to wait for
all of them to terminate. A point is an element of an n-dimensional
Cartesian space (n ≥ 1) with integer-valued coordinates. A region

is a set of points, and can be used to specify an array allocation or
an iteration range as in the case of forall.

Each dynamic instance of a forall statement includes a dis-
tinct phaser object (say, ph) that is created implicitly, and is set
up so that all iterations in the forall are registered on ph in
signal-wait mode4. Since the scope of ph is limited to the implicit
finish in the forall, the parent task will drop its registration on
ph after all the forall iterations are created.

2.2 Classical Loop Transformations
This section briefly summarizes some classical loop restructur-

ing techniques that have historically been used to optimize sequen-

3Since the scope of a phaser is limited to its IEF, all tasks registered
on a phaser must have the same IEF.
4For readers familiar with the foreach statement in X10 and HJ,
one way to relate forall to foreach is to think of forall
〈stmt〉 as syntactic sugar for “ph=new phaser(); finish
foreach phased (ph) 〈stmt〉”.

tial programs [16]:
• Loop Interchange results in a permutation of the order of loops
in a loop nest, and can be used to improve data locality, coarse-
grained parallelism and vectorization opportunities.
• Loop Distribution divides the body of a loop into several loops
for different parts of the loop body. This transformation can be
used to convert loop-carried dependences to loop-independent de-
pendences, thereby exposing more loop-level parallelism.
• Loop Fusion is the inverse of loop distribution. It merges two
loops to generate a loop with a single header. This transformation
can also help improve data locality, coarse-grained parallelism and
vectorization opportunities.
• Loop Unswitching is akin to interchanging a loop and a condi-
tional construct. If the condition value is loop-invariant it can be
moved outside so that it is not evaluated in every iteration.

3. TRANSFORMATION FRAMEWORK
In this section, we present our transformation framework to re-

duce the task creation and termination overhead in HJ programs.
To simplify the presentation, we will first focus on the restricted
case when the code under consideration is known to be exception-
free. Later in Section 4, we discuss transformation in the presence
of exceptions.

We introduce a new compiler optimization phase called forall
distillation. In the HJ program snippet shown in Figure 3(a), the
forall loop inside a for loop (with m number of iterations) re-
sults in creation of m×n number of tasks, with each of the n tasks
waiting on a finish. The main goal of our translation is to dis-

till forall statements from within for loops and while loops.
Depending on the actual program code, different translations are
possible; Figure 3(b) and Figure 3(c) show two translations that
distill the forall loop in Figure 3(a). We call the first transla-
tion a fine grain forall distillation, and the second one a coarse

grain forall distillation. While both translations are more effi-
cient than the original code, the translation in Figure 3(b) is more
efficient than that in Figure 3(c). However, dependences in different
part of the code may (or may not) permit either of the translations.

Since the feasibility of either of these translations (fine-grain
or coarse grain) depends on the input program, we adopt a two-
pronged strategy for forall distillation, as shown in the overall
block-diagram in Figure 4: first we apply a set of transformations
to do fine-grain forall distillation. After that, we apply the set
of transformations to do coarse-grain forall distillation. Finally,
we apply some cleanup optimizations to further optimize the gen-
erated code. The different sets of transformations in each of these
two phases are monotonic — though they may be applied in any
order, the resulting transformed code is guaranteed to be the same.
We now present the details of each of these phases.

for (int i=0;i<n;++i){

S1;

forall(point[j]:[1..m]){

S2;

}

S3;

}

(a)

for (int i=0;i<n;++i){

S1; }

forall(point[j]:[1..m]){

for (int i=0;i<n;++i){

S2; } }

for (int i=0;i<n;++i){

S3; }

(b)

forall(point[j]:[1..m]){

for (int i=0;i<n;++i){

next S1; // next-single

S2;

next S3; // next-single

}

}

(c)

Figure 3: (a) Example program, (b) Fine-grain forall distillation: does not need any additional barriers (assuming that depen-

dences permit), (c) Coarse-grain forall distillation: requires additional barriers (next statements), but is always legal.

forall
present?

Loop Unswitching Finish Elimination

Loop Distribution Loop Interchange

Stop iterating if no change or has no forall statements in the loop Stop iterating if no change or has no forall statements in the loop

Loop Fusion

Finish Elimination

Loop Switching Loop Interchange

Cleanup
Optimizations

Loop Unpeeling

Fine-grain forall distillation Coarse-grain forall distillation

Figure 4: Block diagram for Transformation Framework

3.1 Fine-grain forall distillation
The rules for fine-grain distillation are given in Figure 5. Intu-

itively, fine-grain forall distillation localizes the scope of a for
loop so as to bring it as close to the inner forall loop as pos-
sible5. For any for loop, we repeatedly apply loop distribution,
loop unswitching, finish elimination, and loop interchange until (a)
no forall statement occurs in the body of for loops, or (b) no
further change is possible.

Loop Interchange

Loop interchange is the key transformation to realize the distilla-
tion. To effect this transformation, we assume that the iteration
space of the two loops are not dependent on each other. Note that,
we do not stop the distillation pass after a successful loop inter-
change. We keep iterating in search of further gains.

Loop Unswitching, Loop Distribution, and Finish Elim-
ination

Our loop interchange rule discussed above requires that the body of
the for loop should consist of only a forall loop. The aim of the
other rules described in Figure 5 is to help fulfill that requirement.
We now briefly describe these rules; the assumptions associated
with each rule work as preconditions for the rule to be applied.

Loop Unswitching is the classical unswitching transformation for
sequential code [16]. The main assumption here is that the predi-
cate e is loop invariant.

Loop Distribution is the classical loop distribution transforma-
tion for sequential code [16], and is the most important transfor-
mation in fine-grain distillation process to avoid the insertion of
barriers. The main requirement to apply this transformation is that
there is no dependence cycle between the S1 and S2. That is, there
should not be case where S1 depends on S2 and S2 depends on S1;
such a cycle would render the distribution semantically incorrect.

5The same approach can be applied to a limited set of while loops,
as in Figure 2.

Finish Elimination eliminates the redundant finish around a
forall statement. Such a finish is redundant because of the
implicit finish within the forall statement.

3.2 Coarse-grain forall distillation
The rules for coarse-grain distillation are given in Figure 6. In-

tuitively, coarse-grain forall distillation expands the scope of a
forall so as to bring it as close to the outer for loop as possible.
For any forall loop, we repeatedly apply loop unpeeling, loop
fusion, loop switching, finish elimination, and loop interchange un-
til (a) no forall statement occurs in the body of for loops, or (b)
no further change is possible. The idea behind coarse-grain distil-
lation is to replace task creation/termination operations by lighter-
weight barrier synchronizations. This enables the programmer to
express parallelism at a fine-grained task level, and leave it to the
compiler and runtime to map the parallelism to a coarser level that
can be implemented more efficiently.

The finish elimination and loop interchange transformations are
identical in both coarse-grain and fine-grain forall distillation.

Loop Unpeeling, Loop Fusion and Loop Switching

As shown in Figure 6, Loop Unpeeling expands the scope of a
forall loop by adding the statement S2 to the body of the loop;
S2 is executed as a next-single statement. This rule assumes that
S2 does not have break or continue statements.

Loop Fusion builds on the classical loop fusion transformation
for sequential code [16]. It merges two forall statements by
fusing their bodies, and inserting a next (barrier) statement in be-
tween. Both of these rules (unpeeling and fusion) use the implicit
phaser associated with forall.

Loop Switching is based on the inverse of classical loop unswitch-
ing transformation discussed in Section 3.1. It expands the scope
of the forall loop by bringing an if statement inside the body
of the loop.

3.3 Cleanup Optimizations and Discussion
• The forall distillation techniques explained in the prior section

1. Loop Unswitching:

for (i: [1..n])

if (e) // e is loop invariant

S;

=⇒

8

<

:

if (e)

for (i: [1..n])

S;

2. Loop Distribution:

for (i: [1..n])

{ S1; S2; } // No dependence cycle between S1 and S2
=⇒

for (i: [1..n]) S1;

for (i: [1..n]) S2;

3. Finish Elimination:

finish

forall (point p: R)

S;

=⇒

forall (point p: R)

S;

4. Loop interchange:

for (i: [1..n]) // Different iterations of the for loop are independent.

forall (point p : R1) // R1 does not depend on i

S;

=⇒

8

<

:

forall (point p : R1)

for (i: [1..n])

S;

Figure 5: Fine-grain forall distillation: rules for loop unswitching, loop distribution, finish elimination and loop interchange

Inter procedural Loop interchange:

for (i : [1..n])

foo();

void foo () {

forall(point p:R)

// n does not depend on p

// R does not depend on i

S; }

=⇒

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

forall(point p:R)

for (i: [1..n])

foo();

void foo() {

S;

}

Figure 7: Sample inter-procedural translation rule.

may result in many next barriers inserted in the code. As part of
our cleanup optimizations, we use an algorithm called Redundant
Next/Next-Single Elimination (RNSE) that is similar to the syn-
chronization elimination algorithm in [18]. We use the following
three heuristics:

− A next statement is considered redundant if the task drops
the corresponding phaser without accessing any shared state (up-
dated by another task in the same phase) after the barrier call.

− A next single statement {next S;} can be replaced by
{next;S;}, if multiple parallel instances of the statement S can
be executed independent of each other.

− A next statement is considered redundant if it always precedes
another barrier, and the two sets of tasks registered on the phasers
of these barriers are identical.
• We invoke the loop chunking phase explained in [20] to further
improve the performance.
• We invoke a post-pass of copy propagation and dead-code assign-
ment elimination, and loop fusion (Rule 2, Figure 6) that helps us
further fine tune our output.
• We make a simple inter-procedural extension to all the transfor-
mation rules described above. We present a sample inter-procedural
transformation for loop interchange in Fig. 7. The remaining rules
are omitted due to space limitations.

While the coarse-grain and the fine-grain distillation phases ex-
plained in this section consist of multiple transformations, only two
of them (loop interchange and loop fusion) actually contribute to
any reduction in task creation and termination overhead. The rest
of the transformations aid in increasing the scope and impact of
loop interchange and loop fusion. Traditional Loop interchange
has a known history of impact on the cache behavior. For exam-
ple, loop interchange on the example given below can improve the
cache performance of accessing b[j,i], but it will ruin the reuse

of a[i] and c[i] (by introducing memory loads for a[i] and
c[i], and memory stores for a[i] in each iteration).

for (i: [1:10000])

for (j : [1:10000])

a[i] = a[i] + b[j][i] * c[i];

As a result, the overall performance may be degraded after loop
interchange. Now say that the inner loop is a forall loop. Loop
interchange interestingly can improve/worsen the cache behavior
of a[i], c[i] and b[j,i] (depending on the cache protocol).
Studying the impact of cache on loop interchange would be an in-
teresting problem in itself, and we leave it for future work. Increas-
ing task granularity without any control can also have a negative
effect on load balancing (as the total parallelism is reduced). Iden-
tifying the optimal task size is quite challenging a problem in itself
and is beyond the scope of this paper. The compiler that invokes
our distillation phase is assumed to know the maximum allowed
task size, and accordingly can control the distillation phase to gen-
erate tasks with optimal size.

We now present the effect of invoking our framework on an in-
put program shown in Figure 8(a). Figures 8(b-h) show the results
of applying our transformations on the input program. Figure 9
presents a flow chart explaining the interaction between the differ-
ent transformations that are invoked in this process. As described in
Figure 4, the fine-grain transformation is applied at first. There is
no cyclic dependency between S1 and the rest of the loop body;
thus enabling loop distribution (shown in 8(b)). Next, the loop
unswitching rule is applied and the conditional construct is moved
out of the for loop (shown in 8(c)). Next, the loop distribution
rule is applied (shown in 8(d)). Note that, due to the cyclic depen-
dency between S2 and S3 the loop cannot be further distributed.
After the application of the loop interchange rule (shown in Fig-
ure 8(e)), there is no more scope for fine-grain distillation and we
proceed to apply coarse-grain distillation.

First, the loop unpeeling rule is applied (shown in Figure 8(f)).
After that, the loop interchange rule is applied again (shown in Fig-
ure 8(g)), and no other forall loop occurs in the body of any
for loop. To increase the granularity, the two forall loops can
be merged by loop fusion (shown in Figure 8(h)); this is done in
the context of cleanup optimizations. Comparing the the original
code (in Figure 8(a)) and the final code (in Figure 8(h)), it can be
easily observed that forall distillation is not a straightforward

1. Loop Unpeeling:

forall (point p: R)

S1;

S2; // S2 does not contain break/continue.

=⇒

forall (point p: R)

{S1; next S2;}

2. Loop Fusion:

forall (point p: R1)

S1;

forall (point p: R2)

S2;

=⇒

8

>

>

<

>

>

:

forall (point p: R1||R2)
{if (R1.contains (p) S1;

next;

if (R2.contains (p) S2; }

3. Loop switching:

if (c)

forall (point p: R)

S;

=⇒

8

>

>

<

>

>

:

final boolean v = c;

forall (point p: R)

if (v)

S;

4. Finish Elimination:

finish

forall (point p: R)

S;

=⇒

forall (point p: R)

S;

5. Loop interchange:

for (i : [1..n])

// Different iterations of the for loop are independent.

forall (point p : R) // R does not depend on i

S;

=⇒

8

<

:

forall (point p : R)

for (i: [1..n])

S;

Figure 6: Coarse-grain forall distillation: rules for loop unpeeling, loop fusion, loop switching, finish elimination, and loop

interchange.

delta=epsilon+1; iters=0;

forall (point[j] : [1:n]) {

while (delta > epsilon) {

newA[j]=(oldA[j-1]+oldA[j+1])/2.0;

diff[j]=Math.abs(newA[j]-oldA[j]);

next {

delta=diff.sum(); iters++;

temp=newA; newA=oldA; oldA=temp; }}}

Figure 10: Semantically equivalent translation of the code

shown in Figure 2.

transformation in general. Likewise, Figure 10 shows the correct
transformation for the code snippet shown in Figure 2.

4. EXCEPTIONS AND DISTILLATION
In this section, we discuss the impact of exception semantics on

the finish-distillation techniques discussed in Section 3. The
rules in this section are presented in the context of the HJ and
X10 v1.5 exception model (which in turn builds on the Java excep-
tion model), but the overall approach should be relevant to other
languages with exception semantics (such as C++).

As per the exception semantics discussed in Section 2, an un-
caught exception thrown inside an iteration of a forall loop does
not terminate the other parallel iterations of the loop. These excep-
tions are only caught by the surrounding implicit finish, after all
the activities forked in the forall have terminated. This finish
bundles all the caught exceptions into a MultiException and
throws it again. Thus, in all the transformations described in Sec-
tion 3 that involve increasing the scope of a forall statement the
exception semantics have to be maintained explicitly.

We follow the same overall approach as shown in Figure 4 even

in the presence of exceptions. Figure 11 presents the rules to handle
exceptions, and are briefly discussed below. Besides presenting a
new rule (loop switching (try-catch)), we modify the existing rules
for some of the transformations. As we can see, the rules have now
become more complicated than the ones in Figure 5 and Figure 6 ,
thereby underscoring the value of performing these transformations
automatically with a compiler rather than depending on program-
mers to implement these transformations by hand.

The loop distribution rule is applied only if S2 does not throw
any exceptions. It first evaluates S1, and any exception thrown in
a certain iteration (maxItr) is remembered and is thrown after
maxItr−1 number of iterations of S2 have been executed.

The loop interchange rule generates code to check for any thrown
exceptions after each evaluation of the statement S. In the generated
code, each outer parallel iteration waits for other parallel iterations
to finish executing one sequential iteration of S, then each parallel
iteration checks if an exception was thrown in any of the iterations
(by checking the flag excp) and breaks out of the inner for loop
if the flag is set. If an exception is thrown by an iteration then it
is communicated to all the other threads, which in turn terminate
their execution.

The loop unpeeling and loop fusion rules generate code to evalu-
ate the statement S2 under the condition that no instance of S1 has
thrown an exception. The loop unpeeling rule evaluates S2 in a try-
catch block, and saves any thrown exception in ex; this variable is
checked outside the forall loop and if it is set, then it is thrown
upwards. The loop fusion rule does not evaluate S2 inside a try-

catch block. Since, in the original code S2 is inside the forall,
the semantics are preserved.

The loop unswitching (try-catch) rule generates code to execute
each iteration of S1 inside a try-catch block, and saves the thrown
exception in a MultiException data structure. After the forall
loop has terminated, we check if any exception was thrown, and in-
voke S2 accordingly.

// Original Example Code

THREADS = [0:num_threads-1];

for (int itt=1; itt<=niter; itt++) {

S1;

if (serial) {

forall (point [p]: THREADS) S2;

S3;

// Say there is cyclic dependency

// between S2 and S3

forall (point [p]: THREADS) S4; } }

(a)

// After Loop Distribution

THREADS = [0:num_threads-1];

for (int itt=1; itt<=niter; itt++)

S1;

for (int itt=1; itt<=niter; itt++) {

if (serial) {

forall (point [p]: THREADS) S2;

S3;

forall (point [p]: THREADS) S4; } }

(b)

// After Loop Unswitching

THREADS = [0:num_threads-1];

for (int itt=1; itt<=niter; itt++) S1;

if (serial) {

for (int itt=1; itt<=niter; itt++) {

forall (point [p]: THREADS) S2;

S3;

forall (point [p]: THREADS) S4; } }

(c)

// After Loop Distribution

THREADS = [0:num_threads-1];

for (int itt=1; itt<=niter; itt++) S1;

if (serial) {

for (int itt=1; itt<=niter; itt++) {

forall (point [p]: THREADS) S2;

S3; }

for (int itt=1; itt<=niter; itt++)

forall (point [p]: THREADS) S4; }

(d)

// After Loop Interchange

THREADS = [0:num_threads-1];

for (int itt=1; itt<=niter; itt++) S1;

if (serial) {

for (int itt=1; itt<=niter; itt++) {

forall (point [p]: THREADS) S2;

S3; }

forall (point [p]: THREADS)

for (int itt=1; itt<=niter; itt++) S4; }

(e)

// After Loop Unpeeling

THREADS = [0:num_threads-1];

for (int itt=1; itt<=niter; itt++) S1;

if (serial) {

for (int itt=1; itt<=niter; itt++)

forall (point [p]: THREADS) {

S2;

next S3; }

forall (point [p]: THREADS)

for (int itt=1;itt<=niter;itt++) S4; }

(f)

// After Loop Interchange

THREADS = [0:num_threads-1];

for (int itt=1; itt<=niter; itt++) S1;

if (serial) {

forall (point [p]: THREADS)

for (int itt=1; itt<=niter; itt++) {

S2;

next S3; }

forall (point [p]: THREADS)

for (int itt=1;itt<=niter;itt++) S4; }

(g)

// After Loop Fusion

THREADS = [0:num_threads-1];

for (int itt=1; itt<=niter; itt++) S1;

if (serial) {

forall (point [p]: THREADS) {

for (int itt=1; itt<=niter; itt++){

S2;

next S3; }

for(int itt=1;itt<=niter;itt++) S4; } }

(h)

Figure 8: Applying the forall distillation described in Figure 4. (a) the input program, (b) fine-grain distillation: loop distribution,

(c) fine-grain distillation: loop unswitching, (d) fine-grain distillation: loop distribution, (e) fine-grain distillation: loop interchange,

(f) coarse-grain distillation: loop Unpeeling, (g) coarse-grain distillation: loop interchange. (h) cleanup optimization: loop fusion.

The changes are shown in bold.

Fine−grain distillation
Loop distribution

Fine−grain distillation
Loop interchange

Fine−grain distillation
Loop distribution

Fine−grain distillation
Loop unswitching

Loop unpeeling
Coarse−grain distillationCleanup optimization

Loop fusion
End Coarse−grain distillation

Loop interchange

Figure 9: A flow chart describing the different invoked transformations for the example program 8(a)

Loop Distribution:

for (i: [1..n])

// No dependence cycle between

// S1 and S2.

// S2 does not throw exceptions

{ S1; S2; }

=⇒

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

int maxItr = n+1;

Exception ex = null;

for (i: [1..n])

try {S1;}

catch (Exception e){

ex = e; maxItr = i; break;}

for (i: [1..maxItr-1]) S2;

if (ex 6= null) throw ex;

Loop interchange:

for (i: [1..n])

// Different iterations of the for loop

// are independent.

forall (point p : R)

// R does not depend on i

S;

=⇒

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

boolean excp = false;

forall (point p : R)

for (i: [1..n]) {
try {S;}

catch (Exception e) {excp = true; throw e;}

next;

if (excp == true) break;

}

Loop Unpeeling:

forall (point p: R)

S1;

S2;

=⇒

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

boolean excp = false;

Exception ex = null;

forall (point p: R) {
try {S1;}

catch (Exception e) {excp = true; throw e;}

next;

if (excp == false){
next

try {S2;} catch (Exception e) {ex = e;}}
}

if (ex 6= null) throw ex;

Loop Fusion:

forall (point p: R1)

S1;

forall (point p: R2)

S2;

=⇒

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

boolean excp = false;

forall (point p: R) {
try {if (R1.contains(p)) S1;}

catch (Exception e) {excp = true; throw e;}

next;

if (excp == false)

if (R2.contains(p)) S2;

}

Loop Switching (try-catch):

try {
forall (point p: R)

S1

}catch(MultiException e)

{S2; }

=⇒

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

MultiException e = new MultiException();

boolean excp = false;

forall (point p: R) {
try { S1; }
catch(Exception e1) {
excp = true;

e.pushException(e1);

} }
if (excp) S2;

Figure 11: forall distillation in the presence of exceptions.

Data Size Loop Loop Loop Loop Finish Loop
Fusion Unpeeling Interchange Unswitching Elimination Distribution

MG A 8 16 2 4 1 0

CG A 4 6 2 1 0 0

SOR C 0 1 2 0 0 0

LUFact C 0 2 1 1 0 0

Moldyn B 6 4 0 0 0 0

Table 1: The number of different transformations applied to each benchmark.

Polyglot
Frontend

Source Code

AST PIR Gen
Parallel Intermediate

Representation ByteCode Gen

PIR Analysis &
Optimization

(e.g. forall distillation)

Java Class Files

Soot PIR framework

Figure 12: Habanero-Java Compiler Framework

5. IMPLEMENTATION
In this section we briefly discuss some of the implementation

details of our forall distillation in the context of the Habanero-
Java Compiler framework (HJC) [12] which translates Habanero-
Java (HJ) (see Section 2) source code to Java bytecode. Figure 12
presents the basic structure of the HJC compiler. The Polyglot-
based front-end for HJ was modified to emit a new Parallel Inter-
mediate Representation (PIR) extension to the Jimple intermediate
representation used in the SOOT bytecode analysis and transforma-
tion framework [22]. In addition to standard Java operators, the PIR
includes explicit constructs for parallel operations such as async,
finish, and forall.

The transformations described in Section 3 and Section 4 are im-
plemented in HJC as an additional optimization pass over the PIR.
The HJC compiler builds a Region Structure Tree (RST) [24] be-
fore invoking the transformation process, where a region represents
an HJ parallel construct (e.g., async, finish, forall), or a se-
quential Java loop constructs (e.g., for, while), or a method call.
Method-call regions are used to enable inter-procedural analysis in
the HJC compiler. Our optimization framework processes the RST
nodes in a post-order traversal, starting from the main method of the
HJ program. During different transformations the RST may have
to be rebuild to keep it consistent with the transformed program.
Instead of rebuilding the whole RST after each transformation, we
rebuild the RST only when the transformation requires a change
in the RST, and further we rebuild only part of the RST. Thus, we
rebuild the RST starting at the new forall node after each in-
vocation of loop-fusion, finish-elimination, and loop interchange,
and starting at the two for loops after loop-distribution. After all
the transformations the generated PIR is translated to Java byte-
code. For the results reported in this paper, all transformed Java
class files were executed using the HJ work-sharing runtime based
on the ThreadPoolExecutor utility [3].

6. EMPIRICAL EVALUATION
In this section, we present experimental results for the optimiza-

tions described in this paper using the Habanero-Java compiler and
runtime system [12].

6.1 Experimental Setup
We discuss results obtained for two NAS Parallel [8] bench-

marks (CG and MG) and three Java Grande Forum (JGF) [14]
benchmarks (SOR, LUFact and MolDyn). The experimental results
were obtained with the following variants to evaluate the impact of
forall distillation and the other cleanup optimizations.
1. Java serial: Original serial Java version form the benchmark
site. This version is used as the baseline for all speedup results.
2. Unopt: Medium-grained parallel HJ version using the finish,
async, and forall constructs, with none of the distillation op-
timizations described in this paper. As described in [9], this cor-
responds to a high productivity variant for single place execution,
and derives easily from the sequential version of the benchmark.
3. Opt: Code generated by applying the forall distillation trans-
formation described in Section 3.

4. Opt + RNSE: Code generated by the compiler by both apply-
ing forall distillation and redundant next/nextsingle elimination
(RNSE).
5. Java manual: Hand-coded parallel Java versions of the bench-
marks obtained from the benchmark web sites (used to calibrate
our compiler optimizations).

The data size used for each benchmark is shown in the second
column of Table 1; we used the largest input size for all the bench-
marks except CG and MG for which the No-Distillation versions
could not complete execution for the larger sizes. All unoptimized
and optimized variants were compiled by enabling loop chunking
of forall loops with a block scheduling policy [20].

Table 1 presents a report on the number of different transforma-
tions applied to each of the benchmarks. It can be seen that on all
the benchmarks the loop fusion and loop interchange (the transfor-
mations that actually lead to reduction in the activities and barriers)
transformations were invoked at least once. However, loop distribu-
tion was never performed in these benchmarks, as the preconditions
on this transformation was not satisfied. However, as we show in
Figure 8, there are other examples where loop distribution may be
performed.

We used three platforms for our experimental evaluation: (a)
a 128-way (dual-socket, 8 cores × 8 hardware threads/core per
socket) 1.2 GHz UltraSPARC T2 (Niagara 2) with 32 GB main
memory running Solaris 10 and Sun JDK 1.5 32-bit version; (b) 16-
way (quad-socket, quad-core per socket) Intel Xeon 2.4GHz system
with 30GB of memory and running Red Hat Linux (RHEL 5) and
Sun JDK 1.6 64-bit version; and (c) 32 way (quad chip, 8 cores per
chip) 3.55GHz Power7 with 256 GB main memory running Red
Hat Linux (RHEL 5.4) and IBM JDK 1.6 64-bit version. For all the
runs the main program was extended with a 30-iteration loop within
the same Java process, and the best of the 30 times was reported in
each case so as to reduce the impact of JIT compilation overhead
in the performance results, in accordance with the methodology re-
ported in [11]. The HJ runtime option, “-places 1:W”, was used
to set up an HJ execution for all runs with 1 place and W worker
threads per place.

6.2 Experimental Results
For all the benchmarks shown in Table 1, we measured the speedup

relative to the serial version. Figure 13 shows the results obtained
on Niagara T2, Intel Xeon, and IBM Power7 in three columns; we
plot the speedup (relative to the serial execution) for varying num-
ber of worker threads (cores/hardware threads). On Power7, we
could not get reliable numbers for MG; we are exploring the possi-
ble causes. An shown in the rest of the charts, forall distillation
leads to significant improvements and it scales well with the in-
crease in the number of processors.

The amount of gains in the Distillation version (compared to the
No-Distillation version) depends on the granularity of the parallel
tasks in the input programs. Benchmarks with finer-grain tasks (i.e.
CG, SOR and LUFact) report higher gains.

Loop chunking [20] is a part of all the parallel HJ variants. As it
can be seen, forall distillation impacts the performance due to
chunking in a positive way.

We also measured the impact of Redundant Next/Next-

Single Elimination (RNSE) phase to eliminate the redun-
dant barrier operations (see Section 3.3). In benchmarks like JGF.SOR-
C and NPB.MG-A we see the visible benefits.

Compared to the hand optimized Java version, the optimized HJ
version performs better on Niagara and Power7, but not so well on
Xeon: We derive performance benefits mainly from reduction in
activities and reduction in barriers. We found that, compared to

Niagara and Power7 the cost of barrier operations on the Xeon sys-
tem was minimal, and the Java version where the code is in SPMD
form does not incur much overhead in terms of additional activities.
That’s the main reason for the performance difference. Further, we
see that for higher number of hardware threads (≥ 64), the Java
version does not scale as well as the HJ version. We attribute it to
the presence of reduced number of tasks and barriers in the opti-
mized HJ code.

Modifications to Moldyn : the original hand optimized Java ver-
sion of Moldyn compared quite poorly to the optimized HJ version.
We found the reasons to be related to the data boundary issues; we
padded the arrays therein (to cache line boundaries) to derive the
improved results presented in this paper.

It can be seen on the Niagara machine MG, SOR, and LUFact
show a drop in performance for more than 64 threads. This is at-
tributed to the fact that the platform contains two UltraSPARC T2
chips and the communication across these two chips is more expen-
sive than that within a chip. Similarly, on the Xeon system these
benchmarks show a drop in performance for more than 8 threads

It can also be seen that for CG and LUFact, the No-Distillation
version does not scale well for more than 32 threads. Compared to
that the Distillation versions did not show scalability issues. This is
because of the reduced task creation, termination, synchronization
and scheduling overheads arising out of our transformations.

One interesting aspect of this study was that the behavior of these
benchmarks varied between Xeon, Niagara, and Power7 systems.
For instance, RNSE is effective on MG and SOR on Niagara, on
CG on Xeon, and MG and SOR on Power7. We attribute it to the
significantly varying system architecture (Niagara and Power7 are
multithreaded, Xeon is not; in Niagara all cores on a chip share
the same L2 cache, Xeon contains two L2 caches each shared by
two cores, and in POWER7 each core has 32KB L1 and 256KB L2
cache, and 32MB L3 cache is shared by 8 cores on a chip).

The geometric mean of speedup ratio on the three systems (uti-
lizing the maximum number of threads or cores) is shown below:

System threads/cores Unopt Opt Opt+RNSE

Niagara 128 10.7× 45.8× 48.5×
Xeon 16 3.44× 6.98× 7.27×
Power7 32 2.69× 16.4× 17.2×

6.3 Distillation and Data Locality
The improvements shown in Figure 13 result from two factors:

(a) direct improvements: reduced task creation, termination, syn-
chronization and scheduling overheads, and (b) indirect improve-
ments: some of the transformations like loop interchange and loop
fusion may improve locality. We now present a study to understand
the contribution of these factors in the improvements cited in Sec-
tion 6.2. To understand the impact of these two underlying factors,
we conducted a simple experiment: for each of the benchmarks
presented in Table 1, we compared the following three versions:
• Unopt: parallel version of the benchmark with no distillation.
• Opt: manually apply the forall distillation.
• Locality: we counted the reduction in the number of activities and
barriers in the Opt version, and manually inserted code to create an
equal number of dummy activities and the corresponding barriers
to achieve comparable task overheads to the Unopt version while
preserving the locality of the Opt version.

The locality version, gives a rough estimate of the impact due to
improvements in data locality only (by comparing it to the Opt ver-
sion). For instance, the locality version for the code shown in Fig-
ure 1(b) is generated by adding the following compensation code:

for(i=0;i<n-1;++i){forall(j:[1..m]){/* empty */}}

Table 2 presents the execution time numbers for each of the three
versions of the benchmarks shown in Table 1.

We only present the numbers on Niagara T2 system, by set-
ting the number of parallel threads to 8 (when all the 8 threads
are scheduled on one socket and share L2 cache), and 64 (the 64
threads could be schedule on both two sockets). In the numbers
shown for 8 threads, we see that most of the gains are coming
mainly from the improvements to locality (similar behavior was
observed for 1, 2, and 4 number of threads), reduction in activi-
ties further improves the code. For the case with 64 threads, it can
be seen that the locality version may improve the performance de-
pending on the underlying computation (for instance, in MG, and
MolDyn). The gains in the Opt version here are significant enough
to show improvements, irrespective of the impact due to locality.
For benchmarks like CG, SOR, and LUFact most of the benefits
are coming mainly from reduction in the number of tasks and barri-
ers. We have observed similar behavior for 16, 32, and 128 number
of hardware threads, thus emphasizing the importance of reducing
task creation overhead in the context of systems with higher num-
ber of cores/hardware threads.

Benchmark 8 hardware threads 64 hardware threads
Unopt Locality Opt Unopt Locality Opt

CG 16.40 10.87 9.37 11.67 12.07 1.40
MG 19.03 12.28 12.07 4.11 4.00 2.81
SOR 11.37 6.89 6.56 2.72 2.79 1.01
LUFact 32.34 19.53 18.39 13.28 14.28 3.19
MolDyn 65.51 33.19 32.69 10.45 7.97 5.58

Table 2: Execution time (in seconds) numbers to identify the

impact of locality

We conclude that the direct impact from the reduction in activ-
ities and barriers is significant, and the forall distillation may
also aid in improving the data locality (may be significant when all
the threads share the L1 cache).

7. RELATED WORK
There has been a lot of past work on reducing thread creation and

synchronization overheads. These include SPMDization [6, 2, 21,
4], synchronization optimizations [7], and barrier elimination [21].
Cytron et al. [19] present an approach for transforming code writ-
ten in fork-join style to SPMD code. Tseng [21] follows up on
Cytron et al. in translating fork-join parallel loops into (merged)
SPMD regions. Once SPMD regions have been formed, the barrier
communications among them are targeted for optimization using
communication analysis. Our forall distillation has similarities
to the traditional SPMDization techniques. Some of the rules like
loop fusion II, and loop interchange described in Section 3.2 are
similar to the translation scheme suggested by Tseng [21]. There
are three main differences though: (a) While their target is to re-
duce the number of synchronization operations, our main goal is
to reduce the number of dynamic activities created - thus our rules
are more aggressive. (b) The result of our transformation is a task-
parallel program that can contain fork (async) and join (finish)
operations, and not necessarily an SPMD program. (c) We handle
programs with exceptions and perform further cleanup optimiza-
tions to gain performance.

A recent work on applying SPMDization to task-parallel lan-
guages is by Bikshandi et al. [4], where they identify a subset of
X10 (called Flat X10) and use it to derive output programs in
SPMD form. In our work, we preserve the task-parallelism lan-
guage features and perform the translation implicitly in compiler
backend. Further, we handle programs with arbitrary async oper-
ations, forall loops, and exceptions

!"

#!"

$!"

%!"

&!"

'!"

(!"

$" &")" #(" %$" (&" #$)"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0%1)2,34&56&

*+,-./0102-3-04-56-7"

*+,-./0108209:/0;5<="

*+,-./0108209:/"

*+,-./01820659:/"

!"

#!"

$!"

%!"

&!"

'!"

(!"

$" &")" #(" %$" (&" #$)"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

01234&56&

*+,-.-/010-203405"

*+,-.-6/-789-:3;<"

*+,-.-6/-789"

*+,-.-6/-43789"

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

$" &" *" #(" %$" (&" #$*"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0-($1234&56&

+,-./01213454164074-"

+,-./0121831,9:1;0<="

+,-./0121831,9:"

+,-./012183170,9:"

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

$" &" *" #(" %$" (&" #$*"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0123&45&

+,-.-/010-203405"

+,-.-6/-789-:3;<"

+,-.-6/-789"

+,-.-6/-43789"

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

%" '" (" $)" &%")'" $%("

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0123&45&

*+,-,./0/,12345"

*+,-,6.,345,7289"

*+,-,6.,345"

*+,-,6.,12345"

!"

#"

$"

%"

&"

'!"

'#"

'$"

#" $" &" '%"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0%1)2,34&5#-6&

()*+,-./.0+1+.2+34+5"

()*+,-./.60.78-.93:;"

()*+,-./.60.78-"

()*+,-./60.4378-"

!"

#"

$"

%"

&"

'"

("

)"

$" &" *" #("

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

01234&5#-6&

+,-./.0121.314516"

+,-./.70.89:.;4<="

+,-./.70.89:"

+,-./.70.5489:"

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

$" &" *" #("

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0123&4#-5&

,-./.0121.314516"

,-./.70.89:.;4<="

,-./.70.89:"

,-./.70.5489:"

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

(#$"

$"

&" (")" %*"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0123&4#-5&

+,-.-/010-23456"

+,-.-7/-456-839:"

+,-.-7/-456"

+,-.-7/-23456"

!"

#"

$!"

$#"

%!"

%#"

%" &" '" $(")%"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0%1)2,34&5-6#'7&

*+,-./01"2-3-04-56-7"

*+,-./0108209:/0;5<="

*+,-./0108209:/"

*+,-./010820659:/"

!"

#"

$!"

$#"

%!"

%#"

&!"

%" '" (" $)" &%"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

01234&5-6#'7&

*+,-.-/010-203405"

*+,-.-6/-789-:3;<"

*+,-.-6/-789"

*+,-.-6/-43789"

!"

#"

$!"

$#"

%!"

%#"

%" &" '" $(")%"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0123&4-5#'6&

*+,-,./0/,1/23/4"

*+,-,5.,678,92:;"

*+,-,5.,678"

*+,-,5.,32678"

!"

#"

$"

%"

&"

'!"

'#"

#" $" &" '%"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0-($1234&5#-2&&

()*+,-./.0121.31-41*"

()*+,-./.50.)67.8-9:"

()*+,-./.50.)67"

()*+,-./.50.4-)67"

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

#" $" &" '%" (#"

!"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
)
+
)
&!
#
'/
)
(&

0-($1234&5-6#'7&

)*+,-./0"1232/42.52+"

)*+,-./0/61/*78/9.:;"

)*+,-./0/61/*78"

)*+,-./0/61/5.*78"

Figure 13: Distillation results from Niagara T2, Intel Xeon SMP and Power7 SMP

Nicolau et al. [18] present an approach to optimize point-to-point
synchronization by eliminating redundant wait operations. Their
approach has similarities only to our post-optimization pass, where
we eliminate some redundant barriers.

Ferrero et al. [10] present techniques to unroll sequential loops
that contain parallel loops. They aggregate the multiple generated
loops in the body of the sequential unrolled loop to reduce the num-
ber of activity creation tasks. Our forall distillation phase can
be invoked as a postpass to their phase to further increase the gains.

Shirako et al. [20] present a scheme to reduce the number of
dynamic activities and barriers by chunking of parallel loops. We
show that our forall distillation framework can be deployed along
with the loop chunking phase to realize further gains.

8. CONCLUSION
In this paper, we presented the compiler transformation tech-

niques for eliminating the redundant task creation/termination and
synchronization operations in task-parallel languages. We presented
a systematic method that extends past classical compiler transfor-
mation techniques to automatically translate the task-parallel code
into distilled code with coarser-grain tasks in a safe way. These
transformations resulted in reduced task creation, termination, syn-
chronization and scheduling overheads, thereby improving perfor-
mance and scalability. Our experimental results for 5 benchmark
programs on an UltraSPARC II multicore processor, Intel Xeon
SMP and Power7 SMP showed 4.6×, 2.1× and 6.4× performance
improvements respectively in geometric mean related to non-optimized
parallel codes. This wide gap underscores the importance of using
these techniques in future compiler and runtime systems for pro-
gramming models with lightweight parallelism.

Acknowledgments

We would like to thank members of the Habanero group at Rice
and the X10 team at IBM for valuable discussions related to this
work. We gratefully acknowledge support from IBM Open Collab-
orative Faculty Awards in 2008 and 2009. This research is partially
supported by the Center for Domain-Specific Computing (CDSC)
funded by the NSF Expedition in Computing Award CCF-0926127.
Finally, we would like to thank the anonymous reviewers for their
comments and suggestions, and Doug Lea for providing access to
the UltraSPARC T2 SMP system used to obtain the performance
results reported in this paper.

9. REFERENCES

[1] E. Allan et al. The Fortress language specification version
0.618. Technical report, Sun Microsystems, April 2005.

[2] S. P. Amarasinghe and M. S. Lam. Communication
Optimization and Code Generation for Distributed Memory
Machines. In Proceedings of the conference on Programming

language design and implementation, pages 126–138. ACM,
1993.

[3] R. Barik et al. Experiences with an SMP implementation for
X10 based on the Java concurrency utilities. In Proceedings

of the Workshop on Programming Models for Ubiqui- tous

Parallelism, Seattle, Washington, 2006.

[4] G. Bikshandi et al. Efficient, portable implementation of
asynchronous multi-place programs. In Proceedings of the

symposium on Principles and practice of parallel

programming, 2009.

[5] R. D. Blumofe et al. CILK: An efficient multithreaded
runtime system. Proceedings of Symposium on Principles

and Practice of Parallel Programming, pages 207–216,
1995.

[6] R. Cytron, J. Lipkis, and E. Schonberg. A Compiler-Assisted
Approach to SPMD Execution. Supercomputing, Nov 1990.

[7] P. C. Diniz and M. C. Rinard. Synchronization
transformations for parallel computing. In Proceedings of the

ACM Symposium on the Principles of Programming

Languages, pages 187–200. ACM, 1997.

[8] D. H. Bailey et al. The nas parallel benchmarks, 1994.

[9] P. Charles et al. X10: an object-oriented approach to
non-uniform cluster computing. In Proceedings of the

conference on Object oriented programming, systems,

languages, and applications, pages 519–538, 2005.

[10] R. Ferrer, A. Duran, X. Martorell, and E. Ayguadé. Unrolling
Loops Containing Task Parallelism. In Proceedings of the

22nd International Workshop on Languages and Compilers

for Parallel Computing, Sep 2009.

[11] Andy Georges et al. Statistically Rigorous Java Performance
Evaluation. SIGPLAN Not., 42(10):57–76, 2007.

[12] Habanero Java. http://habanero.rice.edu/hj, Dec 2009.

[13] Cray Inc. The Chapel language specification version 0.4.
Technical report, Cray Inc., February 2005.

[14] The Java Grande Forum benchmark suite.
http://www.epcc.ed.ac.uk/javagrande/javag.html.

[15] J.Shirako, D.M.Peixotto, V.Sarkar, and W.N.Scherer III.
Phasers: a unified deadlock-free construct for collective and
point-to-point synchronization. In Proceedings of the 22nd

annual international conference on Supercomputing, pages
277–288, New York, USA, 2008. ACM.

[16] K. Kennedy and J. R. Allen. Optimizing compilers for

modern architectures: a dependence-based approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[17] Calvin Lin and Lawrence Snyder. Principles of Parallel

Programming. Addison-Wesley, 2008.

[18] A. Nicolau, G. Li, A.V. Veidenbaum, and A. Kejariwal.
Synchronization optimizations for efficient execution on
multi-cores. In Proceedings of the 23rd international

conference on Supercomputing, pages 169–180, New York,
NY, USA, 2009. ACM.

[19] R.J.Cytron, J.T.Lipkis, and E.T.Schonberg. A
compiler-assisted approach to SPMD execution. In
Proceedings of Supercomputing, 1990.

[20] Jun Shirako, Jisheng Zhao, V. Krishna Nandivada, and Vivek
Sarkar. Chunking parallel loops in the presence of
synchronization. In ICS, pages 181–192, 2009.

[21] C. Tseng. Compiler optimizations for eliminating barrier
synchronization. In Proceedings of the symposium on

Principles and practice of parallel programming, pages
144–155, New York, NY, USA, 1995. ACM.

[22] R. Vallée-Rai et al. Soot - a Java Optimization Framework.
In Proceedings of CASCON 1999, pages 125–135, 1999.

[23] K. Yelick et al. Productivity and performance using
partitioned global address space languages. In Proceedings

of the international workshop on Parallel symbolic

computation, pages 24–32, New York, USA, 2007. ACM.

[24] J. Zhao and V. Sarkar. A hierarchical region-based static
single assignment form. Technical Report TR09-9,
Department of Computer Science, Rice University,
December 2009.

