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Abstract: Codebook search  has high computational load in code excited linear prediction (CELP) speech
coders. In this paper, a fuzzy ARTMAP neural network (FAMNN) is used to determine the best index of shape
codebook in ITU-T G.728 speech coding algorithm. In this way, the gain value is calculated according to this
index and the best index of gain codebook is determined based on the minimum distance to each of eight gain
codebook values. Empirical results show that the proposed model leads to 50.7% reduction in codebook search
time as compared to the traditional implementation of ITU-T G.728 encoder. However, the degradations in mean
opinion score (MOS), perceived evaluation of speech quality (PESQ) and segmental signal to noise ratio
(SNR ) are not significant, as well. seg
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INTRODUCTION input patterns and correct labels in a variety of

The high delay of conventional code excited linear networks  include  ART ,  ART   [20], ART  [21],
prediction (CELP) algorithm degrades the communication ARTMAP [22], Fuzzy ART [23], ART-EMAP [24],
quality [1]. So, a low delay-CELP (LD-CELP) algorithm was dARTMAP [25], Boosted ARTMAP [26], Fuzzy ARTVar
adopted by the International Telephone and Telegraph [27], Gaussian ARTMAP [28], µ_ARTMAP [29] and
Consultative Committee (CCITT) for the coding of speech Fuzzy ARTMAP [30]. 
at 16 kbps with toll quality and became standardized in LD-CELP belongs to a family of speech coding
1992 as G.728 [2, 3]. algorithms, where a speech signal is modeled as the

The application of LD-CELP is broad, including output of a linear prediction filter excited by an
video-telephony, digital circuit multiplication equipment appropriate sequence. The 16 kbps LD-CELP coder
(DCME),  packet  circuit  multiplication  equipment consists of the following major components: an excitation
(PCME), voice over Internet protocol (VoIP) and personal sequence shape codebook, an excitation gain codebook,
communication systems (PCS). a  50   order  linear  prediction coding (LPC) predictor, a

On the other hand, artificial neural networks (ANNs) 10  order perceptual weighting filter and a mean square
have been used extensively for a variety of applications estimation computational block. The predictor and
in speech and language technology (e.g. in speech excitation gain are updated in a backward adaptive
synthesis [4, 5],  automatic   speech   recognition  (ASR) fashion by analyzing the previously quantized speech
[6, 7] and natural language processing (NLP) [8] that samples and excitation signal. Speech samples are
experienced by the author for Farsi language). The buffered in blocks of 5 samples [2].
researches on using ANNs in speech coding can also be At   16   kbps,   the   LD-CELP   encoder   transmits  a
classified into two main domains: neural predictors which 10-bit  index  for  every  block  of  5   speech  samples
improve the quality of coder [9-13] and reduction the which corresponds to an encoding rate of 2 bits per
computational complexity [14-19]. sample.  The  LD-CELP  receiver  decodes  the  best

In the family of CELP coders, codebook search has matched  excitation   vector   out   of   128  possible
high complexity. ANNs can be used to reduce this vectors,  which  is  then  multiplied  by  a   decoded  gain
complexity. In this way, fuzzy adaptive resonance theory to form a final excitation sequence. This sequence
mapping (ARTMAP) is a neural network architecture that becomes the input to the 50  order LPC filter to synthesize
can establish the correct mapping between real-valued the output speech.

classification problems. In general, this family of neural
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Fig. 1: Block diagram of search codebook module in G.728 [3]

In this paper, a fuzzy ARTMAP neural network The inner product term, , which solely
(FAMNN) is used as shape codebook search module for depends on j, takes the most of the computation in
G.728 speech coding algorithm. So, this paper is organized determining D . Once the best indices for i and j are
as follows. In Section 2, the codebook search module in identified, they are concatenated to form the output of the
G.728 encoder is introduced. Section 3 gives a review on codebook search module (a single 10-bit index). The 10-bit
FAMNN. The details of shape codebook search using codebook index consists of two portions: 3 bits for gain
FAMNN are discussed in Section 4. The simulation and codebook (b -b : 8 scalar values) and 7 bits for shape
empirical results are reported in Section 5 and conclusions codebook (b -b : 128 codevectors).
are drawn in Section 6. FUZZY ARTMAP  NEURAL  NETWORK:  The

CODEBOOK   SEARCH    IN G.728:  In  the  G.728 fuzzy ARTMAP  neural  network  (FAMNN) has been
encoder structure, zero-input response vector r(n) introduced by Carpenter et al. [30]. The FAMNN has
subtracts from the vector quantization (VQ) weighted been  successfully  applied  in  many   tasks   such as
speech vector v(n) to obtain the VQ codebook search data mining, remote sensing and pattern recognition.
target vector x(n). The excitation gain (n) is also FAMNN  is  considered  fast among members of
obtained with closed loop method. Each of the 1024 ARTMAP family due to the computationally cheap
candidate codevectors is scaled by the current excitation mapping between inputs and outputs. Furthermore,
gain and then is passed through a cascaded filter compared to the standard nearest neighbor techniques
consisting of the synthesis filter F(z) and the perceptual which are also commonly used, FAMNN requires less
weighting filter W(z) [3]. memory since it uses a compressed representation of the

The detailed block diagram of G.728 search codebook data and for the same reason FAMNN requires less
module is shown in Figure 1. The following formula is classification time. The FAMNN is a supervised network
used for codebook search [3]: which is composed of two fuzzy ART modules, ART  and

together via an inter-ART module, F , called a map field.
(1) The map field is used to realize the match tracking rule,

in which,  is the target vector adjusted by (n). H(n) response to a predictive mismatch at ART . Match
is the unit impulse response matrix of the short–term tracking reorganizes category structure so that predictive
predictor, g  is the i  level in the 3-bit gain codebook and error is not repeated on subsequent presentations of thei

th

y  is the j  codevector in the 7-bit shape codebook [3]. input.j
th

According to  G.728  recommendation,  minimizing D As shown in Figure 2, variables in ART and ART
is equivalent to maximizing D  [3]: modules are shown by a or b subscripts or superscripts.max

 for ART  module and  for ART
(2) module, respectively. For ART  module,

in which,  and . represents the  output vector,

max

0 2

3 9

a

ART , as shown in Figure 2. Those modules are linkedb
ab

whereby the vigilance parameter of ART  increases ina

b
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Inputs  to  each  module  are in the complement code form,
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Fig. 2: Fuzzy ARTMAP structure

represents the j weight vector. For ART  module,th
b

represents the  output vector and
represents the  output vector and

represents the k   weight  vector.  Forth

the map field, let  represents the
output vector and  represents the weight
vector from j  node to . The map field  isth

activated whenever one of the ART or ART  categories isa b

active. If node J of  is chosen, then its weights
activate . If node K of  is active, then the node K in

 is activated by 1-1 pathways between  and .
The  output vector  obeys:

(3)

Fuzzy ARTMAP module vectors are based on two
separately distance criteria, match and choice. The match
function is defined by:

(4)

where w is an analog-valued weight vector associatedj

with cluster j,  denotes the fuzzy AND operator,
and  denotes the norm operator. The

choice function is defined in Equation (5), where   is a
small constant. Input vector (I) is assigned to  the
category  which  maximizes  T(I) while satisfying S (I) ,j j

where the vigilance, , is a constant, 0 1. The fuzzy
ARTMAP learning rule is given in Equation (6):

(5)

(6)

where 0< 1. All w  are initially set to 1. ij

The map field is fundamentally a look-up table,
retrieving an analog-valued weight when node J of
module a and node L of module b are active. Note that
only one node of each module is active at a given time. If

, then the vigilance of module a, , is raised untila

node J becomes inactive (and some other node becomes
active). This process is repeated until . When the
next input is presented,  is returned to its baseline value.a

All  are initially set to 1. During learning, when
 and J and L nodes become active, ; l  L is

reduced in value (typically set to 0).
FAMNN-BASED SHAPE   CODEBOOK   SEARCH:

 In  this paper,  the  FAMNN  is  used  to  determine   the
best index   of    shape    codebook.   The  occurrence
frequency characteristics of codevectors in shape
codebook  have   not   the   uniform   distribution  [31].
The experiments    show    that   the  occurrence
frequency   characteristics    of    shape    codevectors
have  not  so  significant  dependency  on   the  gain
scalar values, as well. According to the results that are
reported in [32], occurrence probability of shape
codebook index values in the range of 65 to 128 is much
higher than index values in the range of 1 to 64.

The proposed model for FAMNN-based shape
codebook search is shown in Figure 3. In this way, to
determine the best index of gain codebook, the gain is
calculated by Equation (7):
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Fig. 3: Proposed FAMNN-based codebook search module

Table 1: Specifications of FAMNN in the proposed model

Specification Value

Learning rate 0.98
Vigilance parameter 0.99
Number of F  nodes 100

Number of F  nodes 12351

Number of F  nodes 12352

Training time (sec) 721
Number of classes 128
Number of training samples 100,000
Number of test samples 3200
Correct identification rate 95%

Table 2: Performance of the proposed model equipped with neural search
shape codebook module 

Codebook search
System time (sec)/frame SNR  (dB) MOS PESQseg

Traditional G.728 [2, 34] 5.56/200 18.45 3.91 3.43
Proposed model 2.74/200 18.36 3.83 3.37

(7)

Based on the calculated gain, the best index of gain
codebook is determined by finding the one of eight scalar
values of gain codebook that is closest to .

SIMULATION AND EMPIRICAL RESULTS: In this
work, as the first step, LD-CELP vocoder is implemented
based on the ITU-T G.728 recommendation [3]. The
simulation of encoder and decoder is performed by
MATLAB v.7.2 simulation software. The sampling
frequency is 8 kHz and the frame size is 20 samples. 

In this work, we use Farsi speech data files of
FARSDAT [33]. FARSDAT is a continuous speech Farsi
corpus including 6000 utterances from 300 speakers with
various accents. Training dataset in our work includes
100,000 frames of speech from 24 male and 28 female
speakers. Test dataset includes 3200 frames of speech
from one male and two female speakers, as well. In the
training dataset, the utterance of two sentences by each

speaker is included. The test dataset includes the
utterance of one sentence by each speaker. It is noted
that the proposed model can show its efficiency in
reducing the codebook search time, if it performs well on
a rich small-size test dataset, too.

It is noted that the input of FAMNN is gain-
normalized VQ target vector,  (Fig. 3). The
specification of simulated FAMNN is reported in Table 1.
The effect of vigilance parameter and learning rate values
on prediction accuracy is investigated in this work. The
value of  is set to 0.99 in our experiments (Figure 4) to
have an acceptable number of F  nodes and prediction2

accuracy. The value of is set to 0.98, as well (Figure 5).
The performance of proposed model, that is equipped
with neural shape codebook index prediction, is compared
with the traditional G.728 [2, 34] in terms of segmental SNR
(SNR ), mean opinion score (MOS) and perceivedseg

evaluation of speech quality (PESQ) measures (Table 2).
SNR  is an important factor in determining the quality ofseg

audio data [35]:

(8)

where x(n) is the input signal to encoder and y(n) is the
output signal from decoder. SNR  is defined as theseg

average of SNR measurements:

(9)

in which, N is the number of frames.
It  is  noted  that  MOS  provides  a  numerical

indication   of    the   perceived   quality   of  received
media    after      compression      and/or    transmission.
The  MOS is  expressed  as  a  single  number   in  the
range of 1 to 5, where 1 is the lowest perceived audio
quality and 5 is the highest perceived audio quality
measurement [36].
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Fig. 4: Effect of vigilance parameter on prediction way MOS score.
accuracy ( =1) The output of PESQ, termed PESQ score, has high

Fig. 5: Effect of learning rate on prediction accuracy and output of the proposed enhanced G.728 speech
( =0.99) vocoder are depicted in Fig. 6, as well.

The inherent problem in subjective MOS
measurement is that it is slow, time consuming, expensive
and cannot be used for long-term or large scale. This has
made objective methods very attractive for meeting the
demand for voice quality measurement in communication
networks. Objective measurement of voice quality in
modern  communication  networks can be intrusive or
non-intrusive  [37].  Intrusive  methods  are  more
accurate, but normally are unsuitable for monitoring live
traffic because of the need for a reference data and to
utilize the network.  A  typical  intrusive  method is based
on the ITU-T P.862 standard, perceived evaluation of
speech quality  (PESQ)  measurement  algorithm  [38].
This involves a comparison of the reference and the
degraded speech signals to predict the listening-only one-

correlation with MOS for a wide range of subjective tests
spanning  many  different  l anguages  and  network
types. However, PESQ score was calibrated against an
essentially  arbitrary  objective  distortion  scale. It was
not designed to be on exactly the same scale as MOS,
either  in  general  or  for any specific subjective test.
PESQ score may be between -0.5 and 4.5, while absolute
category rating (ACR) listening quality MOS is on a 1-5
scale [36]. In this paper, MOS and PESQ scores are used
to assess the voice quality of proposed model. 

As  shown  in  Table   2,   using   FAMNN   as a
neural   search   shape   codebook   in   G.728  speech
coder  reduces  the  computational  complexity
noticeably, without significant degradation  in  MOS,
PESQ and SNR . As a visual indication of coderseg

performance, in addition to subjective measures, the input

Fig. 6: Input and output of the proposed enhanced speech vocoder, a) input, b) output
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CONCLUSIONS 8. Sheikhan, M., M. Tebyani and M. Lotfizad, 1996.

In this paper, shape codebook search part in the
structure of ITU-T G.728 speech coder was replaced by a
fuzzy ARTMAP neural network (FAMNN). In this way,
gain value was calculated analytically according to the
best shape codebook index. This index was determined by
FAMNN (Equation 7). Then, the best gain codebook
index was selected based on the minimum distance to
each of 8 gain codebook values.

The proposed model led to 50.7% reduction in
codebook search time as compared to the traditional
implementation of ITU-T G.728 encoder (Table 2).
However,  SNR ,  MOS  and  PESQ  were  reduced  0.09seg

dB, 0.08 and 0.06, respectively. Therefore, the proposed
structure led to noticeable reduction in computational
complexity, without significant degradation in SNR ,seg

MOS and PESQ.
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