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[1] Atmospheric imaging radars offer the capability to scrutinize structures within the
illuminated volume at high temporal and spatial resolutions. The retrieval of the mean
signal power using an imaging radar is obtained by subtracting the noise power from the
covariance function at lag zero. The results obtained at low signal-to-noise ratio (SNR) are
problematic when the noise power is unsuccessfully estimated, and are difficult to interpret
when adaptive weights are used because of the temporally varying noise power. In this
paper, a processing technique that improves the retrieval of the mean signal power by
exploiting the temporal correlation difference between the desired signal and system noise is
presented. Simulations of its performance are presented for the special case of a Gaussian
received spectrum for variations in SNR, normalized spectrum width, and number of time
series samples. The technique is also applied to real data collected with the Turbulent
Eddy Profiler, a vertically pointing phased array radar developed at the University of
Massachusetts, between 1435 and 1457UTC 15 June 2003. Even though the performance of
this technique in terms of its variance and bias depends on the SNR, spectrum width, and
number of time series samples, results from both simulations and real data are promising as
an enhanced mean signal power in the low SNR regions is obtained.

Citation: Le, K. D., R. D. Palmer, B. L. Cheong, T.-Y. Yu, G. Zhang, and S. M. Torres (2010), Reducing the effects of noise

on atmospheric imaging radars using multilag correlation, Radio Sci., 45, RS1008, doi:10.1029/2008RS003989.

1. Introduction

[2] The quality of atmospheric radar observations is
limited by slow update times, clutter contamination, and
range velocity ambiguities, among other factors [Battan,
1973; National Research Council, 2002; Doviak and
Zrnić, 1993; Friedrich et al., 2006]. Imaging radars
consist of a widebeam transmitter and many independent
receiving subarrays, and can mitigate some of these
problems by illuminating a large field of view and using
adaptive beamforming to scrutinize the structures and
dynamics within this region. These radars have been
applied to investigate clear-air turbulence and precipita-

tion [Mead et al., 1998; Palmer et al., 1993, 2005], plasma
irregularities in the equatorial F region [Hysell, 1996],
structures of the polar mesosphere summer echoes [Yu
et al., 2001], airborne clutter sources in the boundary layer
[Cheong et al., 2006], and phenomena in the stratosphere-
troposphere (ST) layers [Hélal et al., 2009], among others
[Fukao, 2007].
[3] Currently, the observation of mean signal power

using an imaging radar is typically obtained by subtracting
the noise power from the covariance function at lag zero.
Classic techniques used in obtaining the mean signal
power include signal statistics separation [Hildebrand
and Sekhon, 1974], spectral thresholding [Gordon, 1997],
spurious spectral peaks averaging [Marple, 1987], and
matched filters [Haykin, 1996]. The mean signal power
is unfortunately biased if the noise power is unsuccessfully
estimated. A natural incentive exists to obtain the signal
power in a way that bypasses the need for estimating the
noise power. In this paper, a multilag (ML) correlation
technique is introduced that satisfies this requirement
by exploiting the temporal correlation difference between
the scattered atmospheric signal and the receiver noise.
Previously, higher-order correlation values have been
used for similar purposes to retrieve velocity [Strauch
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et al., 1978], spectrum width [Srivastava and Jameson,
1979], linear depolarization ratio [Melnikov, 2006;
Hubbert et al., 2003], and cross-polarization ratio [Melnikov,
2006].
[4] In the next section, the derivation of the ML tech-

nique and simulation of its performance for a Gaussian
spectrum time series signal are presented. In section 3, the
ML technique is applied to real data and the results are
compared to those obtained using conventional Fourier
and adaptive Capon beamforming. In section 4, conclu-
sions are presented.

2. Theoretical Foundation

[5] Time series signals measured at the individual array
elements are mathematically represented using the array
model of Stoica and Moses [2005]. It is described using
an array transfer function, a narrowband signal that sim-
ulates the scattered signal, and additive receiver noise.
The ML technique is then derived, and a specific example
of the ML technique for lag 1 and 2 is introduced. The
performance of the ML technique for lag 1 and 2 is then
investigated via simulations for variations in SNR, nor-
malized spectrum width svn, and number of time series
samples.

2.1. Array Model and Derivation of Proposed
Technique

[6] The vector of time series signals at the subarrays
{x(nTs); n = 0, 1,� � �, N � 1}, sampled at Ts, is given by
the vector

x nTsð Þ ¼ As nTsð Þ þ n nTsð Þ; ð1Þ

where the array transfer matrix that characterizes the
propagation and receiver effects is A = [a(�1) a(�2) � � �
a(�d)], d is the number of scattering sources, a(q) is the
array response vector, s(nTs) is the vector of random pro-
cesses that represent the base band time series of the scat-
tered signal, and n(nTs) is the vector of receiver noise. The
length of x(nTS) is the number of subarray elements.
[7] By a linear combination of the subarray signals, the

output signal of the beamformer is given by

y nTsð Þ ¼ wHx nTsð Þ; ð2Þ

where (�)H denotes the Hermitian operator. The weights w
are generally selected to be optimal in some sense [Capon,
1969; Harris, 1978; Marple, 1987; Haykin, 1996; Stoica
and Moses, 2005]. Physical and dynamic properties of
the scatterers within the imaged volume are then inferred
by evaluating the autocorrelation function Ry(mTs) =
E{y(nTs)y*((n � m)Ts)} at different temporal lags, mTs.

[8] The measured power, P, is obtained by evaluating
the correlation at zero lag Ry(0),

P ¼ Efy nTsð Þy* nTsð Þg

¼ wHEfx nTsð ÞxH nTsð Þgw

¼ wH ARs 0ð ÞAH þ NI
� �

w

¼ S þ NwHw; ð3Þ

where R s (0 ) = E{s (nTs )s
H (nTs )} and NI =

E{n(nTs)n
H(nTs)}. The mean signal power, S, is obtained

by subtracting the noise power, NwH
w, from P. In this

derivation, the noise is assumed to be complex Gaussian
with zero mean and power N.
[9] In (3), S = w

H(ARs(0)A
H)w, which cannot be

directly retrieved from P when noise is present. However,
by assuming a Gaussian spectrum and using higher-order
lags of the covariance function, it is shown in Appendix A
(see (A6)) that

S ¼ wH A Rs mTsð Þ � C�1 mTsð Þ
� �

AH
� �

w; ð4Þ

where � is the Kronecker product and C(mTs) is the nor-
malized correlation matrix of the baseband signal between
the scatterers. Unfortunately, the spectrum width and
Doppler velocity in C(mTs) are needed to estimate S.
[10] Using the approximation that the gain in the steered

direction is unity and the contribution within themain lobe
is dominant, (4) can be reformulated as

S � wH ARs mTsð ÞAH
� �

wc�1
w mTsð Þ; ð5Þ

where cw(mTs) is the element of C�1(mTs) in the steered
direction. Element cw(mTs) can be eliminated by using a
ratio of S for different temporal lags. For example, the
mean signal power, using temporal lags 1 and 2 (SML) is
given by the following relation

SML �
Sjm¼1

�

�

�

�

4

Sjm¼2

�

�

�

�

" #1=3

¼
wH ARs Tsð ÞAH
� �

wcw Tsð Þ
�

�

�

�

4

wH ARs 2Tsð ÞAH
� �

wcw 2Tsð Þ
�

�

�

�

 !1=3

: ð6Þ

Now, jcw(Ts)j
4/jcw(2Ts)j = 1 if a Gaussian-shaped

spectrum is assumed, which is typically for atmospheric
scattering. As shown in the work of Doviak and Zrnić
[1993], the shape of the spectrum of the return signal from
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a resolution volume encased in a linear wind field is that of
the antenna pattern, assuming Taylor’s frozen atmosphere
hypothesis and long dwell times are applied. Under the
above conditions, the mean signal power is

SML �
wH ARs Tsð ÞAH
� �

w
�

�

�

�

4

wH ARs 2Tsð ÞAH
� �

w
�

�

�

�

 !1=3

: ð7Þ

Note that this form of S has no component of cw(mTs) and,
therefore, the radial velocity and spectrum are not needed
a priori. In addition, the noise power estimated is not
needed since lags 1 and 2 are used in the formulation.

2.2. Performance of ML for Gaussian-Shaped
Spectra

[11] The nonlinear nature of the ML technique makes
it difficult to obtain theoretical information about its sta-
tistical behavior. However, a statistical examination using
perturbation analysis wasmade that assumes themeasured
correlation value can be expressed as its mean and a small
zero-mean perturbation. The results, shown in Appendix B,
indicate the variance of the two-lag estimator is primarily
affected by the SNR, svn, and the magnitude and ratio of
the two lags that are used in the ML technique. Addition-
ally, the technique performs well only over a limited range
of these factors. Outside the selected range, such as at
very small and large spectrum width values and very low

SNRs, the variance of the estimated power becomes
abnormally large. Nevertheless, simulated time series data
with a Gaussian-shaped spectrum are used to investigate
the performance of (7) for some special cases. The time
series data used were generated following Torres and
Zrnić [2003], and the performance of the ML technique
is examined for variation in SNR, svn, and a number of
time series samples.
[12] Plots of the bias of the signal power estimate from

the ML technique (ŜML) with 100 and 400 time series
samples are presented in Figure 1 for variation in normal-
ized spectrum width values (svn = s/2va) with va as the
aliasing velocity. Curves in each plot are generated using
500 realizations and for SNR from �10 to 15 dB at 5 dB
intervals. Below the svn of 0.2, a positive bias was observed
that decreases with an increasing SNR and number of
time samples. The bias becomes negative and its mag-
nitude increases with increasing SNR and number of time
samples when svn is above 0.3. However, the bias is
positive when the SNR is �10 dB and the number of
time samples is 100. The transition region between being
positive and negative bias exists between svn 0.2 and 0.3.
[13] Plots of the standard deviation corresponding to

retrieved signal power estimate are presented in Figure 2.
In general, the standard deviation decreases with increas-
ing number of samples and SNR values. In addition, an
asymptotic increase in the standard deviation of the
retrieved power is observed below the svn of 0.02. A local

Figure 1. Bias of power estimate obtained using SML for variation in normalized spectrum width
values (svn = s/2va). (a) Number of samples � 100. (b) Number of samples � 400. Curves in each
plot are generated using 500 realizations and for SNR from �10 to 15 dB at 5 dB intervals at high
svn resolution. The marked and solid curves are of the same result but are shown for two different
resolutions.

RS1008 LE ET AL.: REDUCING THE EFFECTS OF NOISE

3 of 17

RS1008



maximum is then observed between the svn of 0.1 and
0.25, and the magnitude and location of this maximum
depend on these parameters. An increase in the SNR or
number of samples always shifts this maximum to a larger
svn and decreases its magnitude, however the shift is
asymptotic smaller with increasing SNR and number of
samples. The location of the maximum appears to be
related to the transition region of the bias. The standard
deviation then appears to flatten out when svn is larger
than 0.3.
[14] Based on statistical analysis in the Appendix B, the

effects of the bias and standard deviation of the retrieved
power can be shown to be influenced either by the sample
size, SNR, svn, or the magnitude and ratio of the two lags
used in the ML technique. In the case of large normalized
spectrum width values, the effects are influenced mainly
by R(2Ts) and the lag 2 value that was used. Both factors
combined to influence the large bias that was observed. In
particular, they manifest as the exponential-shape bias. On
the other hand, effects observed at the low normalized
spectrum width values are caused by the spectrum width
value itself. Because of the term 1

p1=2s2
vn

, an asymptotically

large increase in the standard deviation is observed at the
low spectrum width values. In this analysis, the effect
manifests as an asymptotic increase in the standard devia-
tion of the retrieved power. In between the two extreme
range of spectrum width values, a combination of both
SNR and svn influences the results. The degree to which

each factor affects the retrieved results depend on the range
of svn and the SNR level.

3. Application With the Turbulent Eddy

Profiler

[15] The Turbulent Eddy Profiler (TEP) is a 915 MHz
vertically pointing boundary layer imaging radar devel-
oped by the University of Massachusetts [Mead et al.,
1998]. The system consists of a 25� beam width transmit-
ting horn antenna and up to 64 receiving subarrays with
32� beam width microstrip patch antennas. This radar was
designed to provide fine-scale measurements of the atmo-
spheric boundary layer (ABL) phenomena [Mead et al.,
1998]. It has been used to observe turbulent features
within the boundary layer in the vertical transport and
mixing (VTMX) [Doran et al., 2002] and for comparing
results between large eddy simulations and real observa-
tions [Pollard et al., 2000]. Additionally, it has been used
to investigate airborne clutter sources [Cheong et al.,
2006] and precipitation in the boundary layer [Palmer
et al., 2005]. Since boundary layer scattering are mainly
turbulent in nature when precipitation is not present, the
spectral shape of the time series signal is mainly Gaussian
and is ideal for applying the ML technique.
[16] The subarrays, shown in Figure 3, were placed in a

hexagonal geometry for the processed data. This config-
uration has an aperture of approximately 4.5 � 4.0 m2,

Figure 2. Standard deviation of power estimate obtained using SML for variation in normalized
spectrum width values (svn = s/2va). (a) Number of samples � 100. (b) Number of samples � 400.
The marked and solid curves are of the same simulated results but are shown for two different
resolutions. Investigation of the error statistics revealed that the distribution of the error varies with
svn and plays a role in shaping the observed bias and standard deviation curves.
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producing a received beam width of approximately 3.5�.
In-depth details of the field experiment were reported by
Cheong et al. [2006].
[17] A time-height profile of the measured power for

520 time series samples obtained using the ML technique
with Capon derived weights is presented in Figure 4 for
data recorded between 1435 and 1457 UTC 15 June 2003.
Specific details of the coherent averaging approaches
were previously discussed by Palmer et al. [2005] and
Cheong et al. [2006]. The measured powers are also
presented using pulse-pair-beamforming (PPB) with
Fourier (denoted Fourier PPB) andCapon (denoted Capon
PPB) weights for comparison. In this profile, the observed
atmospheric scatterers are the columnar updrafts associ-
ated with superadiabitic heating at the surface and the
diffuse downdrafts associated with entrainment at the
boundary layer. The observed clutter sources are aerial
targets such as birds and insects, the ground, and inter-
mittent sources. Using the adaptive weights, many of the
clutter sources are mitigated, as shown in the results from
the Capon PPB and ML techniques. In contrast, an aerial
target located in the steered position at approximately
1450 UTC and 500 m remains. Additionally, a well-
known effect of noise gain caused by inverting the
correlation matrix [Stoica and Moses, 2005] is evident
as a background noise in the result obtained using Capon
PPB. This effect has been significantly reduced based on
the lower background power level using the ML tech-
nique, which is the goal of the proposed multilag tech-

nique. At this point, it is noted that the application of
Capon PPB may actually result in odd-shaped beams and
time series with non-Gaussian statistics, which is prob-
lematic for the ML technique. However, since the original
Fourier beamforming is assumed to produce time series
signals with Gaussian statistics, massaging of the adaptive
algorithm such as using diagonal loading to enforce
Fourier-like behaviors may be needed. Additionally, the
results are again plotted in Figure 5 with the average noise
power subtracted. While there are a lot of similarities in
the results obtained between the ML and Capon PPB
techniques, there are also some noticeable differences that
are most observable (located within the dashed lines) at
the lower SNR values.
[18] Selected height profiles with times marked in

Figure 4 by vertical dashed lines are plotted in Figure 6.
They show the evolution of plumes in the boundary layer
and provide a quantitative measure of the different re-
trieved powers using the three techniques. In particular,
the evolution of the plumes located between 700–1100 m
and between 1450–1700 m are interesting. These echoes
are caused by entrained air as equilibrium is restored
between thermals and the environmental air and the
consequent change in the refractive index gradient. The
difference of the retrieved power in these regions using
Fourier and Capon PPB is approximately less than 1 dB
while it is approximately less than 3 dB using Capon PPB
and ML. In addition, the retrieved powers in layers near
these two regions using the ML technique are more

Figure 3. The TEP receiver. (left) A picture of the TEP receiver and the configuration used in the
field experiment that collected the processed data set. (right) A plot of the positions of the subarray
used. The elements are composed of approximately 64 patch antennas, and the aperture of the receiver
in this configuration is approximately 4.5 � 4.0 m2.
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Figure 4. Time-height profile of the measured power for data recorded between 1435 and 1457
UTC 15 June 2003. The profiles are plotted for the measured power obtained using Fourier PPB,
Capon PPB, and the ML technique with 520 time samples. Observed atmospheric scatterers include
columnar updrafts associated with superadiabitic heating and diffuse downdrafts associated with
entrainment.

RS1008 LE ET AL.: REDUCING THE EFFECTS OF NOISE

6 of 17

RS1008



Figure 5. Same as Figure 4, except the average noise power is subtracted from Fourier PBB and
Capon PBB. Enclosed in the dashed ovals are some interesting regions with noticeable differences. In
these regions, the ML technique appears to produce the most desirable results even though the results
themselves are highly variable.
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sensitive by up to 15 dB as compared to the results ob-
tained using Capon and Fourier PPB based on the weakest
retrieved power level. Weak atmospheric scatterers are
masked by the noise level and are difficult to identify in
the results obtained using Capon and Fourier PPB.
[19] Along with the vertical slices, cross-section images

showing the two-dimensional structure of the plumes
along the zonal direction are presented in Figure 7 for
the selected times. While the structures of the plume
located between 700 and 1100 m are resolved using all
three techniques, the spatially discontinuous power fea-
tures in the region between 1450 and 1700 m interfere
with the results obtained using Fourier PPB. These fea-
tures are signatures of clutter contamination and make it
difficult to identify the atmospheric scatterers in this
region. The atmospheric scatterers in this region are easier
to resolve in the results obtained using Capon PPB and
the ML technique with adaptive weights. In addition, the
adaptive weights enhanced the near ground atmospheric
scattered signal below 400 m. Scattering from the bound-
ary layer heating that connects to the plumes located
between 700 and 1100 m were observed in the results
obtained using the Capon PPB and the ML technique,
whereas they were masked by the ground clutter in the
results obtained using Fourier PPB.
[20] Scatterplot comparisons of the measured powers

obtained in Figure 4 are presented in Figure 8 to investi-
gate the sensitivity of the three techniques. A plot was

generated for the results obtained using Capon PPB and
theML technique and another for Fourier PPB and theML
technique. In the results obtained using Capon PPB and
the ML technique, an approximately linear relationship
with a decreasing positive bias toward Capon PPB and a
decreasing spread was observed when the Capon PPB
increases above 10 dB. Below this threshold, the values
obtained using Capon PPB are approximately constant
while the values obtained using the ML technique can be
as low as �10 dB. The results observed above this
threshold are similar to the changes mentioned of the bias
and variance in section 2.2 when svn is between 0.1 and
0.3 and the parameter SNRwas varied. In the simulations,
it was observed that the bias and variance decreased with
increasing SNR. In this case, the SNR is approximately
related to the Capon PPB power values. The results
obtained when the Capon PPB retrieved powers are below
10 dB highlight the enhanced sensitivity obtained using
the ML technique. While the Capon PPB technique is
limited to scatterers withmeasured power of at least 10 dB,
the ML technique is sensitive to weaker scatterers. On the
other hand, the results of the scatterplot for the Fourier
PPB and ML technique show the effects of using adaptive
weights and its clutter rejection capability in addition to
the enhanced sensitivity effects. The scattered power of
the Fourier PPB results above 15 dB generally consist of
ground clutter and its value is biased away toward Fourier
PPB from the expected linear line. Moreover, the results

Figure 6. Selected height profiles of the measured power. The retrieved power of times marked in
Figure 4 by the vertical dashed lines using Fourier PPB, Capon PPB, and the ML technique are
plotted. These profiles show the evolution of plumes in the boundary layer and capture quantitative
differences of the retrieved power by the three techniques. A difference of approximately less than
1 dB is observed using Fourier and Capon PPB in the two regions between 700–1100 m and 1450–
1700 m. A higher difference of less than 3 dB is obtained using Capon PPB and the ML technique.
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Figure 7. Selected cross sections of the measured power. The retrieved power of times marked in
Figure 4 by the vertical dashed lines are plotted using Fourier PPB, Capon PPB, and the ML
technique. These images show the two-dimensional structure of the plumes along the zonal direction
and benefits of using adaptive weights. The atmospheric scattering between 1450 and 1700 m and
near the ground were observed using the Capon PPB and the ML technique, whereas they were
masked in the results obtained using Fourier PPB.
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obtained is always lower using the ML technique than
Fourier PPB and show the adaptive nature of the weights
and its desire to reduce the overall power even in the
region with atmospheric scatterers between 10 and 20 dB.

4. Conclusions

[21] An ML technique was introduced for retrieving the
measuring power without the need to estimate the noise
power. The technique was derived using an array model,
and a special case using lags 1 and 2 was presented. The
performance of the ML technique using lags 1 and 2 in
terms of bias and standard deviation was investigated
using numerical simulation generated following Torres
and Zrnić [2003]. Results of the bias and standard
deviation were plotted with 100 and 400 time series
samples, normalized spectrum width values from 0.01 to
0.5, and an SNR ranging from�10 to 15 dB. Additionally,
a general two-lag technique was presented and its statistics
was examined using perturbation analysis. Based on these
results, the effects of the bias and standard deviation of the
retrieved power was shown to be affected by the sample
size, SNR, svn, or the magnitude and ratio of the two lags
used in the ML technique. In the case of large normalized
spectrum width values, the effects are influenced mainly
by the variance of the larger correlation value and the lag
ratio that were used. On the other hand, effects at the low
normalized spectrum width values are caused by the

spectrum width value itself. In between the two extreme
range of spectrum width values, a combination of both
SNR and svn influences the results. Additionally, the ML
technique was then applied to real data collected between
1435 and 1457 UTC 15 June 2003 using the Turbulent
Eddy Profiler of atmospheric boundary layer scattering.
The results were plotted using time-height profiles, cross-
sections images, and scatterplots, and the results were
compared to the retrieved power obtained using Fourier
and Capon PPB. The results showed the benefits of the
adaptive weights and the enhanced sensitivity in terms of
the minimum power detected of the retrieval technique.
The ML technique was able to mitigate the intermittent
clutter sources and resolve atmospheric scatterers in the
region between 1450 and 1700 m, and attenuate some of
the ground clutter to resolve the weak near ground
scattering below 400 m based on the decreased power
that was observed. Moreover, an enhancement of up to
15 dB was observed in the transition regions around 700–
1100 m and 1450–1700 m. Using this relatively simple
idea of multilag correlation, the proposed technique has
been shown to enhance the retrieval of weak atmospheric
signals with Gaussian spectra. Future work will include
investigation of the ML technique for retrieving the
reflectivity value observed using weather radars. In addi-
tion, studies of the performance of the ML technique are
needed under conditions with signals that may not have
Gaussian spectra.

Figure 8. Scatterplots of measured power obtained in Figure 4. A plot was generated for the results
obtained using Capon PPB and theML technique, and another was generated for Fourier PPB and the
ML technique. The results obtained using Capon PPB and the ML technique show an approximately
linear relationship with a decreasing positive bias toward Capon PPB, and a decreasing spread was
observed when the Capon PPB increases above 10 dB. Below this threshold, the values obtained
using Capon PPB are approximately constant while the values obtained using the ML technique
can be as low as �10 dB. These results highlight the enhanced sensitivity obtained using the ML
technique. The results of the Fourier PPB and ML scatterplot show the effects of using adaptive
weights and its clutter rejection capability in addition to the enhanced sensitivity effects.
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Appendix A: Assumed Correlation Matrix

Structure

[22] Assume that the temporal correlation of the ith
signal source is given by

Ri mTsð Þ ¼ Efs* nTsð Þs mþ nð ÞTsð Þg

¼ Si exp �8 psvimTs=lð Þ2
h i

exp �j4pvimTs=l½ �;

ðA1Þ

where Si is the power, svi is the spectrum width, vi is the
Doppler velocity, and l is the wavelength. Furthermore,
assume that the sources are uncorrelated for m 6¼ 0. The
data covariance matrix of the array signals is then

Rx mTsð Þ ¼ ARs mTsð ÞAH þ NIdm; ðA2Þ

where

Rs mTsð Þ ¼

R1 mTsð Þ 0 � � � 0

0 R2 mTsð Þ 0 .
.
.

.

.

.
.
.

.
.
.

.
.
.

.

0 � � � 0 Rd mTsð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

ðA3Þ

N is the noise power, and dm is the Kronecker delta
function. Then, it can be shown that

Rs mTsð Þ ¼ Rs 0ð Þ � C mTsð Þ: ðA4Þ

Likewise,

Rs 0ð Þ ¼ Rs mTsð Þ � C�1 mTsð Þ; ðA5Þ

where

C mTsð Þ ¼

C11 0 � � � 0

0 C21 0 .
.
.

.

.

.
.
.

.
.
.

.
.
.

.

0 � � � 0 Cd1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

�

C12 0 � � � 0

0 C22 0 .
.
.

.

.

.
.
.

.
.
.

.
.
.

.

0 � � � 0 Cd2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; ðA6Þ

where � denotes the Kronecker product, Ci1 = exp
�8[psvimTs/l]

2, and Ci2 = exp[�j4pvimTs/l].

Appendix B: Variance of ML Estimator

Using Ratio of Two Lags

[23] The power S can be described using a ratio of two
lags from R(m00) = Rs(m

00) + Rn(m
00), where Rs(m

00) =
Sexp[�2(psvnm

00)2 + j2pvnm
00] and Rn(m

00) = Ndm00,0,
through the equation

S ¼
jR m0ð ÞjA

jR m00ð Þj

 !B

¼
SAexp �m02A

h i

Sexp �m002
� �

0

@

1

A

B

; ðB1Þ

where m0 > m00 � 1,�m02A + m002 = 0. Note that vn = v/2va
is used while Ts is already incorporated using va . This gives
A = m002

m02 , A > 0, and B = 1
A�1

, 1 > B > 0. Its variance is

varfŜg ¼ C1ð Þ2varfjR̂ m0ð Þjg þ C2ð Þ2varfjR̂ m00ð Þjg

þ 2C1C2covfjR̂ m0ð Þj; jR̂ m00ð Þjg; ðB2Þ

where

C1 	
@S

@jR m0ð Þj

¼ ABjR m0ð ÞjAB�1jR m00ð Þj�B ðB3Þ

and

C2 ¼
@S

@jR m00ð Þj

¼ �BjR m0ð ÞjABjR m00ð Þj�B�1 ðB4Þ

Values of the above three terms can be obtained through
perturbation analysis and by assuming that the correlation
function has an expected value and a zero mean pertur-
bation. With this, the covariance of the absolute value of
the correlation for any two lags is

covfjR̂ m0ð Þj; jR̂ m00ð Þjg � jR m0ð ÞjjR m00ð Þj

�
1

4
E

4R m0ð Þ4R m00ð Þ

R m0ð ÞR m00ð Þ

�

þ
4R* m0ð Þ4R m00ð Þ

R* m0ð ÞR m00ð Þ

þ
4R m0ð Þ4R* m00ð Þ

R m0ð ÞR* m00ð Þ

þ
4R* m0ð Þ4R* m00ð Þ

R* m0ð ÞR* m00ð Þ

�

ðB5Þ
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To solve the above problem, use a solution found in the
work of Zhang et al. [2004] of

X

M�1

M�1

M � jn00jð ÞR n00ð ÞR �n00 þ m0 � m00ð Þ

�
MS2

2p1=2svn

exp �p
2
s
2
vn m0 � m00ð Þ

2
h i

� exp j2pvn m0 � m00ð Þ½ �

þ 2Rs m
0 � m00ð ÞMN þMN 2

dm0�m00;0 ðB6Þ

Solving for a general case of

Ef4R m0ð Þ4R* m00ð Þg ¼ E
1

M

X

M�1

n¼0

X* nð ÞX nþ m0ð Þ � R m0ð Þ

 !(

�
1

M

X

M�1

n0¼0

X* n0ð ÞX n0 þ m00ð Þ � R m00ð Þ

 !*
9

=

;

¼ E
1

M

X

M�1

n¼0

X

M�1

n0¼0

X* nð ÞX nþ m0ð ÞX n0ð ÞX* n0 þ m00ð Þ

( )

� E
1

M

X

M�1

n¼0

X* nð ÞX nþ m0ð ÞR* m00ð Þ

( )

� E
1

M

X

M�1

n0¼0

X n0ð ÞX* n0 þ m00ð ÞR m0ð Þ

( )

þ R m0ð ÞR* m00ð Þ

¼ E
1

M 2

X

M�1

n¼0

X

M�1

n0¼0

X* nð ÞX nþ m0ð ÞX n0ð ÞX* n0 þ m00ð Þ

( )

� R m0ð ÞR* m00ð Þ � R �m00ð ÞR m0ð Þ þ R m0ð ÞR* m00ð Þ

¼
1

M 2

X

M�1

n¼0

X

M�1

n0¼0

EfX* nð ÞX n0ð ÞgEfX nþ m0ð ÞX* n0 þ m00ð Þg

� R m0ð ÞR* m00ð Þ � R �m00ð ÞR m0ð Þ þ 2R m0ð ÞR* m00ð Þ

¼
1

M 2

X

M�1

n¼0

X

M�1

n0¼0

R n0 � nð ÞR nþ m0 � n0 � m00ð Þ

¼
1

M 2

X

M�1

n00¼�Mþ1

M � jn00jð ÞR n00ð ÞR �n00 þ m0 � m00ð Þ

¼
1

M 2

MS2

2p1=2svn

exp �p
2
s
2
vn m0 � m00ð Þ

2
h i

exp j2pvn m0 � m00ð Þ½ �

	

þ 2Rs m
0 � m00ð ÞMN þMN 2

dm0�m00;0




: ðB7Þ

The above solution is then used to calculate the compo-
nents of the covariance, i.e.,

Ef4R m0ð Þ4R m00ð Þg ¼ Ef4R m0ð Þ4R* �m00ð Þg

¼
1

M 2

MS2

2p1=2svn

exp �p
2
s
2
vn m0 þ m00ð Þ

2
h i

	

� exp j2pvn m0 þ m00ð Þ½ �þ2Rs m
0 þ m00ð ÞMN þMN 2

dm0þm00;0




ðB8Þ
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and

Ef4R m0ð Þ4R* m00ð Þg ¼ Ef4R m0ð Þ4R* m00ð Þg

¼
1

M 2

MS2

2p1=2svn

exp �p
2
s
2
vn m0 � m00ð Þ

2
h i

	

� exp j2pvn m0 � m00ð Þ½ �þ2Rs m
0� m00ð ÞMNþMN 2

dm0�m00;0




ðB9Þ

and

Ef4R* m0ð Þ4R* m00ð Þg

¼ Ef4R �m0ð Þ4R* m00ð Þg

¼
1

M 2

MS2

2p1=2svn

exp �p
2
s
2
vn �m0 � m00ð Þ

2
h i

	

� exp j2pvn �m0 � m00ð Þ½ �

þ 2Rs �m0 � m00ð ÞMN þMN 2
d�m0�m00;0




: ðB10Þ

Therefore,

jR m0ð ÞjjR m00ð Þj

R m0ð ÞR m00ð Þ
Ef4R m0ð Þ4R m00ð Þg

¼ exp �j2pvn m0 þ m00ð Þ½ �

� Ef4R m0ð Þ4R m00ð Þg

¼
1

M2

MS2

2p1=2svn

	

� exp �p
2
s
2
vn m0 þ m00ð Þ

2
h i

� exp j2pvn m0 þ m00ð Þ½ � þ 2Rs m
0 þ m00ð ÞMN

þ MN 2
dm0þm00;0




¼
1

M2

MS2

2p1=2svn

exp �p
2
s
2
vn m0 þ m00ð Þ

2
h i

	

þ 2jRs m
0 þ m00ð ÞjMN

þ MN 2
dm0þm00 ;0




ðB11Þ

and

jR m0ð ÞjjR m00ð Þj

R m0ð ÞR* m00ð Þ
Ef4R m0ð Þ4R* m00ð Þg

¼ exp �j2pvn m0 � m00ð Þ½ �

� Ef4R m0ð Þ4R* m00ð Þg

¼
1

M2

MS2

2p1=2svn

exp �p
2
s
2
vn m0 � m00ð Þ

2
h i

	

þ 2jRs m
0 � m00ð ÞjMNþMN2

dm0�m00;0




ðB12Þ

and

jR m0ð ÞjjR m00ð Þj

R* m0ð ÞR* m00ð Þ
Ef4R* m0ð Þ4R* m00ð Þg

¼ exp �j2pvn �m0 � m00ð Þ½ �

� Ef4R �m0ð Þ4R* m00ð Þg

¼
1

M2

MS2

2p1=2svn

exp �p
2
s
2
vn �m0 � m00ð Þ

2
h i

	

þ 2jRs �m0 � m00ð ÞjMN

þMN 2
d�m0�m00;0




: ðB13Þ

By applying the above three equations, the covariance of
the absolute correlation value between any two arbitrary
lags is

covfjR̂ m0ð Þj; jR̂ m00ð Þjg ¼
1

4M 2

MS2

p1=2svn

	

� exp �p
2
s
2
vn m0 þ m00ð Þ

2
h i

þ
MS2

p1=2svn

exp �p
2
s
2
vn m0 � m00ð Þ

2
h i

þ 4jRs m
0 þ m00ð ÞjMN þ 4jRs m

0 � m00ð ÞjMN

þ 2MN 2
dm0þm00;0 þ 2MN 2

dm0�m00;0




: ðB14Þ

Let SNR 	 S
N
. For m0 6¼ m00, m0 � 1, m00 � 1,

covfjR̂ m0ð Þj; jR̂ m00ð Þjg ¼
S2

4M

exp �p
2
s
2
vn m0 þ m00ð Þ2

h i

p1=2svn

2

4

þ
exp �p

2
s
2
vn m0 � m00ð Þ2

h i

p1=2svn

þ
4exp �2p2

s
2
vn m0 þ m00ð Þ2

h i

SNR

þ
4exp �2p2

s
2
vn m0 � m00ð Þ2

h i

SNR
þ

2

SNR2
dm0þm00;0

þ 2
1

SNR2
dm0�m00;0� � S2

4M

exp �p
2
s
2
vn m0 � m00ð Þ2

h i

p1=2svn

2

4

þ
4exp �2p2

s
2
vn m0 � m00ð Þ2

h i

SNR

3

5 ðB15Þ
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Figure B1. Statistical analysis of retrieved power variance. The results are shown for m0 = 1 and
m00 = 2, 3, and 4. The values are asymptotically large at small and large values of normalized spectrum
widths and are minimal somewhere in between. This trend limits the retrieval technique to echo
signals with moderate values of normalized spectrum widths.
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and

covfjR̂ m0ð Þj; jR̂ m0ð Þjg ¼
S2

4M

exp �p
2
s
2
vn 2m0ð Þ2

h i

p1=2svn

2

4

þ
1

p1=2svn

þ
4exp �2p2

s
2
vn 2m0ð Þ2

h i

SNR
þ

4

SNR
þ

2

SNR2

3

5

�
S2

4M

1

p1=2svn

þ
4

SNR
þ

2

SNR2

	 


: ðB16Þ

Figure B2. Values ofC1 and C2 form
0 = 1 andm00 = 1, 2,

and 3. When squared and then multiplied with the vari-
ance of its perturbation, the result is the autocovariance.
In this plot, the asymptotically negative curves are those
obtained for with C2, and the other curves are those of C1.

Figure B3. Values of 1
�1=2�vn

and 4
SNR

þ 2
SNR2 for various ranges of SNR and svn. These two terms are

used to calculate C1 and C2. The results show that 1
�1=2�vn

is larger than 4
SNR

þ 2
SNR2 for all cases except

those with moderately low SNRs.
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So

varfŜg � C1
2 þ C2

2
� � S2

4M

1

p1=2svn

þ
4

SNR
þ

2

SNR2

	 
	 


þ 2C1C2

S2

4M

exp �p
2
s
2
vn m0 � m00ð Þ2

h i

p1=2svn

2

4

þ
4exp �2p2

s
2
vn m0 � m00ð Þ2

h i

SNR

3

5:

¼ C1
2 þ C2

2
� � S2

4M

1

p1=2svn

þ
4

SNR
þ

2

SNR2

	 
	 


þ 2C1C2

S2

4M

exp �p
2
s
2
vnm

02 1� Að Þ2
h i

p1=2svn

2

4

þ
4exp �2p2

s
2
vnm

02 1� Að Þ2
h i

SNR

3

5: ðB17Þ

where

C1 ¼ ABjR m0ð ÞjAB�1jR m00ð Þj�B

¼ ABjR m0ð Þj AB�1ð ÞjR m00ð Þj�B

¼ ABS AB�1ð Þexp �2 AB� 1ð Þ psvnm
0ð Þ
2

h i

� S�Bexp 2 Bð Þ psvnm
00ð Þ

2
h i

¼ ABS AB�1ð Þ�Bexp � 2 AB� 1ð Þm02 � 2 Bð Þm002
� �h

� psvnð Þ2
i

ðB18Þ

where

AB� 1ð Þ � B ¼ A
1

A� 1
� 1


 �

�
1

A� 1

¼ 0 ðB19Þ

and

� 2 AB� 1ð Þm02 � 2Bm002
� �

¼�2m02 AB� 1ð Þ � B
m002

m02


 �

¼ �2m02 AB� 1ð Þ � BAð Þ

¼ 2m02: ðB20Þ

So,

C1ð Þ2¼
A

A� 1


 �2

exp 4m02
psvnð Þ2

h i

: ðB21Þ

Similarly,

C2 ¼ �BjR m0ð ÞjABjR m00ð Þj�B�1

¼ BS ABð Þexp �2 ABð Þ psvnm
0ð Þ
2

h i

S�B�1Þ

� exp 2 Bþ 1ð Þ psvnm
0ð Þ
2

h i

¼ BS ABð Þ�B�1exp �2 ABm02 � Bþ 1ð Þm002
� �

psvnð Þ2
h i

ðB22Þ

where

�2 ABm02 � Bþ 1ð Þm002
� �

¼ �2m02 AB� Bþ 1ð Þ
m002

m02


 �

¼ �2m02 AB� Bþ 1ð ÞAð Þ

¼ 2Am02: ðB23Þ

So,

C2ð Þ2¼
1

A� 1


 �2

exp 4Am02
psvnð Þ2

h i

: ðB24Þ

[24] Several cases showing the variance of the retrieved
power are plotted in Figure B1. Values of m0 = 1 and m00 =
2, 3, and 4 and SNR of �3, 0, 5, and 10 dB were used to
obtain the results. The variance is asymptotically large at
small and large values of normalized spectrum widths and
its minimum is located at spectrum widths with values
ranging between 0.02 and 0.2. By observing the magni-
tude of C1 and C2 shown in Figure B2, the upper limit of
the variance can be inferred. The asymptotic limit is
caused by C2 and it decreases with increasing m00 at an
exponentially squared rate. On the other hand, the lower
limit can be inferred by looking at the results in Figure B3.
At the low spectrum width, the term 1

p1=2svn
becomes

asymptotically large and causes a corresponding large
variance in the retrieve power. However, there are cases
of spectrum width values with low SNR that makes
4

SNR
þ 2

SNR2 larger than
1

p1=2svn
. In these situations, the vari-

ance of the retrieved power is caused mainly by the SNR.
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