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Abstract. In Cognitive Tutors, student skill is represented by estimates of student 

knowledge on various knowledge components. The estimate for each knowledge 

component is based on a four-parameter model developed by Corbett and 

Anderson [Nb]. In this paper, we investigate the nature of the parameter space 

defined by these four parameters by modeling data from over 8000 students in 

four Cognitive Tutor courses. We conclude that we can drastically reduce the 

parameter space used to model students without compromising the behavior of 

the system. Reduction of the parameter space provides great efficiency gains and 

also assists us in interpreting specific learning and performance parameters. 

1 Introduction 

Since their start over 15 years ago, Cognitive Tutors [9] have used Corbett and 

Anderson’s [4] knowledge tracing algorithm as a method for estimating student 

knowledge. The knowledge tracing algorithm models student understanding as a 

collection of knowledge components (also called skills). Task performance depends on 

whether students have the requisite knowledge and whether they are able to exhibit that 

knowledge within the task. Knowledge components are assumed to be either known or 

unknown, and the system’s task is to estimate the probability that each of the target 

knowledge components are known. The model uses two knowledge parameters: pinitial, 

the probability that the knowledge component was known prior to instruction within the 

software; and plearn, the probability than an unknown knowledge component will 

transition to the known state, given an encounter with a task requiring that knowledge. 

The model also incorporates two performance parameters, which are meant to explain 

why performance of a task does not exactly match the state of student knowledge. The 

two performance parameters are pslip, the probability that a student will make an error 

when the knowledge component is known; and pguess, the probability that the student 

will provide the correct answer when the knowledge component is unknown. 

At each opportunity to use a skill, pknown, the system’s estimate of the probability that a 

particular knowledge component is known, is updated as a Bayesian function of the four 

parameters (pinitial being the initial pknown). Since pknown at any point is dependent 

only on the prior pknown and the three other knowledge tracing parameters, this model is 

a variant of a hidden Markov model, and we can use various techniques to estimate the 

best-fitting parameters for each knowledge component [7]. 

The benefits of setting knowledge tracing parameters based on student data were 

empirically demonstrated by Cen et. al. [3], who fit knowledge tracing parameters based 

on data collected for one cohort of students, and used the new parameter settings within 

an optimized version of the tutor. Students using the optimized tutor were able to reach 
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mastery in 12% less time, relative to an identical system without the optimized 

parameters, while maintaining equivalent performance on both immediate and delayed 

post-tests. 

This result demonstrates the value of using educational data to improve the performance 

and efficiency of Cognitive Tutors. Our goal in this paper is to explore the sensitivity of 

the Cognitive Tutor to the particular parameters used to model students in order to see if 

we can reduce the search space of knowledge tracing parameters. In particular, we would 

like to determine whether we can achieve the benefits of setting learning and 

performance parameters from student data without exploring the full parameter space.  

There are several reasons for our interest in this topic. First, as a practical matter, we are 

collecting data on over 50,000 students from curricula containing thousands of skills. 

Although there are several good algorithms for optimizing the search through the 

parameter space [7], finding the best fit can be computationally expensive. Different 

methods will typically find different parameters, and so it is important to understand 

whether these differences are large enough to have practical effects on the system’s 

effectiveness. 

Sensitivity to particular parameter fits may also affect generality. If the behavior of the 

system is relatively insensitive to the particular parameters used, then we might expect 

relatively little variability in these parameters as we model different cohorts of students. 

On the other hand, if we found extreme sensitivity, we might benefit from exploring 

whether different parameter sets for different groups of students might be an appropriate 

method to refine our modeling. 

Areas of relative insensitivity within the parameter space can be used to reduce the 

variations in parameters that we consider. In the extreme case, if we were able to find a 

small number of parameter sets that provide good fits across a wide range of data, then 

we can exhaustively search through these parameter sets to find the best fit. Using a small 

number of parameter sets within the tutors, rather than searching a large space of 

parameters may also help us to more accurately estimate initial parameters for new units 

of instruction and more quickly adapt the system based on student data. 

Perhaps the most interesting reason to reduce the parameter space is that it has the 

potential to allow us to interpret the fits that we find. The knowledge tracing algorithm 

can simply be thought of as a Markov process with four parameters, but we do ascribe 

meaning to the parameters: one represents prior knowledge, one ease of learning, one 

ease of guessing the answer and one the probability of slipping. When we find that the 

best fitting parameter set for a particular skill has a high probability of being learned, 

there is a tendency to believe that the data tells us that the skill is easily learned. But that 

interpretation could be misleading. It could be the case that the second-best fit to the data 

indicates a relatively low probability of being learned (with a compensating high 

probability of being initially known, for example). Such a case would not be a concern if 

there is a large difference in the quality of fit between the two parameter sets, but in an 

insensitive parameter space, it is quite possible that the second-best fit is almost as good a 

fit as the first. If that is the case, then what basis do we have for saying that the skill is 
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easily learned (or is more difficult to learn)? If we reduce the search space, it is much 

easier to recognize whether there is a likely second-best fit for the skill that leads to a 

different interpretation. This inability to choose between parameter sets that more-or-less 

fit the data equally well has been called the identifiably problem [2]. 

Supporting interpretation of skill parameters brings us to the point where we can use 

parameter fitting for reasons other than optimizing knowledge tracing. For example, if we 

can depend on the interpretation of the plearn parameter, then we can identify skills that 

are not learned (or learned slowly) within the tutor, which gives us a metric for 

identifying particular skills or units of instruction that could be improved. 

2 Examining the parameter space 

Our data for these explorations comes from 8341 students who used at least one of four 

Cognitive Tutor courses (Bridge to Algebra, Algebra 1, Geometry or Algebra 2) in the 

2007-08 school year. Across these four curricula, there are 2400 skills. 

Our first step was to understand how the fitted parameters cover the knowledge tracing 

parameter space. 

Figure 1: Heat maps showing the distribution of parameters, based on best fits of 2400 skills without 

constraining pguess. Each graph shows the number of skills occupying a particular position in a two-

dimensional cut of the parameter space. Dark blue areas indicate regions of the space where no fits 

were found. Yellow and red show regions where a large number of parameter fits reside. 

Figure 1 shows the results of fitting parameters on all 2400 skills. Each graph shows a 

two-dimensional space, defined by two of the knowledge tracing parameters. Parameters 

were found using an exhaustive search of the space, assuming two decimal places for 

each parameter (i.e. there are 100,000,000 possible parameter sets for each skill). The 

color in the graph indicates how many skills have a best-fitting parameter set in that 
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region of the space. Dark blue spaces indicate areas with no skills. Yellow and red 

indicate areas with a large number of skills. 

Inspection of Figure 1 gives us a good sense of the general shape of the parameter space. 

For example, it is evident that pslip tends to be fairly low for all skills. Skills that are 

judged likely to be known prior to using the tutor (with high pinitial) tend to have 

particularly low pslip values. 

This result is promising for our goal of interpreting parameters. High values of pslip 

would be problematic for interpretation. If pslip exceeds 0.5, that means that the student 

has a greater than 50% chance of getting the item wrong, even if they know the answer. 

While this is logically possible, it would probably indicate a user interface where the 

student’s intent and the student ability to express that intent in the interface are seriously 

compromised. If we can trust the interpretation of these parameters, then the low values 

of pslip that we see may be an indication that users generally are able to follow their 

intentions within the user interface. 

Pguess, however, varies across the range. This is problematic. The meaning of pguess is 

the probability of being able to provide the correct answer, without having knowledge of 

the underlying skill. By this definition, it is hard to see how pguess could be greater than 

0.5, because the interface never presents a case where the correct answer can be guessed 

with greater than a 0.5 probability. The easiest-to-guess cases in the software are ones 

where the student is given a two-alternative choice (0.5 probability), and those are very 

rare. There may be other methods of coming to a correct answer without knowledge, but 

they either assume that the skill model is very poor or that students generally have access 

to a source of answers other than their own knowledge. Baker et. al [1] call models with 

large values of pguess or pslip “degenerate” and also take .5 as the maximum reasonable 

value for these parameters. In practice, when parameters are set initially (prior to student 

use), we tend to fix the pguess parameter based on the type of question the student is 

being asked, with a default setting between 0.2 and 0.3. 

Since part of our goal is to explore the semantics of knowledge tracing parameters, we 

decided to repeat this fit exercise, after constraining pguess to values less than 0.5. Figure 

2 shows the resulting parameter space. Constraining pguess this way amounts to 

searching a space with 1,000,000 possible points (100 values for each of three 

parameters). Despite the reduction in the search space, the parameters cluster even more 

tightly after constraining pguess (that, is, there is more empty deep blue space).  

The relationship between pinitial and plearn may be the most interesting, since those are 

the knowledge (as opposed to performance) parameters. In Figure 2, it is evident that the 

range of plearn values tends to increase as pinitial increases. At high values of pinitial, 

there are skills along the full range of plearn, and there are large clusters of skills at both 

very high and very low plearn values. This follows from the fact that high values of 

pinitial are associated with tasks that have very low error rates. If errors are infrequent, it 

is difficult to tell whether a particular skill is learned easily, since there are few 

observations of a student moving from an unlearned to a learned state. Thus, when 
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pinitial is high, plearn can vary widely. Another way to think about this is to say that 

when pinitial is high, we cannot get a reliable estimate of plearn. 

 

Figure 2: Parameter space with pguess and pslip constrained to be ≤  0.5 

It is also interesting to look at the relationship between pslip and the knowledge 

parameters. Although pslip is always low (as it was in the unconstrained fits), when 

pinitial is high, pslip tends to be particularly low. This finding makes sense under the 

assumption that skills which have been previously learned are well learned and thus 

relatively resistant to careless errors. Skills with both high and low plearn, in contrast, are 

in the process of being learned and thus may lend themselves more readily to slips, as is 

shown in the graph of the tradeoffs between those parameters.  

The fact that so much of the parameter space is not used gives us hope that we will be 

able to find good fits to the student data using a small cluster of parameters. 

3 Clustering 

Building on these preliminary investigations, we set out to find the smallest group of 

parameter sets that could model the data sufficiently well. As a practical matter, we 

wanted to find a small enough number of clusters that we could imagine giving them 

semantically meaningful names (e.g. “not previously known but easy to learn”, “hard to 

learn but easy to guess”, etc.). 
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This approach represents a different solution to the identifiability problem than using 

Dirichlet priors [2]. Instead of biasing our fits based on prior beliefs about reasonable 

parameters, we are fitting the data using only a small number of parameter sets that 

provide a good fit for a large number of skills. Our assumption is that there are likely to 

be only a small number of semantically distinct parameter sets and that we can fit the data 

well using only these few sets. 

In many forms of data analysis, it is assumed that a set of data was generated by some 

finite number of distinct processes (typically Gaussian). Clustering algorithms are a 

family of maximum likelihood estimation procedures for identifying these underlying 

processes from the set of data that they produce. The resulting model for the data consists 

of the set of parameters used to represent the clusters. In the current context, we are not 

attempting to identify the underlying generative processes (which in any event would 

involve complex psychological models), but rather groups of skills which behave the 

same with respect to the best knowledge-tracing representation. In terms of the algorithm, 

this turns out to mean that we are trying to identify groups of skills which project to the 

same regions of the p-parameter space. 

In order to accomplish this, we used a k-means clustering to the fitted skills. K-means [8] 

is an iterative expectation-maximization [5] procedure that represents each cluster as the 

mean point in the parameter space. In the expectation phase, each data point is assigned 

to the closest cluster center. Then, in the maximization phase, each cluster center is 

moved to the mean point of its assigned data points. Starting with k cluster centers 

initialized at random positions throughout the parameter space, k-means converges to its 

final cluster positions in approximately 200-400 iterations. We used a “strict” k-means 

algorithm, in which the assignment of skills to clusters is an all-or-nothing relationship. 

This has the advantage of having a clear stopping condition – if there are no further 

changes in skill-to-cluster assignment, then the cluster means will not change, and the 

model has converged. 

The K-means clustering minimizes the Euclidean distance, in the parameter space, 

between data points and cluster centers. This is differs from the fitting algorithm which 

minimizes the MSE of the predicted pknown, established by the model parameters, to the 

observed student data. Thus, it is possible to force skills into clusters that do not fit well, 

even though the skill is not far from the centroid of the cluster in parameter space. In 

theory it is possible to choose clusters that minimize the MSE to the data, rather than the 

distance in parameter space; in practice, however, this turns out to be computationally 

impractical. One avenue for future work we are looking at is ways to reduce this 

computational load. Since the Euclidean distance is continuous and monotonically 

decreasing everywhere, it is a good approximation so long as the MSE is at least locally 

smooth and decreasing. An informal examination of the MSE-space for a small sample of 

the skills indicated that this was the case, however a more in-depth examination is 

warranted. Using Euclidean distance has the further benefit of producing clusters that are 

non-disjoint in the parameter space. It would be much more difficult to justify the 

semantic relevance of a cluster comprised of two or more non-overlapping regions of the 

parameter space. 
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We initialized this process with k = 50, which converged to 23 distinct non-empty 

clusters. Since the assignment of skills to clusters in this particular variant of k-means is 

an all-or-nothing assignment, it gives the algorithm some freedom to “prune” away 

unnecessary clusters by assigning no data points to them. Essentially this gives the 

algorithm a degree of flexibility in estimating the best number of clusters needed to 

explain the data. Experiments with larger initial numbers of clusters (up to k = 100) also 

consistently resulted in between 20 and 25 non-empty clusters. Although the random 

initialization of cluster centers does introduce some variation in how the clusters 

converge, we found the resulting cluster centers to be very stable.  

4 Interpreting the clusters 

Figure 3 plots the 23 clusters that were found in the parameter space. Each cluster is 

represented by a circle, and the size of the circle is proportional to the number of skills 

that are contained in the cluster. The largest cluster contains 393 skills, and the smallest 

has only a single skill. 

 

Figure 3: Positions of the final 23 clusters in the parameter space superimposed over the heatmaps. 

Each cluster is represented by a circle. The size of the circle is proportional to the number of skills 

contained in the cluster. 

Using the best-fit parameters, the mean squared error (MSE) is 0.1204. Using clustered 

parameters increases MSE slightly, to 0.1245. MSE for the parameters delivered with the 
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software (only some of which were set based on fits to prior years’ data) was 

substantially higher, at 0.187. Clustering with only 23 clusters thus appears to provide a 

very good fit to the data, but it is difficult to understand whether even this small increase 

in MSE has significant effects on the behavior of the system. Since skills are bundled 

within problems, some skills may be presented to students even after the system has 

determined that the student is at mastery. For those skills, the difference between the best 

fit and the clustered fit may amount to nothing. 

Figures 1-3 show a large number of skills with high pinitial. This is not surprising, since 

many Cognitive Tutor sections build on previous work (copying portions of a task while 

adding some new objectives). In these sections, skills may be repeated, and these repeats 

count as new skills within our model. There is little adverse effect of having skills with 

high pinitial; students will be able to master them very quickly, and their ability to master 

sections of the curriculum that contain a large number of skills will depend on those skills 

that do not have high pinitial. This highlights the fact that skills that are mastered quickly 

have little influence on system behavior. The system should be particularly insensitive to 

the behavior of these skills, since problem selection and mastery does not often depend 

on them. 

For this and other reasons, Dickison et. al [6] developed a procedure for “replaying” logs 

of actual student behavior using fitted parameters. This algorithm takes into account skill 

bundling and the problem selection algorithm to determine how many problems each 

student in the dataset would have needed to do if the delivered parameters matched the 

fitted parameters.  Since our goal was to predict performance in the 2008 version of the 

software, we used the 2008 problem selection algorithm (which changed somewhat from 

2007). This necessitated dropping some sections that either incorporated changes to the 

skills tracked between 2007 and 2008 or that were dropped or renamed in 2008. We also 

excluded sections on which we had data from fewer than 10 students. For this reason, 

these analyses include 182 sections with a median of 177 students per section. 

In order to test whether the clustered parameter sets produced substantially different 

system behavior than the best-fit parameter sets, we compared the median number of 

problems that students would need to do under best-fit parameters to the number they 

would need to do under the parameter sets found through clustering. The median problem 

counts per section using best-fit parameters were highly correlated with those using 

clustered parameters (R
2
 = 0.977) suggesting that the changes in parameters made by the 

clustering process are negligible.  The most prominent effect of clustering was that the 

clustered parameters often slightly reduced the change in problem count in relation to 

delivered parameters.  The mean absolute change in median problem count (relative to 

the delivered parameters) was 1.95 for the fitted parameters and 1.63 for the clustered 

parameters. A paired t-test showed a significant difference: t(181) = 3.2, p < 0.01.  This 

may be due to the fact that clustering tends to move parameters away from extreme 

values, bringing them closer to delivered parameters, which generally avoid extremes. 

Another advantage of clustering is to avoid overfitting with smaller amounts of data. To 

test this, we developed 23 new clusters, using 1561 skills and 1312 students. We then 

found the best-fitting cluster for each of the 275 skills that were not used in developing 
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the clusters, using varying numbers of students. We also found best-fitting parameters for 

these 275 skills on the subsets of students and tested the fit with another set of 200 

students. As Figure 4 shows, when there are a small number of students contributing to 

the data, the clusters provide a substantially better fit to the data than the best-fit 

estimates. This provides evidence both that clusters developed with one set of skills will 

generalize to another set and that, with small amounts of student data, clusters can help 

prevent overfitting. 

 

Figure 4: Comparison of clustered vs. best-fit estimates with differing numbers of students 

5 Conclusion 

Previous work has shown that modeling student learning and performance parameters 

based on prior-year student data results in improved system efficiency. This paper 

explored the issue of how sensitive such effectiveness is to the particular sets of 

parameters used. Our results have shown that tutor performance is relatively insensitive 

to the particular parameter sets that are used. We were able to show that, using only 23 

sets of parameters, we could produce virtually the same system behavior as we would see 

if we had used parameters found through exploring the full parameter space. This result 

does not argue against fitting these parameters based on data; rather it suggests that a 

quick estimate of such parameters can be sufficient to produce near-optimal behavior. 

It is worth pointing out that the parameters we are setting act as population parameters, 

which would likely benefit from adjustment for individual differences [1]. Indeed, these 

results may suggest that a more profitable route to accurate student modeling is to focus 

on individual differences, rather than population characteristics. We see clustering as 

complementary to both the Dirichet priors approach [2] and the use of contextual guess 

and slip [1]. 

The fact that we can model student behavior with a very small set of parameters helps us 

to extend the knowledge tracing model beyond simply a mathematical model of student 

behavior; we now have a better chance to interpret individual parameters within the set. 

For any knowledge component, we could calculate the goodness of fit to the data for each 

of the 23 parameter clusters. If we only see a good fit to one cluster, and that cluster has a 
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high plearn parameter, then we can reasonably conclude that that the knowledge 

component is easily learned. Such a conclusion would be computationally expensive to 

reach in the full parameter space since, since we would need to explore a large part of the 

space before we could conclude that there is an almost-as-good fit to the data to be found 

with a low-plearn parameter set. 

Clustering parameters thus provides us a way to quickly examine knowledge components 

and determine which ones are problematic. Knowledge components with low plearn 

might suggest areas where we should refine our instruction. Ones with high pguess or 

high pslip might indicate areas where we need to reconsider the user interface. Ones with 

high pinitial might indicate areas where instruction is unneeded. We are optimistic that 

our work in reducing the parameter space for knowledge tracing will provide us with new 

ways to more quickly and confidently use knowledge tracing parameters to interpret 

student behavior. 

6 References 

[1] Baker, S. J. d., Corbett, A. T. and Aleven, V. More Accurate Student Modeling 

Through Contextual Estimation of Slip and Guess Probabilities in Bayesian Estimation. 

Proceedings of the 9
th

 International Conference on Intelligent Tutoring Systems, 2008, 

pp. 406-415. 

[2] Beck, J. E. and Chang, K. M. Identifyability: A fundamental problem of student 

modeling. Proceedings of the 11th International Conference on User Modeling, 2007, pp. 

137-146. 

[3] Cen, H., Koedinger, K.R., Junker, B. Is Over Practice Necessary? – Improving 

Learning Efficiency with the Cognitive Tutor using Educational Data Mining. In Lucken, 

R., Koedinger, K. R. and Greer, J. (Eds). Proceedings of the 13th International 

Conference on Artificial Intelligence in Education, 2007, pp. 511-518. 

[4] Corbett, A.T., Anderson, J.R. Knowledge Tracing: Modeling the Acquisition of  
Procedural Knowledge. User Modeling and User-Adapted Interaction, 1995, 4, 253-278. 

[5] Dempster, A.P., Laird, N.M., & Rubin, D.B. Maximum Likelihood from incomplete 
data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1), 1-38. 

[6] Dickison, D., Ritter, S., Harris, T. and Nixon, T. A Method for Predicting Changes in 
User Behavior in Cognitive Tutors. Workshop on scalability issues in AIED 2009. 

[7] Harris, T. H., Ritter, S., Nixon, T. and Dickison, D. Hidden-Markov Modeling Methods 
for Skill Learning. Carnegie Learning Technical Report. 2009 

[8] Lloyd, S. P.,  Least Squares Quantization in PCM. IEEE Transactions on Information 
Theory, 1982, 28:129-137 

[9] Ritter, S., Anderson, J.R., Koedinger, K.R., & Corbett, A. The Cognitive Tutor: 

Applied research in mathematics education. Psychonomics Bulletin & Review, 2007, 

14(2), pp. 249-255. 

Educational Data Mining 2009

160


