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Reducing the mean squared error of quantile-based

estimators by smoothing

Mia Hubert, Irène Gijbels and Dina Vanpaemel

May 2, 2012

Abstract

Many univariate robust estimators are based on quantiles. As already theoret-

ically pointed out by Fernholz (1997), smoothing the empirical distribution func-

tion with an appropriate kernel and bandwidth can reduce the variance and mean

squared error (MSE) of some quantile-based estimators in small data sets. In this

paper we apply this idea on several robust estimators of location, scale and skew-

ness. We propose a robust bandwidth selection and bias reduction procedure. We

show that the use of this smoothing method indeed leads to smaller MSEs, also at

contaminated data sets. In particular we obtain better performances for the med-

couple which is a robust measure of skewness that can be used for outlier detection

in skewed distributions.

1 Introduction

The goal of this paper is to construct methods for reducing the variance and the mean

squared error (MSE) of different univariate robust estimators that are based on quantiles.

In order to achieve this goal, the estimators are based on a kernel smoothed distribution

function instead of the empirical distribution function. Smoothing the empirical distribu-

tion function is in particular advantageous in case of an underlying continuous distribution

function. The first proposals to use kernel smoothing for distribution estimates date back

to Nadaraya (1964) and Azzalini (1981). As usual, an appropriate choice of the bandwidth

is of major importance, as over- or undersmoothing highly affects the bias and variance of
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the estimators. It is shown by Fernholz (1997) that smoothing the empirical distribution

function with an appropriate kernel and bandwidth can reduce the variance and MSE of

estimators. This is most beneficial for estimators with a discontinuous influence function.

They include the median for location, the interquartile range (IQR) for scale and the

medcouple (MC) for estimating skewness (Brys et al., 2004). As the medcouple is very

useful for outlier detection in skewed data (Hubert and Vandervieren, 2008; Hubert and

Van der Veeken, 2008, 2010) it is our particular interest to reduce its MSE at small data

sets. Our work is also motivated by the nonparametric regression method proposed in

Čıžek et al. (2008), which is based on smoothing the conditional distribution function.

In Section 2, the different estimators under study are defined. Our robust bandwidth

selection procedure is explained in Section 3, and a method to reduce the bias of the

smoothed estimators is introduced in Section 4. The performance of this robust band-

width selection and of the bias reduction is studied in a simulation study in Section 5.

Section 6 focusses on the medcouple, more specificially we study how often the medcou-

ple, estimated on data from a positively skewed distribution, yields a positive number,

and how smoothing improves the percentage of positive estimates. We also show that

the smoothing procedure improves the ability to detect outliers with the adjusted box-

plot (Hubert and Vandervieren, 2008), which uses the medcouple. In Section 7 this is

illustrated on European international trade data, and finally Section 8 concludes.

2 Smoothing procedure

Let Xn = {x1, x2, . . . , xn} be an independent and identically distributed random sample

drawn from an absolutely continuous distribution function F (x) with density f(x). The

population quantile function is defined as

Qp = inf {x : F (x) > p} (0 < p < 1).

Accordingly, the empirical quantile is given by

Q̂p = inf {x : Fn(x) > p} (1)

with Fn(x) the empirical distribution function

Fn(x) =
1

n

n∑

i=1

I(x 6 xi)
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with I(.) the indicator function.

As a location estimator we will study the sample median medn of Xn:

medn =





(x(n
2
) + x(n

2
+1))/2 if n is even

x(n+1

2
) if n is odd

where x(i) denotes the i-th order statistic of Xn. Note that for n odd, medn coincides

with Q̂0.5, whereas for n even, medn = 1
2
(Q̂lm + Q̂um) with lm = 1

n

(
n
2

)
= 0.5 and

um = 1
n

(
n
2

+ 1
)
. For a scale estimator we look at the interquartile range

IQRn = Q̂0.75 − Q̂0.25.

To robustly estimate skewness, we consider the quartile skewness QSn and octile skewness

OSn (Brys et al., 2003):

QSn =
(Q̂0.75 − medn) − (medn − Q̂0.25)

Q̂0.75 − Q̂0.25

and

OSn =
(Q̂0.875 − medn) − (medn − Q̂0.125)

Q̂0.875 − Q̂0.125

.

We also study the medcouple (Brys et al., 2004) defined as:

MCn = med
xi<medn<xj

g(xi, xj) (2)

where for all xi 6= xj, the function g is given by:

g(xi, xj) =
(xj − medn) − (medn − xi)

xj − xi

. (3)

As all the above mentioned estimates are based on quantiles, it follows from (1) that they

can be computed from the empirical c.d.f. Fn(x). Since Fn(x) is discontinuous with (at

most) n discontinuity points, it is not a very good estimator of the underlying continuous

c.d.f. F (x) when the sample size is small. To estimate the distribution function F in a

smoother way, we can use the (continuous) kernel-based estimator (Nadaraya, 1964):

F̃n,h(x) =
1

n

n∑

i=1

K

(
x − xi

h

)

with K(t) a distribution function having a density k(t) that is symmetric around zero and

h a bandwidth that controls the degree of smoothness. Since the choice of K is much less
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important than the choice of a suitable bandwidth, we will only consider the integral of

the Epanechnikov kernel, which is given by

K(t) =





0 t 6 −
√

5

3
4
√

5
t − 1

20
√

5
t3 + 1

2
|t| <

√
5

1 t >
√

5.

Under the condition that F (x) has continuous derivatives f(x) and f ′(x), it can be

shown (Azzalini, 1981) that as n → ∞, h → 0 and nh → +∞

E(F̃n,h(x)) = F (x) +
1

2
h2f ′(x)µ2(k) + o(h2) (4)

and

Var(F̃n,h(x)) =
F (x)(1 − F (x))

n
− 2hf(x)c

n
+ o

(
h

n

)
(5)

where µ2(k) =
∫ +∞
−∞ t2k(t)dt and c =

∫ +∞
−∞ tk(t)K(t)dt. For the Epanechnikov kernel, it

holds that µ2(k) = 1 and c = 0.2875.

Based on the smoothed c.d.f. F̃n,h(x) we can consider the quantiles, which we denote by

Q̃p,n,h, for each 0 < p < 1. To simplify the notation, we will mostly omit the dependence

of the smoothed quantiles on the sample size and the bandwidth and just denote them

by Q̃p. To compute these quantiles in practice, the smoothed distribution function is

computed in 200 equidistant points in the range of the data [xmin, xmax]. Then an extra

grid point xmin − (xmax − xmin)/199 is added for which F̃n,h(x) is set to zero, as well as a

grid point xmax + (xmax − xmin)/199 for which we set F̃n,h(x) = 1. The desired quantile

Q̃p is then obtained by linear interpolation.

The smoothed version of medn is defined by Q̃0.5. For the skewness measures QSn

and OSn we replace all the quantiles in their definition by the corresponding smoothed

quantiles. The resulting estimators are denoted as Q̃0.5, Q̃Sn and ÕSn. For the compu-

tation of the IQR and the medcouple, the smoothed quantiles are computed on a grid of

m = 2n − 1 equidistant percentages between 0 and 1. These quantiles can be considered

as a new artificial sample on which the original IQR and medcouple are computed. More

precisely, these smoothed estimators ĨQRn = ĨQR(Xn) and M̃Cn = M̃C(Xn) are defined

as ĨQR(Xn) = IQRm(Ym) and M̃C(Xn) = MCm(Ym) with

Ym =
{

Q̃j/2n; j = 1, 2, . . . , 2n − 1
}

.
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Note that we only consider m = 2n−1 quantiles since simulations have shown that taking

more quantiles did not change the MSE significantly and only resulted in an increase in

computation time.

Remark 1 An alternative for a smoothed IQR would be the straightforward formula

Q̃0.75 − Q̃0.25, but simulation results showed that this estimator has a larger bias than the

proposed ĨQRn.

Remark 2 For the medcouple, we could alternatively replace the sample median medn

in (2) and (3) by the smoothed median Q̃0.5 (Van der Veeken, 2010). This estimator,

however providing satisfying results in our simulation study, was always outperformed by

the smoothed medcouple M̃Cn. It is also possible to replace the median of the g(xi, xj)

values in (2) by their smoothed median. However, this has a very small influence on the

MSE of MCs since the number of g(xi, xj)-values is large (O(n2)) and their smoothed

median is almost similar to their finite-sample median. Moreover, this would involve

another smoothing procedure and an additional choice of the bandwidth.

3 Data-driven bandwidth selection

In this section we propose a data-driven procedure to estimate the bandwidth. As all the

quantile-based estimators considered in this paper are robust against outliers we also aim

to construct a bandwidth selection method that can cope with possible outliers in the

data.

From (4) and (5) we deduce that increasing the bandwidth results in a smaller variance

but also in an increase in absolute bias. Hence it is common practice to use the mean

integrated squared error (MISE) as a global measure of performance. The MISE is defined

as

MISE(h) = E

∫ +∞

−∞
(F̃n,h(x) − F (x))2dx.

An optimal smoothing parameter can then be defined as the value that minimizes this

MISE. From (4) and (5) it follows for the Epanechnikov kernel that asymptotically, if

n → ∞, h → 0 and nh → ∞

AMISE(h) =

∫ +∞
−∞ F (x)(1 − F (x))dx

n
− 2hc

n
+

h4R

4
+ o(h4) (6)
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where R is the roughness of f(x):

R =

∫ +∞

−∞
(f ′(x))2dx.

Ignoring the last term in (6), the AMISE is then minimized by setting h equal to

h0 =

(
2c

R

)1/3

n−1/3. (7)

Since the optimal bandwidth is inverse proportional to the roughness R, it holds that the

less rough the distribution is, the larger the optimal bandwidth will be.

The optimal asymptotic MISE is then given by

AMISE(h0) =

∫ +∞
−∞ F (x)(1 − F (x))dx

n
− 3c4/3

41/3n4/3R1/3
(8)

which is lower than that of the empirical distribution function, which is equal to the

first term of expression (8). The improvement over the empirical distribution function

disappears as n → ∞ at a rate of n−4/3. This suggests that smoothing with the optimal

bandwidth results in a considerable improvement in AMISE in case of small samples.

Moreover the improvement is inverse proportional to the roughness R. This means that

smaller gains are expected for rough density functions.

From equation (7) it follows that the optimal bandwidth depends on the unknown

roughness R. To estimate R we use that

R = −
∫ +∞

−∞
f (2)(x)f(x)dx = −E

(
f (2)(X)

)

with f (2)(x) the second derivative of the density function f(x). This implies that we can

estimate R as

R̂ = − 1

n

n∑

i=1

f̃ (2)(xi) (9)

where f̃ (2)(x) is an appropriate estimate of f (2)(x). In our framework it is quite natural to

estimate f (2)(x) based on a kernel density estimate (see also Delaigle and Gijbels (2002)).

Since f(x) can be estimated using the Epanechnikov kernel:

f̃(x) =
1

hdn

n∑

i=1

k

(
x − xi

hd

)
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with hd an optimal bandwidth for density estimation, estimators for the first derivative

f ′(x) and second derivative f (2)(x) are given by

f̃ ′(x) =
1

h2
dn

n∑

i=1

k′

(
x − xi

hd

)
(10)

and

f̃ (2)(x) =
1

h3
dn

n∑

i=1

k(2)

(
x − xi

hd

)
(11)

which can be computed analytically. It is common practice to use a plug-in band-

width (Silverman, 1986)

hd = 2.34 min

(
σ̂n,

IQRn

1.349

)
n−1/5 (12)

with σ̂n the sample standard deviation.

The use of the IQRn in (12) makes this bandwidth more robust towards outliers than if

we would only use the standard deviation. We propose to use the Qn estimator (Rousseeuw

and Croux, 1993) instead, as it is an even more robust estimator of scale, with a breakdown

value of 50% and a better efficiency at the normal model. This Qn estimator roughly

consists of the 25% quantile of all pairwise differences between two data points. Also

asymptotic and finite-sample correction factors have been derived in order to make the

estimator unbiased at normal samples. We thus use as bandwidth for estimating the

density

hd = 2.34 min (σ̂n, Qn) n−1/5. (13)

Note that in Zhang and Wang (2009), another robust scale estimator is proposed which

also considers a quantile of differences between two data points, but only a restricted set

of differences are considered. We prefer to use the Qn estimator, because of its known

robustness properties, its high effciency at the normal model (82% versus 37% for the

IQR), its common use in many robust procedures, and its free availability in statistical

software such as R and Matlab.

Based on hd, we then estimate the roughness using (9) and (11) and plug in R̂ in (7),

which yields

hF =

(
2c

R̂

)1/3

n−1/3. (14)
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Remark 3 We also investigated whether a cross-validation approach would be appro-

priate to select the optimal bandwidth (Van der Veeken, 2010). In particular we studied

whether minimizing the cross-validation criterion (Bowman et al. (1998))

1

n

n∑

i=1

Dxi
(h) =

1

n

n∑

i=1

∫
[I(x − xi) − F̃n,h;−i(xi)]

2dx

where F̃n,h;−i(x) is the kernel estimator computed with bandwidth h by leaving out xi,

could be used in this setting. However we found that this approach is computationally

much more demanding, and it did not yield better results.

4 Reducing the bias

Expression (4) indicates that the bias of F̃n,h depends on f ′(x). For a unimodal distribu-

tion, f ′(x) is positive for x-values smaller than the mode, and negative for x-values larger

than the mode. This suggests that the bias will be positive for the smaller x-values and

negative for the larger x-values. This can be seen on Figure 1(a) and its detailed plot

Figure 1(b) where the black solid line represents the population distribution function of

a Gamma distribution Γ(α, β) with shape parameter α = 2 and scale parameter β = 1.

Note that the density function of a Γ(α, β)-distribution is given by

f(x; α, β) = xα−1 e−x/β

Γ(α)βα
for x > 0 and α, β > 0

with Γ(x) the Gamma-function. The step function in Figure 1(a) is the empirical distri-

bution function based on a random sample of 100 observations, whereas the dashed blue

line is the smoothed distribution function F̃n,h(x) with the bandwidth computed follow-

ing (14). From Figure 1 we see that the 75th percentile is typically overestimated and

the 25th percentile underestimated, so that for the smoothed IQR a double bias effect

occurs. The population IQR is indicated by the bottom double arrow. The smoothed

IQR is shown by the middle double arrow and is clearly larger. When 10% contamination

is added by replacing 10% of the data by outliers coming from a N(30, 1)-distribution,

the bias is much larger as can be seen on Figures 1(c) and (d). Also notice that the

smoothing procedure still yields an estimated c.d.f. which is close to the empirical c.d.f.,

but this empirical c.d.f. is quite different from the population c.d.f.
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Figure 1: Population (solid black line), robustly smoothed (dashed blue line) and robustly

bias-reduced smoothed (solid green line) Γ(2, 1)-c.d.f., based on a sample of 100 observa-

tions (a) without outliers; (c) with 10% outliers coming from a N(30, 1)-distribution; (b)

Detail of (a); (d) Detail of (c).

To reduce this bias, we reconsider equation (4). Since the bias of F̃n,h(x) equals

1
2
h2f ′(x)µ2(k) + o(h2), we consider

˜̃Fn,hF
(x) = F̃n,hF

(x) − 1

2
h2

F f̃ ′(x)µ2(k)

with f̃ ′(x) computed as in (10), and F̃n,hF
(x) estimated as described in Section 3. Re-

ducing the bias however implies subtracting a possibly positive term from the estimated

c.d.f., so ˜̃Fn,hF
(x) is not guaranteed to be nondecreasing for all x. Hence, in those intervals

(defined by the grid points in which the c.d.f. is computed) where ˜̃Fn,hF
(x) is decreasing,
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we use linear interpolation between the two closest endpoints [a, b] for which ˜̃F (b) >
˜̃F (a)

to ensure a nondecreasing c.d.f. estimate. This yields our robust bias-reduced c.d.f. esti-

mator (still denoted as ˜̃Fn,hF
(x)), which in Figure 1 is indicated by a solid green line. We

see that it indeed reduces the bias of the resulting IQR estimator, especially at contam-

inated samples. This bias reduction was also beneficial for the other quantile estimators

under study, so in the following we only report the results for this smoothing procedure.

It is important to notice that all the steps in the procedure to compute ˜̃Fn,hF
(x) ensure

affine equivariance of the estimated quantiles, i.e. for every data set Xn = {x1, . . . , xn},
every c > 0 and d ∈ R it holds that θ̂(cXn + d) = cθ̂(Xn) + d with θ̂ any estimated

quantile. Consequently it holds that the smoothed location and scale estimators Q̃0.5 and

ĨQRn are affine equivariant, and the smoothed skewness estimators Q̃Sn, ÕSn and M̃Cn

are affine invariant (just as their empirical versions).

5 Simulation study

In order to illustrate the reduction in variance and MSE of the different quantile-based

estimators, we performed a simulation study on different Gamma distributions. In par-

ticular we considered random samples of size n = 100 from Gamma distributions with

scale parameter β = 1, and shape parameters α = 2, 5, 10. Note that increasing the

shape parameter makes the distribution more symmetric. We also considered contami-

nated samples. Data sets with ‘left’ contamination have 5% or 10% outliers generated

from a N(−5, 1)-distribution, whereas ‘right’ contamination is generated from a N(30, 1)-

distribution. We will only report the results in case of 5% outliers, since the results in

case of 10% contamination are very comparable.

All simulations are repeated 500 times and the average estimated bias, variance and

mean squared error of the different estimators are tabulated. We consider both the em-

pirical estimators medn, IQRn, QSn, OSn and MCn (the latter being part of the Matlab

toolbox LIBRA (Verboven and Hubert, 2005) and the library robustbase in R) as well as

their smoothed variants, using the robust data-driven bandwidth described in Section 3

and by reducing the bias of the smoothed c.d.f. as described in Section 4. The population

values of most estimators are difficult to compute analytically. Therefore, they are de-

termined as the average over 100 random samples of size 50000 in case of the medcouple

10



distribution contamination estimator bias variance MSE

Γ(2, 1) no medn 0.0133 0.0243 0.0244

Q̃0.5 0.0379 0.0199 0.0213

5% left medn -0.0689 0.0238 0.0285

Q̃0.5 -0.0323 0.0193 0.0203

5% right medn 0.1026 0.0272 0.0376

Q̃0.5 0.1736 0.0210 0.0511

Γ(5, 1) no medn 0.0068 0.0719 0.0718

Q̃0.5 0.0326 0.0550 0.0560

5% left medn -0.1329 0.0701 0.0876

Q̃0.5 -0.1015 0.0536 0.0638

5% right medn 0.1456 0.0763 0.0974

Q̃0.5 0.2095 0.0577 0.1015

Γ(10, 1) no medn 0.0022 0.1628 0.1625

Q̃0.5 0.0196 0.1389 0.1390

5% left medn -0.1969 0.1605 0.1990

Q̃0.5 -0.1804 0.1388 0.1711

5% right medn 0.1998 0.1788 0.2184

Q̃0.5 0.2372 0.1487 0.2047

Table 1: Bias, variance and MSE of the median and the smoothed median at different

Gamma distributions.

and numerically calculated using a Newton-Raphson approximation with the standard

Matlab function gaminv for all other estimators.

5.1 Location and scale estimators

We first report the results for the median in Table 1 and for the IQR in Table 2. To

simplify notations, we denote the estimated median and IQR based on ˜̃Fn,hF
(x) again as

Q̃0.5 resp. ĨQRn. From Table 1 we can see that the smoothing procedure for the median

slightly reduces the variance and the MSE compared to the empirical median in almost

all situations. Also for the IQR the smoothed estimator reduces the variance and MSE

as can be seen from Table 2, although rather slightly.

Overall we can conclude that for the median and the IQR the smoothing is not really
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distribution contamination estimator bias variance MSE

Γ(2, 1) no IQRn -0.0101 0.0484 0.0484

ĨQRn -0.0019 0.0338 0.0338

5% left IQRn 0.0294 0.0461 0.0469

ĨQRn 0.0793 0.0340 0.0402

5% right IQRn 0.1822 0.0601 0.0932

ĨQRn 0.2283 0.0367 0.0888

Γ(5, 1) no IQRn -0.0006 0.1262 0.1260

ĨQRn 0.0253 0.0920 0.0924

5% left IQRn 0.1002 0.1317 0.1415

ĨQRn 0.1969 0.0908 0.1294

5% right IQRn 0.2392 0.1467 0.2037

ĨQRn 0.3623 0.0963 0.2274

Γ(10, 1) no IQRn -0.0049 0.2580 0.2575

ĨQRn 0.0368 0.1965 0.1965

5% left IQRn 0.1903 0.2663 0.3020

ĨQRn 0.1711 0.2602 0.2675

5% right IQRn 0.3299 0.2826 0.3909

ĨQRn 0.4088 0.2168 0.3835

Table 2: Bias, variance and MSE of the IQR and the smoothed IQR at different Gamma

distributions.

harmful, but neither extremely helpful for reducing the MSE.

5.2 Skewness estimators

For the estimators of skewness the situation is different. The simulation results in Ta-

bles 3, 4 and 5 show that a considerable reduction in variance and MSE is achieved by

the smoothed skewness estimators. Only in one specific situation (Γ(2, 1) with 5% left

contamination) the MSE of the ÕSn is slightly larger compared to OSn.

We also show the effect of smoothing the medcouple on smaller and larger sample

sizes. The results for a Γ(5, 1)-distribution are shown in de boxplots in Figure 2. The

left (blue) boxplot in Figure 2(a) shows the MCn estimates for 500 data sets, and the

right (green) boxplot its smoothed counterpart for sample sizes 25, 50, 100, 250 and 500.
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distribution contamination estimator bias variance MSE

Γ(2, 1) no QSn -0.0162 0.0182 0.0185

Q̃Sn -0.0283 0.0044 0.0052

5% left QSn -0.0272 0.0185 0.0193

Q̃Sn -0.0545 0.0028 0.0057

5% right QSn 0.0128 0.0179 0.0181

Q̃Sn -0.0393 0.0013 0.0028

Γ(5, 1) no QSn -0.0064 0.0189 0.0189

Q̃Sn -0.0164 0.0047 0.0050

5% left QSn -0.0260 0.0186 0.0193

Q̃Sn -0.0413 0.0031 0.0048

5% right QSn 0.0223 0.0180 0.0185

Q̃Sn -0.0006 0.0019 0.0019

Γ(10, 1) no QSn -0.0009 0.0176 0.0176

Q̃Sn -0.0045 0.0073 0.0073

5% left QSn -0.0242 0.0180 0.0185

Q̃Sn -0.0286 0.0062 0.0070

5% right QSn 0.0325 0.0174 0.0184

Q̃Sn 0.0234 0.0058 0.0063

Table 3: Bias, variance and MSE of the Quantile Skewness and the smoothed Quantile

Skewness at different Gamma distributions.

Also the population value for the medcouple (0.136) is shown by the red horizontal line.

In all cases, it can be noticed that the variability of the smoothed medcouples decreases

a lot compared to the empirical ones, whereas the median stays close to the population

value (although with a small negative bias), which makes the smoothed estimates more

reliable. In Figure 2(b) 5% of the data has been replaced with data coming from a

N(30, 1)-distribution. Here we see that the variability and the bias decreases, which is in

line with the numerical output from Table 5.

Table 6 shows the average computation times (in seconds) over 500 simulations of the

empirical and smoothed medcouple for different values of n. Although the computation

time for M̃Cn is considerably larger than for MCn, it is still very reasonable for all n.
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distribution contamination estimator bias variance MSE

Γ(2, 1) no OSn -0.0353 0.0105 0.0117

ÕSn -0.0421 0.0053 0.0071

5% left OSn -0.0604 0.0106 0.0142

ÕSn -0.1051 0.0043 0.0153

5% right OSn 0.0310 0.0103 0.0113

ÕSn -0.0303 0.0038 0.0047

Γ(5, 1) no OSn -0.0333 0.0115 0.0126

ÕSn -0.0253 0.0050 0.0056

5% left OSn -0.0789 0.0116 0.0178

Q̃Sn -0.0817 0.0041 0.0108

5% right OSn 0.0387 0.0103 0.0118

ÕSn 0.0216 0.0035 0.0040

Γ(10, 1) no OSn -0.0297 0.0107 0.0116

ÕSn -0.0076 0.0065 0.0065

5% left OSn -0.0804 0.0105 0.0169

ÕSn -0.0590 0.0060 0.0095

5% right OSn 0.0373 0.0105 0.0119

ÕSn 0.0576 0.0063 0.0096

Table 4: Bias, variance and MSE of the Octile Skewness and the smoothed Octile Skewness

at different Gamma distributions.

6 Properties of the smoothed medcouple

The medcouple is very useful for the analysis of skewed data. In this Section we focus

on a few properties of the smoothed medcouple M̃Cn and compare it to the empirical

medcouple MCn. First we discuss how often the estimators return a positive value when

estimating the medcouple for a positively skewed distribution, and next we compare the

outlier detection capacity of the adjusted boxplot (Hubert and Vandervieren, 2008) when

the empirical and the smoothed medcouple and quantile estimators are used.
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distribution contamination estimator bias variance MSE

Γ(2, 1) no MCn -0.0102 0.0119 0.0120

M̃Cn -0.0353 0.0037 0.0049

5% left MCn -0.0599 0.0133 0.0169

M̃Cn -0.1045 0.0024 0.0133

5% right MCn 0.0335 0.0119 0.0130

M̃Cn -0.0320 0.0017 0.0027

Γ(5, 1) no MCn -0.0013 0.0126 0.0126

M̃Cn -0.0196 0.0036 0.0039

5% left MCn -0.0549 0.0134 0.0164

M̃Cn -0.0774 0.0026 0.0086

5% right MCn 0.0513 0.0122 0.0148

M̃Cn 0.0121 0.0019 0.0020

Γ(10, 1) no MCn 0.0040 0.0119 0.0119

M̃Cn -0.0057 0.0050 0.0050

5% left MCn -0.0511 0.0116 0.0142

M̃Cn -0.0596 0.0044 0.0079

5% right MCn 0.0602 0.0127 0.0163

M̃Cn 0.0417 0.0043 0.0060

Table 5: Bias, variance and MSE of the medcouple and the smoothed medcouple at

different Gamma distributions.

estimator n = 25 n = 50 n = 100 n = 250 n = 500

MCn 0.0002 0.0003 0.0006 0.0008 0.0017

M̃Cn 0.0089 0.0105 0.0128 0.0204 0.0321

Table 6: Average computation times (in seconds) for the empirical and smoothed med-

couple for a Γ(5, 1) distribution.

6.1 Positive skewness

Since the medcouple is a measure of skewness, one would expect it to be positive for

positively skewed distributions such as Gamma distributions. For a Γ(α, β)-distribution,

the third standardized moment is given by 2√
α

(and hence always positive). So the smaller

α is, the more skewed the distribution, and the more estimates of the medcouple we expect

15



(a) (b)

Figure 2: Boxplots of the empirical (left, blue) and smoothed (right, green) medcouple

for different sample sizes, and the population medcouple (red horizontal line) for a Γ(5, 1)

distribution (a) without outliers, and (b) with 5% right contamination.

to be positive. We simulated 500 data sets of size 100 coming from a Γ(2, 1), Γ(5, 1) and

Γ(10, 1)-distribution with and without 5% left and right contamination as in Section 5.

In Table 7 we report the proportion of positive values attained by the empirical MCn and

the smoothed M̃Cn at these 500 data sets.

For the very skewed Γ(2, 1)-distribution, both MCn and M̃Cn have a high percentage

of positive estimates, which drops a bit when 5% left contamination is added for MCn,

but hardly for M̃Cn. Note that the population medcouple is equal to 0.223. It can be

noticed from Table 7 that M̃Cn performs better since it always provides more positive

estimates than MC.

The Γ(5, 1)-distribution is a little more symmetric, but still fairly skewed with a popu-

lation medcouple of 0.136. As expected we see from Table 7 that the percentage of positive

estimates for the medcouple is lower than for the Γ(2, 1)-distribution. It is mainly sen-

sitive to left contamination, but in all situations considered, M̃Cn takes more positive

values than MCn.

The Γ(10, 1)-distribution is almost symmetric, with a population medcouple of 0.095.

In this case, both estimators yield a lower percentage of positive estimates, again mainly
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distribution contamination
proportion of positive estimates

MCn M̃Cn

Γ(2, 1) no 0.976 1

5% left 0.916 0.998

5% right 0.982 1

Γ(5, 1) no 0.898 0.974

5% left 0.782 0.882

5% right 0.954 1

Γ(10, 1) no 0.804 0.886

5% left 0.662 0.706

5% right 0.914 0.980

Table 7: Proportion of positive estimates for the medcouple and the smoothed medcouple

at different Gamma distributions.

when 5% left contamination is added. Also in this situation the sign of the medcouple is

more often estimated correctly by M̃Cn than by MCn.

6.2 Outlier detection

One of our motivations to study smoothed variants of the medcouple is to increase the

ability of detecting outliers at skewed distributions. In Hubert and Vandervieren (2008);

Hubert and Van der Veeken (2008, 2010) it was shown how the medcouple can be used

to detect outliers in univariate and multivariate data, and how this also improves the

classification of skewed multivariate data. Here, we focus on the detection of univariate

skewed data. Outliers can be flagged as those observations that exceed the whiskers of

the adjusted boxplot (Hubert and Vandervieren, 2008). When MCn > 0 they are defined

as

Q̂0.25 − 1.5 exp(−4MCn)IQRn and Q̂0.75 + 1.5 exp(3MCn)IQRn. (15)

For left-skewed distributions, the whiskers are analogously given by

Q̂0.25 − 1.5 exp(−3MCn)IQRn and Q̂0.75 + 1.5 exp(4MCn)IQRn. (16)

To illustrate that a more accurate outlier detection procedure can be achieved by using

the smoothed estimators, we consider 500 samples of 45 observations from a Γ(2, 1), a
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Γ(5, 1) and a Γ(10, 1)-distribution to which 5 outliers are added. This setup thus corre-

sponds to a quite small data set with 10% contamination. The outliers are sampled from

a N(µ, 1)-distribution, with µ ranging in 21 steps from µ0 to µ0 +20. For the shape α = 2

we take µ0 = 15, for α = 5 we use µ0 = 25, whereas for α = 10 we set µ0 = 35. Doing

so, the contamination is roughly placed at the same distance to the center of the data for

the three distributions.

For each sample we compute the whiskers of the adjusted boxplot as in (15) and (16).

Observations that exceed the whiskers are flagged as outliers. Next, we do the same by

replacing all estimates Q̂0.25, Q̂0.75, IQRn and MCn by their smoothed variants. In Figure 3

we show the sensitivity and specificity of both outlier detection rules. The sensitivity is

defined as the average percentage of observations that are correctly flagged as outliers.

The specificity indicates the average percentage of regular observations that are correctly

classified as such.
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Figure 3: (a) Sensitivity and (b) specificity to outlier detection based on the adjusted

boxplot computed with the empirical quantiles and the empirical medcouple, and with

the smoothed quantiles and smoothed medcouple.

We see that smoothing the distribution function considerably increases both the sensi-

tivity and the specificity at all distributions. Comparable results were obtained at different

sample sizes and amounts of contamination.
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7 Real data example: EU international trade data

In the Joint Research Centre of the European Commission, EU international trade data

are analyzed for different purposes, in particular for detecting Customs frauds that are

relevant for the budget of the EU. We do not have the raw data at our disposal, but

some intermediate data that are used to robustly estimate a sort of import price for each

Member State. Such fair prices are used for several purposes, and for one purpose fair

prices which are abnormal need to be highlighted.

In a first example we look at import prices in 23 different EU countries. The histogram

in Figure 4 shows that the data are right skewed with possibly two outliers on the right.
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Figure 4: Histogram of import prices into 23 EU countries for the first example.

We first consider the adjusted boxplot for which empirical quantiles and the empirical

medcouple (with a value of 0.2909) is used. The boxplot in Figure 5(a) shows that both

the smallest and largest observation surpass the whiskers, indicating them as possible

outliers. The boxplot based on the smoothed medcouple (with smaller value 0.1226) and

smoothed quantiles (Figure 5(b)) however shows no data beyond the left whisker, and

indicates the two largest observations as possible outliers, which is more consistent with

the histogram of the data.

In a second example, we analyze a different set of fair import prices in 23 EU countries.

The histogram in Figure 6 may suggest that the distribution of the import prices is slightly

right skewed with two outliers on the left, and also the adjusted boxplot in Figure 7(a)

shows two observations below the lower whisker (based on an estimated medcouple of

0.1083). The smoothed adjusted boxplot shows a more symmetric distribution, without
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Figure 5: Adjusted boxplot for the import prices of the first example based on (a) empirical

quantiles and medcouple; (b) smoothed quantiles and smoothed medcouple.

any outliers and a smoothed medcouple of 0.0846. Although we do not know which

representation of the data is the most accurate, we see that the smoothed version yields

a more conservative (i.e. a more symmetric) result. This seems plausible as the ’outliers’

are not very much separated from the other data points.
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Figure 6: Histogram of import prices into 23 EU countries for the second example.

8 Conclusion

In this work, we presented a robust method to reduce the MSE of quantile-based esti-

mators like the median, the IQR, the quantile and octile skewness and the medcouple,
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Figure 7: Adjusted boxplot for the import prices for the second example based on (a)

empirical quantiles and medcouple; (b) smoothed quantiles and smoothed medcouple.

by robustly smoothing the empirical c.d.f. and reducing the bias of this smoothed c.d.f.

The proposed procedure yields affine equivariant location and scale estimators, and affine

invariant skewness estimators.

Simulation results show that the estimators based on the smoothed c.d.f. indeed show

a reduced MSE compared to the empirical estimates. Also the variance of the smoothed

estimators is smaller than their empirical counterparts, and in some cases they show a

smaller bias as well.

In particular we focussed on the medcouple. Smoothing the medcouple decreases its

variance, especially for small sample sizes, without seriously increasing the bias. In addi-

tion we can conclude that the smoothed medcouple returns more positive estimates in case

of a positively skewed distribution than the empirical medcouple. Used in combination

with the adjusted boxplot, the smoothed estimators yield a higher sensitivity to outliers

and a better specificity. We also compared the smoothed adjusted boxplot to the original

one using two real data examples, and noticed that the smoothed adjusted boxplot seems

to represent the data better.

Even though smoothing somewhat increases the computation time, we feel that the

improvement in MSE is worth the effort, especially at small sample sizes where the compu-

tational complexity is less of an issue. The programs for computing the smoothed estima-

tors, as well as the smoothed adjusted boxplot, will be made available in LIBRA (Verboven
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and Hubert, 2005).
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