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ABSTRACT In preoperative imaging, the demarcation of rectal cancer with magnetic resonance images
provides an important basis for cancer staging and treatment planning. Recently, deep learning has greatly
improved the state-of-the-art method in automatic segmentation. However, limitations in data availability
in the medical field can cause large variance and consequent overfitting to medical image segmentation
networks. In this study, we propose methods to reduce the model variance of a rectal cancer segmentation
network by adding a rectum segmentation task and performing data augmentation; the geometric correlation
between the rectum and rectal cancer motivated the former approach. Moreover, we propose a method to
perform a bias-variance analysis within an arbitrary region-of-interest (ROI) of a segmentation network,
which we applied to assess the efficacy of our approaches in reducing model variance. As a result, adding
a rectum segmentation task reduced the model variance of the rectal cancer segmentation network within
tumor regions by a factor of 0.90; data augmentation further reduced the variance by a factor of 0.89.
These approaches also reduced the training duration by a factor of 0.96 and a further factor of 0.78,
respectively. Our approaches will improve the quality of rectal cancer staging by increasing the accuracy
of its automatic demarcation and by providing rectum boundary information since rectal cancer staging
requires the demarcation of both rectum and rectal cancer. Besides such clinical benefits, our method also
enables segmentation networks to be assessed with bias-variance analysis within an arbitrary ROI, such as
a cancerous region.

INDEX TERMS Bias-variance analysis, data augmentation, image segmentation, magnetic resonance
imaging (MRI), multi-task learning, neural networks, rectal cancer segmentation, rectum segmentation.

I. INTRODUCTION

Globally, colorectal cancer is the third most common can-
cer and the second leading cause of cancer mortality [1].
Specifically, colorectal cancer was the most commonly diag-
nosed cancer in Korea in 2017, with 27,837 new cases [2].
The global burden of colorectal cancer is rising rapidly and is
expected to increase by 60% by 2030 [3].

Depending on the cancer site, colorectal cancer can be
defined as colon cancer or rectal cancer [1]. The Union
for International Cancer Control’s TNM Classification of
Malignant Tumors (8th edition) categorizes rectal cancer as
a tumor starting in the rectum, i.e., the last 12 centime-
ters of the colon [4]. The T-categorization of rectal cancer,
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a widely used rectal cancer staging criterion, pathologically
classifies its progression by the degree of tumor invasion
into the rectal wall. In magnetic resonance (MR) images,
the T-category is determined by the relative location of
rectal cancer and the rectal wall [5]. Since current treatment
guidelines for rectal cancer utilize the T-category to rec-
ommend clinical treatments, accurate segmentation of rectal
cancer is crucial. However, in practice, radiologists manually
locate rectal cancer using MR images. Manual localization
is time-consuming, and a reliable automatic segmentation
system is necessary [6].

In recent years, deep learning has improved the
state-of-the-art methods in various fields related to computer
vision [7]. Its wide applicability derives from its ability
to find complex structures in high-dimensional data. The
introduction of convolutional neural networks (CNNs) has
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enhanced the ability of deep learning to learn a complex
representation of images. Its performance has been further
improved by the incorporation of new network backbones and
convolution block [8]–[12].
Deep learning has also proved its applicability in various

medical image analysis tasks, including medical image seg-
mentation [13]. For example, Ronneberger et al. have intro-
duced the U-Net by implementing a VGG-Net-like encoder
together with a mirrored decoder for cell segmentation [14].
This encoder-decoder approach implements a fully convolu-
tional network which is known to improve the computational
efficiency of patch-based segmentation methods [6], [15].
Further,Milletari et al. have extended the U-Net to 3D images
and introduced the Dice Similarity Coefficient (DSC)-based
loss function for the segmentation of the prostate volume in
magnetic resonance imaging (MRI) [16].
However, automation of medical image analysis remains

challenging due to the inherent complexity of medical images
and the extensive variation between patients [17]. Such com-
plexity and large variability within data call for a model
with a large capacity such as a deep neural network (DNN),
able to discover intricate structures in the data. However,
since high-capacity models can fit the intricate details of
the data, they are usually less robust to data variation, and
prone to overfitting, unless trained with many samples [18].
Unfortunately, in practice, relatively few annotated images
are available in the medical field, so that overfitting can be a
problem in building DNNmodels for medical image analysis.
There have been various attempts to moderate overfit-

ting in deep learning, such as batch normalization, drop-out,
data augmentation, image normalization, etc. [19]–[21].
In addition, multi-task learning (MTL) is known to reduce
the risk of overfitting [18], [22]. By adding a different task,
the parameters of the model are optimized towards values that
can explain the variation observed in both tasks, thus reducing
the risk of overfitting for the original network. In the case
of a DNN model, the shared portion of the MTL network
can be constrained towards values with better generalization
ability if the additional task provides information relevant to
the original task. Therefore, adding another task will reduce
the risk of overfitting, if the additional task is related to the
original one.
The risk of overfitting can be assessed by bias-variance

analysis since overfitting is caused by high variance [18].
Specifically, a bias-variance analysis decomposes the gen-
eralization error into model bias and model variance. The
analysis evaluates the model variance by creating multiple
models from a single learner by varying the learner training
sets. By varying the training set, bias-variance analysis can
assess if the model is robust to data variation. If the learner
is not robust and cannot generalize the data well, varying
the training set will cause highly variant models. As a result,
the risk of overfitting can be reduced by lowering the model
variance.
Although such model robustness can also be measured

by the discrepancy between training accuracy and validation

accuracy, selection bias in choosing the training and vali-
dation sets can be a problem. In fact, selection bias can be
critical especially for medical data, due to their limited size.
Also, measuring the discrepancy between training accuracy
and validation accuracy cannot capture the model robust-
ness within a specific Region-of-Interest (ROI). However,
in medical image analysis, model performance is especially
important in the regions adjacent to the positive (cancerous)
area. Consequently, a method which can measure the model
robustness within an arbitrary ROI can help building models
for medical image analysis.

Model variance is important to DNN-based medical image
analysis models, but model bias cannot be ignored either.
In fact, model bias contributes to the expected loss between
ground truth and prediction through a trade-off relation-
ship with model variance [18]. Although the mean squared
loss is often used to derive the bias-variance decomposition,
the unified theorem of bias-variance decomposition enables
arbitrary loss functions to be decomposed into noise, bias,
and variance, without loss of generality [23]. Despite the
importance of model variance, we are not aware of any report
that suggests a method to perform a bias-variance analysis of
a segmentation model.

Also, we have not come across any study reporting an
automatic system for segmenting both rectal cancer and
rectum at once using MR images, although cancer staging
indeed requires the demarcation of both rectum and rectal
cancer. However, for the automatic segmentation of rectal
cancer, Trebeschi et al. proposed a patch-based CNN model
using both T2-weighted and diffusion-weighted images from
MRI [6]. As a validation method, all image data were equally
divided between the training and validation sets, which might
lead to selection bias. Also, the post-processing method ran
the risk of removing valid tumor areas, except for the largest
tumor region.

In this study, we propose a pixel-wise bias-variance decom-
position method to measure the model variance of segmenta-
tion network. This pixel-wise approach can not only measure
the expected model bias and variance within an arbitrary ROI
but can also visualize the bias and variance map of sample
image. We also suggest two methods to reduce the model
variance of rectal cancer segmentation network: 1) multi-
region segmentation network (MRSN) by adding rectum seg-
mentation task to rectal cancer segmentation network; and
2) the augmentation method that resizes each mini-batch into
a random scale.

The efficacy of two proposed methods in reducing the
model variance is validated in Section III A by the sug-
gested pixel-wise bias-variance decomposition. Section II D
will explain the proposed pixel-wise bias-variance decom-
position in detail whereas Section II C and B describe
MRSN and suggested augmentation method in detail,
respectively. Note that in this study the term ‘‘model’’
denotes a learner whose parameters have been optimized
using a training set, whereas ‘‘network’’ denotes a DNN
learner.
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II. MATERIALS AND METHODS

A. DATA PREPARATION

The experiment was performed using MR images of 1,813
rectal cancer patients, obtained between September 2004 and
June 2016 at the National Cancer Center of South Korea.
Among these cases, 457 were selected after disregarding the
cases with at least one of the following properties: preop-
erative chemo-radiation, incomplete pathologic stage infor-
mation, disagreement between MR image and pathologic
staging, pathologic stage T1 or T4, tumors located more than
13 cm or less than 3 cm from the anal verge, or the application
of either clipping or stents. The whole study was conducted
according to the principles of the Declaration of Helsinki, and
the protocol was approved by the Institutional Review Board
of our institution (NCC2017-0031).
Rectal MRI examination was performed with one of four

3T or 1.5T superconducting systems: Achieva 3.0T (n= 233)
and Achieva 3.0T TX (n = 131), by Philips Healthcare
(Cleveland, OH, USA); or Signa HDX 3.0T (n = 19) and
Genesis Signa 1.5T (n = 74), by GE Healthcare (Milwaukee,
WI, USA), using pelvic phased-array coils. Among the
various MRI sequences, our experiment evaluated axial
T2-weighted fast-spin echo images.

Among approximately 30 image slices per patient,
we selected one or two to create the dataset. The 907 selected
images clearly reflected the T-category of the patient by
showing the rectum with clear appearance of either T2 or
T3 rectal cancer. Two gastrointestinal clinical specialists were
involved not only in selecting the 907 image slices from
the 457 cases, but also in the manual delineation of both
rectum and rectal cancer. Specifically, one specialist drew
the boundary, and the other specialist confirmed the outcome.
These manual segmentation results were used as our ground
truth.

For bias-variance analysis, we set apart 10% of the
907 images as a test set. Then, we used the remaining 90%
to create nine training sets for which we performed 9-fold
cross-validation. Nine-fold cross-validationwas adopted only
to create nine training sets, so we disregarded the nine val-
idation sets thus created. With these nine different training
sets, we created nine different models per network. Note that
we did not create many training sets by a random sampling
method such as bootstrapping since the training of many
DNNmodels is time-consuming. Instead, all networks shared
the same nine training sets and the single test set. This
approach not only allowed for the fair comparison of learners
by sharing the same nine training sets among different learn-
ers, but also allowed using all the available data efficiently.

B. PREPROCESSING

We applied both image intensity range normalization and
histogram equalization to improve image contrast and gen-
eralization [24]. As a normalization step, 90% of both the
maximum and the minimum intensity value from the overall
image slices of a patient were used to reduce the image
depth from 12-bit to 8-bit. We also applied contrast-limited

adaptive histogram equalization to enhance the contrast as
well as to reduce the illumination effect [25]–[27]. As shown
in Fig. 1, an image with a high-intensity artifact region,
which decreases the overall image contrast, became more
interpretable after preprocessing.

FIGURE 1. Sample image before and after the preprocessing. (a) original
image; (b) preprocessed image.

Motivated by Dao et al. [28], we also performed data
augmentation to reduce the model variance of our proposed
rectal cancer segmentation network, described in Section II C.
Especially, we aimed to enhance the scale-robustness of our
segmentation system since our raw MR images have hetero-
geneous scales (from 512 × 512 to 1056 × 1056) depending
on the MR scanner and its settings. It should be noted that
equalizing the pixel spacing of all images does not invalidate
the need for scale-robustness; the anatomical structures in
MR images can still differ in scale while being similar in
shape even if the pixel spacing is equalized among all images.
Above all, equalizing pixel spacing is infeasible because
fixing the pixel spacing will make the size of images within a
mini-batch heterogeneous. To enhance the scale-robustness
of our segmentation network, we resized each mini-batch
into a randomly chosen scale (ranging from 192 × 192 to
288 × 288); the fully convolutional nature of our network
allows input images to have different sizes. Note that we
did not crop images after random resizing to synchronize the
size of all training images. Moreover, we did not create an
image pyramid nor supplemented an additional network for
scale-robustness, which would have increased the computa-
tional cost and the implementation complexity [29]. Instead,
we trained the network with images at heterogeneous scales
and with their original field-of-views uncropped. Given that
medical images usually vary in scale due to the variability of
the scanners and their settings, this augmentation method is
expected, in general, to enhance the scale-robustness of other
medical image analysis systems as well. The efficacy of this
augmentation approach is evaluated in Sections III A and B.

Beside scale augmentation, we also performed the con-
ventional random augmentation of the training images,
i.e., adjusting the contrast, brightness, and sharpness,
followed by a rotation, flipping (left and right), and cropping
(maximum 10% from the edge and preserving the square
shape). It should be noted that neither the validation nor the
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test data were augmented, but just resized to the single scale
of 256 × 256.

C. SEGMENTATION NETWORK ARCHITECTURE

We developed an encoder-decoder segmentation network to
improve the computational efficiency of an existing rec-
tal cancer segmentation method [6]. The first convolution
layer of the network involves forty 3 × 3 filters. The num-
ber of filters per layer at the encoder is doubled after
each convolution block as in the VGG-Net or U-Net neural
networks [9], [14]. The decoder is a mirrored version of
the encoder, and the number of filters per layer is halved
through convolution transpose. Appendix A describes how
the convolution block, which is illustrated in Fig. 6-(c),
is selected for our network.

FIGURE 2. Rectal cancer segmentation network with an additional task of
rectum segmentation (MRSN).

As depicted in Fig. 2, we added the rectum segmentation
task to reduce the model variance of the rectal cancer seg-
mentation network. The geometric correlation between the
rectum and rectal cancer, which can be noticed from Fig. 3,
motivated us to adopt this MTL-based approach. Specifically,
rectal cancer ismostly located inside the rectum since it grows
from the rectum area, which can be found in Fig. 3 [5]. Since
our dataset only includes images that clearly reflect either T2-
or T3-stage rectal cancer, rectal cancer is always found along
the rectum wall [4]. Moreover, rectum and rectal cancer often
share some portion of their boundaries, as can also be seen
in Fig. 3. By adding a rectum segmentation task, our network

FIGURE 3. Two different sample images with their ground truth overlaid.
The red line indicates rectal cancer whereas the yellow line represents
rectum. Note that the bladder in the left image appears similar to the
rectum.

yields the prediction for rectum boundary as a by-product,
which is clinically informative as well, especially in cancer
staging.

To implement the additional segmentation task, we added
an additional task-specific 1 × 1 convolution layer for rec-
tum segmentation after the last convolution block, as shown
in Fig. 2. Note that we did not use a softmax function,
but calculated the probability of both classes by logis-
tic sigmoid after their own task-specific convolution layer,
because rectal cancer and rectum can overlap each other and
thus are not mutually exclusive. In this paper, single-region
segmentation network (SRSN) denotes the network without
additional task-specific layer, whereas multi-region segmen-
tation network (MRSN) denotes the networkwith two parallel
task-specific layers. In addition, MRSN-AUG denotes the
MRSN with data augmentation based on image resizing,
as described in Section II B. Consequently, the SRSN can
segment only a single region, either rectum or rectal cancer,
whereas both MRSN and MRSN-AUG segment both regions
at once.
The efficacy of both MTL and image resizing-based aug-

mentation in reducingmodel variance were evaluated by bias-
variance analysis. The bias and variance of the SRSN,MRSN,
and MRSN-AUG are compared in Section III A, whereas
their segmentation performance based on DSC with 10-fold
cross-validation are compared in Section III B.
All filter weights were initialized using the normal dis-

tribution sampling method suggested by He et al. [26],
except for the transposed convolution filters, which were
initialized using the uniform distribution sampling method
suggested by Glorot and Bengio [30], [31]. The Adam
optimization algorithm was implemented to stochastically
optimize the parameters with a mini-batch size of 20 [32].
Due to the preponderance of negative pixels, we implemented
the DSC-based loss function suggested by Milletari et al. as
our optimization objective function, which can be written as

D =
−2

∑N
i pigi

∑N
i p

2
i +

∑N
i g

2
i

(1)

where the sums run over the N pixels, the predicted binary
segmentation pixel being indicated by pi ∈ P and the ground
truth binary pixel by gi [16].

D. PIXEL-WISE BIAS-VARIANCE ANALYSIS

FOR SEGMENTATION NETWORKS

We propose a method to quantify the bias, variance, and
expected loss of a segmentation network within an arbitrary
ROI, such as a cancerous region. This method allows us to
confirm if both the additional rectum segmentation task and
the augmentation method based on image resizing reduce the
model variance of the rectal cancer segmentation network
without increasing the model bias.
Wemeasured bias and variance in accordance with the uni-

fied definition suggested by Domingos [23]. However, two
additional conditions should be considered for our problem.
First, we have a single ground truth per test sample image.
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Second, our prediction is a multi-dimensional vector since
the segmentation network predicts an image. Considering
these two additional conditions, we decided to perform a
pixel-wise bias-variance analysis. Then we calculated the
expected values of bias, variance, and expected loss within
an arbitrary area by averaging. Our approach for generating
the training sets and the test set is illustrated in Section II A.
The main prediction for the test image x at pixel i for a loss

function L and a set of training sets D becomes

yL,D
m (xi) = argminy′ED

[

L
(

y (xi) , y′
)]

(2)

where y(xi) is the prediction value for the test image x at
pixel i. We can specify our loss function as a zero-one loss
since our problem is a pixel-wise classification problem.
Considering that we have nine training sets, the main
prediction at pixel i becomes the mode among nine binary
predictions at pixel i. Now, bias and variance can be defined
using the main prediction.

The bias of a network for the test image x at pixel i is

B (xi) = L (t (xi) , ym (xi)) (3)

where t(xi) represents the ground truth of the test image x
at pixel i. ym(xi) is the main prediction which is the mode,
as stated above. The variance of the test image x at pixel i can
be defined as

V (xi) = ED [L (ym(xi), y(xi))] (4)

With bias and variance thus defined, the expected loss of the
image x at pixel i can be decomposed as

ED [L (t (xi) , y (xi))] = B (xi) + c2V (xi) (5)

where c2 = 1 if ym (xi) = t(xi) (unbiased prediction),
whereas c2 = −1 if the prediction is biased [23]. Finally,
we can measure the expected values of the bias, variance,
and expected loss within an arbitrary ROI where i ∈ IROI
as follows:

ED,i [L(t (xi) , y (xi))] = Ei [B (xi)] + Ei [c2V (xi)] (6)

Now, we can compare the three different rectal cancer seg-
mentation networks (i.e., SRSN, MRSN, and MRSN-AUG)
in terms of their expected values of bias, variance, and
zero-one loss within an arbitrary ROI. We measured the
expected values over the entire image as well as over the
positive (cancerous) region of the test images and reported
the results in Section III A.We calculated the expected values
within positive regions for two reasons. First, segmentation
performance is more important in the positive than in the neg-
ative region. Second, the negative region contains an excess
of non-body area, and segmentation models usually classify
non-body regions correctly without difficulty. Consequently,
including negative regions can excessively dilute the expected
values (bias and variance); this makes it needlessly hard to
prove a statistically significant difference between networks
with these expected values. We performed statistical tests to
objectively compare the distributions of the expected values
per test sample from different networks.

E. PERFORMANCE EVALUATION WITH

CROSS-VALIDATION

Along with bias-variance analysis, we tested if our approach
to reduce the model variance would also demonstrate
improvement when evaluated by the conventional evalua-
tion scheme. Specifically, we measured DSC, sensitivity,
and specificity, via 10-fold cross-validation of 907 images,
to compare the performance of SRSN, MRSN, and
MRSN-AUG. We discuss the results in Section III B.
Moreover, we used the same evaluation method to compare
the performance of different convolution blocks, as described
in Appendix A. DSC is a widely used metric in medical
image segmentation tasks due to its robustness to highly
imbalanced classes [24]. The DSC between two sets A and B
(e.g., prediction and ground truth) is defined as

DSC (A,B) =
2 |A ∩ B|

|A| + |B|
(7)

III. RESULTS AND DISCUSSION

A. PIXEL-WISE BIAS-VARIANCE ANALYSIS

We compared the model variance of three different rectal
cancer segmentation networks in order to assess the efficacy
of our proposed methods, i.e., the addition of a rectum seg-
mentation task and the augmentation method based on image
resizing. Considering the geometric correlation of the rectum
to rectal cancer as well as the heterogeneous scale of our MR
images, we assumed that both our methods would reduce the
variance of the rectal cancer segmentation network. To this
end, the test set was predicted by nine different models trained
on nine different training sets, as described in Section II A.

Fig. 4 shows an example of the nine different rectal cancer
prediction maps generated by the three different networks,
i.e., SRSN, MRSN, and MRSN-AUG. The ground truth for
this test sample is provided in Fig. 5, column (d). From each
network, nine prediction maps (P1-P9) were generated by
varying the training set. On the other hand, three prediction
maps were generated from three different networks using
each training set, namely prediction maps P1, P2, . . . , P9 for
SRSN, MRSN, and MRSN-AUG. Large variations among
the nine prediction maps indicate that the network cannot
generalize well upon variation of the training data, which can
lead to overfitting.

Fig. 5 presents two test images overlaid with the corre-
sponding pixel-wise bias, variance, and expected loss maps
of the three different rectal cancer segmentation networks.
Because most negative (noncancerous) regions show neither
bias nor variance, we cropped the images according to the yel-
low box in column (d) for ease of visualization. Column (d)
also illustrates the cropped MR image as well as the ground
truth overlaid with the croppedMR image. The yellow arrows
in columns (a) and (b) indicate distinct regions compared to
the map below. For example, arrows on the variance map
created byMRSN indicate the regionswheremajor difference
in variance between MRSN and MRSN-AUG occurs. The
variance maps visualize the regional robustness of the rectal
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FIGURE 4. Nine rectal cancer prediction maps of a test image, generated
by SRSN, MRSN, and MRSN-AUG. Each map is generated by one of three
networks, optimized with one of the nine training sets, as described
in Section II A. The SRSN, MRSN, and MRSN-AUG networks share training
data only if their prediction numbers, located at the bottom right corner
of each map with a ‘‘P’’ prefix, are the same. The ground truth of this
example can be found in column (d) of Fig. 5 (upper example).

cancer segmentation networks. Moreover, combined with the
bias maps, the variance maps create the expected loss map,
thus visualizing how variance affects the expected loss.
Fig. 5 suggests that bias and variance tend to occur at the

boundary of the rectal cancer regions, which may call for
a loss function that weighs the border region more heavily
than other regions, as suggested by Ronneberger et al. [14].
Otherwise, the general segmentation loss and the boundary
segmentation loss can be treated as separate tasks and be
merged by adding their respective losses, as suggested by
Wang et al [33]. The yellow arrows suggest that both adding
an additional rectum segmentation task and the augmenta-
tion method based on image resizing reduce the variance
(or bias) of rectal cancer segmentation networks in the posi-
tive regions.
Furthermore, the expected values over the entire image

as well as over the positive regions, which were described
in Section II D, were used to assess the efficacy of our
two proposed methods in reducing the model variance of
rectal cancer segmentation networks. Table 1 shows that a
significant difference (p < 0.05, paired t-test) in model vari-
ance within the positive region was observed between SRSN
and MRSN as well as between MRSN and MRSN-AUG.
Adding the rectum segmentation task decreased the variance
of rectal cancer segmentation by a factor of 0.90, whereas
the augmentation method further lowered the variance by

FIGURE 5. Two test images overlaid with their pixel-wise bias, variance,
and expected loss maps produced by three different rectal cancer
segmentation networks, i.e., SRSN, MRSN, and MRSN-AUG. Higher values
are represented by colors tending more towards yellow than green.
Column (d) shows the original images overlaid with the yellow cropping
boundary, as well as the cropped images overlaid with the ground truth.
The cropping boundary is set to visualize the rectal cancer region more
closely. Note that the upper example corresponds to the one shown
in Fig. 4.

TABLE 1. Expected values of bias, variance, and expected zero-one loss
within the positive and the entire region.

a factor of 0.89, on average. Moreover, the augmentation
based on image resizing significantly reduced the variance
of rectal cancer segmentation networks over the entire image.
Neither approach increased the bias. Instead, both approaches
decreased the bias, although not in a statistically significant
amount.
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In the future, the bias-variance decomposition using DSC
as a loss function will be an interesting topic of investigation
since DSC is a widely used metric in medical image analysis.
Given that our main focus was to confirm that rectum infor-
mation could improve rectal cancer segmentation, we left the
design of an elaborate task-specific layer for both rectum
and rectal cancer segmentation to future research. It has to
be noted that our network has a limitation in that it neglects
the information from neighboring image slices. The investi-
gation of 3D segmentation network with stacked rectal MR
images will be an interesting topic for future investigation.
Although previous studies have also used 2D images in order
to reduce the computational complexity, the 3D network can
exploit information along the vertical axis [34], [35]. Both the
segmentation performance and the bias-variance map of the
2D network can also be compared to those of the 3D network.

B. PERFORMANCE EVALUATION WITH

CROSS-VALIDATION

We asked whether our approaches to reducing model vari-
ance would show improvement also using conventional eval-
uation methods. The performance of SRSN, MRSN, and
MRSN-AUG were compared using the method described in
Section II E, and the results are reported in Table 2.

TABLE 2. Performance evaluation with 10-fold cross-validation using
Dice Similarity Coefficient (DSC), sensitivity, and specificity.

Significant differences in tumor DSC as well as in tumor
sensitivity (p < 0.05, paired t-test) were observed between
SRSN andMRSN. The augmentationmethod based on image
resizing also improved the segmentation performance of
MRSN in tumor DSC, rectum DSC, tumor sensitivity, and
rectum specificity, with statistical significance.

Our approaches reduced the training duration as well. The
training of the MRSN networks took less time than that of
the rectal cancer and rectum SRSNs by an average factor
of 0.96 and 0.81, respectively. The augmentation further
reduced the MRSN training duration by a factor of 0.78 on
average.

IV. CONCLUSION

Deep learning has improved the state-of-the-art in various
computer vision-related tasks, including image segmentation.
Although most deep learning-based models were trained on
large datasets, medical datasets are usually more limited in

size [36]–[38]. In particular, annotated data formedical image
segmentation are especially scarce due to the difficulty of
manual delineation. Consequently, deep learning-based med-
ical segmentation models risk suffering frommodel variance,
which can cause overfitting. Methods able to reduce and eval-
uate the variance of segmentation models are thus important.

In this study, we suggested methods to measure and reduce
the model variance of a rectal cancer segmentation model.
First, we proposed a method for the pixel-wise bias-variance
analysis of segmentation networks. Thismethod can visualize
the map of bias, variance, and expected loss, and also quan-
tify their expected values within an arbitrary ROI. Second,
we exploited the geometric correlation between the rectum
and rectal cancer to reduce the model variance of the deep
learning-based rectal cancer segmentation network. Lastly,
we performed data augmentation by resizing mini-batches
of images to further reduce the model variance. Such an
approach was motivated by the common scale heterogeneity
of medical imaging datasets.

To prove the efficacy of these two approaches in
reducing variance without increasing bias, we tested the
proposed pixel-wise bias-variance analysis method. Both
approaches successfully reduced the model variance, espe-
cially within the positive region, without increasing the bias,
and reduced the training duration as well. The efficacy of our
approaches was also confirmed by using DSC via 10-fold
cross-validation. Besides, our encoder-decoder segmentation
network improves the computational efficiency of a previous
study of rectal cancer segmentation as well [6]. Clinically,
our network can effectively assist radiologists, because the
demarcation of both rectum and rectal cancer is required for
rectal cancer staging. By reducing the model variance, our
approach will improve the accuracy of rectal cancer staging
as well. Other cancer segmentation networks may be inspired
by our approach to lowering the variance by exploiting the
geometric correlation between cancer and the organ from
which cancer grows. In our future research, we will develop
a 3D segmentation network with stacked medical images.
Wewill develop a 3D rectal cancer segmentation network and
compare its performance with that of the 2D network.

APPENDIX

A. CONVOLUTION BLOCK STUDY

This section describes the details of our network. Our
encoder-decoder network (Fig. 2) involves seven convolution
blocks for which we have selected the best block among three
candidates as illustrated in Fig. 6. Specifically, block3 adopts
two consecutive residual connections whereas block1 and
block2 are conventional VGG-style convolutions without a
skip connection and a conventional residual block, respec-
tively [11]. For both block2 and block3, we implemented a
pre-activation policy [11].

We compared the segmentation performance of three dif-
ferent blocks on MRSN using the method described in
Section II E. As described in Table 3, block3 scored the
highest DSC for rectal cancer segmentation tasks and thus
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FIGURE 6. Three candidates for our convolution blocks: (a) block1,
(b) block2, and (c) block3.

TABLE 3. Performance comparison between three different convolution
blocks.

was selected as our convolution block. In addition, it scored
the best also for the rectum segmentation task. Using block3,
the network was trained faster than using the other two blocks
(block1 was 1.46 times slower, and block2 was 1.04 times
slower than block3).

B. BIAS-VARIANCE ANALYSIS WITHIN

NON-CANCEROUS REGION

We focused on the positive regions to measure the expected
values of bias, variance, and expected loss of the rectal

FIGURE 7. A test image overlaid with pixel-wise bias, variance, and
expected loss produced by three different rectal cancer segmentation
networks, i.e., SRSN, MRSN, and MRSN-AUG. All settings are identical to
the settings of Fig. 5.

cancer segmentation networks. However, bias and variance
can also occur in negative areas, albeit rarely, and our method
of exploiting the geometric correlation between rectum and
rectal cancer can improve such problems. In Fig. 7, the SRSN
model variance occurs at an organ with appearance similar
to that of the rectum. Such variance at negative regions
is removed by adding a rectum segmentation task to the
network. Information about the rectum location can benefit
the rectal cancer segmentation network since rectal cancer
rarely exists outside of the rectum, especially in datasets, like
our own, not containing tumors in the T4 group.
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