
 Open access Journal Article DOI:10.1103/PHYSREVA.102.022406

Reducing the number of non-Clifford gates in quantum circuits — Source link

Aleks Kissinger, John van de Wetering

Institutions: University of Oxford, Radboud University Nijmegen

Published on: 11 Aug 2020 - Physical Review A (American Physical Society)

Topics: Quantum circuit, Quantum gate and Electronic circuit

Related papers:

 Interacting quantum observables: Categorical algebra and diagrammatics

 A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics

 Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning

 Rewriting measurement-based quantum computations with generalised flow

 The ZX−calculus is complete for stabilizer quantum mechanics

Share this paper:

View more about this paper here: https://typeset.io/papers/reducing-the-number-of-non-clifford-gates-in-quantum-
3oq8ktxdn9

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVA.102.022406
https://typeset.io/papers/reducing-the-number-of-non-clifford-gates-in-quantum-3oq8ktxdn9
https://typeset.io/authors/aleks-kissinger-inzeq9axgz
https://typeset.io/authors/john-van-de-wetering-56kr2dysbt
https://typeset.io/institutions/university-of-oxford-359i25ny
https://typeset.io/institutions/radboud-university-nijmegen-1p1bp5sl
https://typeset.io/journals/physical-review-a-j6ltrmrf
https://typeset.io/topics/quantum-circuit-1cxgc8vu
https://typeset.io/topics/quantum-gate-3suzo7ae
https://typeset.io/topics/electronic-circuit-3n7jd74k
https://typeset.io/papers/interacting-quantum-observables-categorical-algebra-and-n35d8igez3
https://typeset.io/papers/a-complete-axiomatisation-of-the-zx-calculus-for-clifford-t-1vza5zv5c5
https://typeset.io/papers/polynomial-time-t-depth-optimization-of-clifford-t-circuits-3ihaotfvhb
https://typeset.io/papers/rewriting-measurement-based-quantum-computations-with-q7oo5hbx6u
https://typeset.io/papers/the-zx-calculus-is-complete-for-stabilizer-quantum-mechanics-4yyilzymda
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/reducing-the-number-of-non-clifford-gates-in-quantum-3oq8ktxdn9
https://twitter.com/intent/tweet?text=Reducing%20the%20number%20of%20non-Clifford%20gates%20in%20quantum%20circuits&url=https://typeset.io/papers/reducing-the-number-of-non-clifford-gates-in-quantum-3oq8ktxdn9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/reducing-the-number-of-non-clifford-gates-in-quantum-3oq8ktxdn9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/reducing-the-number-of-non-clifford-gates-in-quantum-3oq8ktxdn9
https://typeset.io/papers/reducing-the-number-of-non-clifford-gates-in-quantum-3oq8ktxdn9

PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

https://hdl.handle.net/2066/221660

Please be advised that this information was generated on 2022-05-30 and may be subject to

change.

https://hdl.handle.net/2066/221660

PHYSICAL REVIEW A 102, 022406 (2020)

Reducing the number of non-Clifford gates in quantum circuits

Aleks Kissinger 1,* and John van de Wetering 2,†

1Department of Computer Science, University of Oxford, 15 Parks Rd, Oxford OX1 3QD, United Kingdom
2Radboud University, Tournooiveld 214, 6525EC Nijmegen, Netherlands

(Received 6 May 2019; revised 3 July 2020; accepted 24 July 2020; published 11 August 2020)

We present a method for reducing the number of non-Clifford quantum gates, in particularly T-gates, in

a circuit, an important task for efficiently implementing fault-tolerant quantum computations. This method

matches or beats previous approaches to ancillae-free T-count reduction on the majority of our benchmark

circuits, in some cases yielding up to 50% improvement. Our method begins by representing the quantum

circuit as a ZX-diagram, a tensor networklike structure that can be transformed and simplified according

to the rules of the ZX-calculus. We then extend a recent simplification strategy with a different ingredient,

phase gadgetization, which we use to propagate non-Clifford phases through a ZX-diagram to find nonlocal

cancellations. Our procedure extends unmodified to arbitrary phase angles and to parameter elimination for

variational circuits. Finally, our optimization is self-checking, in the sense that the simplification strategy we

propose is powerful enough to independently validate equality of the input circuit and the optimized output

circuit. We have implemented the routines of this paper in the open-source library PyZX.

DOI: 10.1103/PhysRevA.102.022406

I. INTRODUCTION

Quantum circuits give a simple, universal language for de-

scribing quantum computations at a low level. When studying

circuits it is often useful to distinguish between two kinds of

primitive operations: Clifford gates and non-Clifford gates.

Circuits consisting only of Clifford gates can be efficiently

classically simulated [1], and can be implemented in a fault-

tolerant manner with relative ease within many quantum error

correcting codes [2,3]. However, for universal circuits at least

one type of non-Clifford gate, such as the T gate, is needed.

While techniques such as magic state distillation and injec-

tion allow for fault-tolerant implementation of T gates, they

typically require a great deal more resources than Clifford

gates [4]. Hence, efficient fault-tolerant quantum computation

requires minimizing the number of non-Clifford gates within

a circuit.

Existing methods for computing exact-optimal T-counts

take exponential running time [5,6]. To date, the most success-

ful scalable approaches to T-count minimization have been

based on phase polynomials. Such methods rely on an efficient

representation of circuits consisting of just CNOT and Z-

phase gates. The first heuristic method for efficiently reducing

T-count and T-depth using this representation, called T-par,

was introduced in Ref. [7]. Their results were later improved

upon in Refs. [8,9] by exploiting equivalences between phase

polynomial optimization and other known problems.

Phase-polynomial methods share the limitation that they

cannot deal directly with arbitrary quantum circuits. In par-

ticular, an arbitrary circuit will also contain Hadamard gates,

*aleks.kissinger@cs.ox.ac.uk
†john@vdwetering.name

which destroy the phase polynomial structure. Naïvely, one

can simply cut the circuit into Hadamard-free sections and

apply the optimization locally. This can be significantly im-

proved by preprocessing to produce larger Hadamard-free

sections: either by simple gate transformations [10,11] or

introducing ancillae and classical control [9].

In this paper, we propose a different approach to reducing

non-Clifford gate count based on the theoretical framework

laid out in Ref. [12]. We first transform a circuit into a special

kind of tensor network called a ZX-diagram [13,14]. This dia-

gram is then subject to a collection of graphical transformation

rules called the ZX-calculus [15]. By breaking the rigid circuit

structure, ZX-diagrams are then subject to simplifications that

have no obvious circuit analog.

It was noted in Ref. [12] that non-Clifford phases (i.e.,

angles which are not multiples of π/2) form an obstruction

to the simplification. To overcome this issue, we introduce

one crucial refinement to the simplification procedure: the

gadgetization of non-Clifford phases. By splitting a node

containing a phase into two parts consisting of the node itself,

and a new phase gadget, phases can propagate nonlocally

through a ZX-diagram and potentially cancel or combine

with each other. In the case where there are no Hadamard

gates in the circuit, these gadgets correspond to phase-parity

terms in the representation of a phase polynomial, hence this

nonlocal propagation can be seen as a generalisation of phase

polynomial techniques to general circuits.

After diagrammatic simplification, we could, in principle,

use a variation on the technique described in Ref. [12] to

re-extract a quantum circuit from the ZX-diagram with fewer

non-Clifford phases. However, we show here that we can side-

step the need for circuit extraction all together by exploiting

the fact that our simplification method is parametric in non-

Clifford phases. Rather than combining two phase gadgets

2469-9926/2020/102(2)/022406(10) 022406-1 ©2020 American Physical Society

https://orcid.org/0000-0002-6090-9684
https://orcid.org/0000-0002-5405-8959
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.022406&domain=pdf&date_stamp=2020-08-11
https://doi.org/10.1103/PhysRevA.102.022406

ALEKS KISSINGER AND JOHN VAN DE WETERING PHYSICAL REVIEW A 102, 022406 (2020)

FIG. 1. Overview of the steps in our phase-teleportation scheme.

(a) Original circuit. (b) The circuit expanded as a ZX diagram, with

21 T gates. (c) Simplified ZX-diagram. (d) 15 t gates remain after

phase teleportation.

into one, we let the angle from one phase gadget jump onto

the other one: (αi, α j) � (αi + α j, 0). This does not have any

effect on the graphical structure of the ZX-diagram, and hence

performing this modification to the phases of the original

circuit will result in a new circuit that reduces to the same

ZX-diagram as before.

Hence, rather than re-extracting a circuit from a ZX-

diagram, we use the diagram as a tool for discovering phases

that can be shifted around nonlocally without changing the

computed unitary. We call this technique phase teleportation.

A pleasant property of phase teleportation, as opposed to the

simplify-and-extract method, is that it leaves the structure

of the quantum circuit completely intact, only changing the

parameters. Hence, 2-qubit gate count is never increased and

gates are always applied between the same pairs of qubits as

before. As pointed out in Ref. [11], this could be advanta-

geous when the circuit has been designed with limited qubit

connectivity of the physical qubits in mind. Both optimisation

routines, using either extraction or phase teleportation, are

implemented in the open source Python library PyZX [16].

A high-level overview of our procedure is presented in

Fig. 1. The four steps presented there are described in detail

in Sec. II. We start with some circuit as in Fig. 1(a). By

expanding the gates in terms of CNOT, H, and T gates, we can

easily translate the circuit into a ZX-diagram [Fig. 1(b)]. We

then apply the simplification procedure described in Sec. II D

to obtain a reduced ZX-diagram [Fig. 1(c)]. Finally, we use the

data about corresponding phases obtained from this simplifi-

cation to perform phase teleportation in the original circuit to

reduce T-count [Fig. 1(d)].

By leaving the circuit model we can sometimes ”look

around” obstructions such as Hadamard gates to find more

optimizations. We see this translated in our results. In bench-

mark circuits with an abundance of Hadamard gates we can

significantly outperform previous methods.

Our simplification routine can also validate equality of

circuits. We do this by composing the adjoint of the optimised

circuit with the original circuit and checking whether our

simplification routine reduces the resulting ZX-diagram to the

identity. While this method cannot detect errors in a circuit,

the set of rewrite rules forms a certificate of equality when

it does reduce a circuit to the identity. A general efficient

circuit equality validation schema is unlikely to exist [17].

Nevertheless, our method is powerful enough to validate

correctness of our optimised circuits as well as those produced

in Ref. [11].

We target ancilla-free optimization and compare ourselves

to the best known results for ancilla-free T-count reduction.

When ancillas are allowed, the required amount of T gates can

decrease [7]. We discuss the possibility of using our methods

for ancillae-based optimizations in Sec. IV.

II. METHODS

In this section we will explain our main contributions in

depth, namely how to do T-count optimization using the ZX-

calculus. On a high level this proceeds in the following way:

(1) First we translate a quantum circuit into a ZX-diagram.

See Sec. II A.

(2) We apply the diagrammatic simplification procedure

ZX-simplify laid out in Secs. II B-II D.

(3) Finally, by keeping track of certain simplification

steps, and how they affect phases in the original circuit, we

will decrease the T-count of the circuit by means of phase

teleportation. See Sec. II E.

Section II F explains our how our PyZX-produced circuit

is combined with postprocessing and the TODD compiler.

A. Background: the ZX-calculus

We will provide a brief overview of the ZX-calculus. For

an in-depth reference see Ref. [18].

The ZX-calculus is a diagrammatic language similar to the

familiar quantum circuit notation. A ZX-diagram (or simply

diagram) consists of wires and spiders. Wires entering the

diagram from the left are inputs; wires exiting to the right

are outputs. Given two diagrams we can compose them by

joining the outputs of the first to the inputs of the second,

or form their tensor product by simply stacking the two

diagrams.

Spiders are linear operations which can have any number

of input or output wires. There are two varieties: Z spiders

022406-2

REDUCING THE NUMBER OF NON-CLIFFORD GATES IN … PHYSICAL REVIEW A 102, 022406 (2020)

depicted as green dots and X spiders depicted as red dots:

Note that if you are reading this document in monochrome

or otherwise have difficulty distinguishing green and red, Z

spiders will appear lightly shaded and X darkly shaded. The

diagram as a whole corresponds to a linear map built from

the spiders (and permutations) by the usual composition and

tensor product of linear maps. As a special case, diagrams

with no inputs represent (unnormalized) state preparations.

Example II.1. We can immediately write down some sim-

ple state preparations and unitaries in the ZX-calculus:

In particular, we have the Pauli matrices:

It will be convenient to introduce a symbol—a yellow

square, - for the Hadamard gate. This is defined (up to a global

phase) by the equation:

(1)

We will often use an alternative notation to simplify the

diagrams, and replace a Hadamard between two spiders by a

blue dashed edge, as illustrated below:

Both the blue edge notation and the Hadamard box can always

be translated back into spiders when necessary. We will refer

to the blue edge as a Hadamard edge.

Two diagrams are considered equal when one can be

deformed to the other by moving the vertices around in the

plane, bending, unbending, crossing, and uncrossing wires,

as long as the connectivity and the order of the inputs and

outputs is maintained. Equivalently, a ZX-diagram can be

considered as a graphical depiction of a tensor network, as

in, e.g., Ref. [19]. Then, just like any other tensor network,

we can observe that the interpretation of a ZX-diagram is

unaffected by deformation. As tensors, Z- and X-spiders can

be written as follows:

FIG. 2. A convenient presentation for the ZX-calculus. These

rules hold for all α, β ∈ [0, 2π), and due to (h) and (i2) all rules

also hold with the colors interchanged.

One can then define X-spiders as Z-spiders conjugated by

Hadamard gates or define them explicitly as follows:

where iα, jβ range over {0, 1} and ⊕ is addition modulo 2.

In addition to simple deformations, ZX-diagrams satisfy a

set of equations called the ZX-calculus. There exists several

variations of the ZX-calculus. The set of rules we will use

is presented in Fig. 2. Diagrams that can be transformed into

each other using the rules of the ZX-calculus correspond to

equal linear maps (up to normalisation). ZX-diagrams with

arbitrary angles are expressive enough to represent any linear

map [14]. It is often useful to consider Clifford ZX-diagrams,

by analogy to Clifford circuits, where all angles are restricted

to multiples of π/2. In that case, the rules given in Fig. 2 are

complete with respect to linear map equality [15]. That is,

if two Clifford ZX-diagrams describe the same linear map,

one can be transformed into the other using the rules in

Fig. 2. Extensions of the calculus exist that are complete for

larger families of ZX-diagrams/maps, including Clifford+T

ZX-diagrams [20], where phases are multiples of π/4, and

arbitrary ZX-diagrams where any phase is allowed [21–23].

Quantum circuits can be translated into ZX-diagrams in

a straightforward manner. We will take as our starting point

circuits constructed from the following universal set of gates:

CNOT :=

⎛

⎜

⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞

⎟

⎠
, (2)

Zα :=
(

1 0

0 eiα

)

,

H := 1√
2

(

1 1

1 −1

)

.

Note that the CNOT gate and the H gate are Clifford, and

hence our goal is to reduce the total number of gates of the

form Zα where α �= k · π
2

for k ∈ Z.

022406-3

ALEKS KISSINGER AND JOHN VAN DE WETERING PHYSICAL REVIEW A 102, 022406 (2020)

FIG. 3. A ZX-diagram that comes from a circuit, and its equiva-

lent graph-like ZX-diagram.

This gate set admits a convenient representation in terms

of spiders:

(3)

Note that for the CNOT gate, the green spider is the first (i.e.,

control) qubit and the red spider is the second (i.e., target)

qubit.

The ZX-diagram representing the CNOT is actually only

equal up to a scalar factor of
√

2. When converting a quantum

circuit into a ZX-diagram we can save these global scalar fac-

tors separately so that the linear map represented by the ZX-

diagram is equal to the circuit. However, for a ZX-diagram

representing a unitary quantum circuit, the correct scalar

factor can always be easily inferred, so we are warranted in

ignoring this factor.

Other common gates can easily be expressed in terms of

these gates. In particular, S := Z π
2
, T := Z π

4
and

(4)

The first step of our simplification procedure is to trans-

form the circuit into a graphlike ZX-diagram [12].

Definition II.2. A ZX-diagram is graphlike when

(1) All spiders are Z-spiders.

(2) Z-spiders are only connected via Hadamard edges.

(3) There are no parallel Hadamard edges or self-loops.

(4) Every input or output is connected to a Z-spider

and every Z-spider is connected to at most one input or

output.

See Fig. 3 for an example. In Ref. [12] it is shown that any

ZX-diagram can efficiently be transformed into a graphlike

ZX-diagram using the rules of the ZX-calculus. This trans-

formation essentially amounts to turning all X spiders into Z

spiders with the (h) rule, fusing as many spiders together as

possible with (f), and removing parallel edges/self-loops with

the following derived rules:

(5)

In particular, the number of non-Clifford phases in a di-

agram is never increased, and can actually be decreased

by the (f) rule, as phases are added together. We call this

graphlike because the resulting ZX-diagram is essentially an

indirected, simple graph whose vertices are labeled by phase

angles.

B. Clifford simplification of ZX-diagrams

A spider connected to an input or an output is called a

boundary spider, whereas all other spiders are called interior

spiders. If we interpret an N-qubit circuit as a ZX-diagram,

there are precisely N inputs and N outputs, hence there are at

most 2N boundary spiders. On the other hand, there will in

general be a large number of interior spiders.

The main idea behind the first part of our simplification

strategy is to remove as many interior Clifford spiders, i.e.,

spiders whose phase is a multiple of π/2, as possible. We

do this by using two rewrite rules based on the graph-

theoretic operations of local complementation and pivoting.

For the proof of correctness of these rewrite rules we refer to

Ref. [12].

The first rule, based on local complementation, deletes a

spider with a phase of ±π/2 and introduces edges between

all of its neighbours:

.

(6)

Since parallel edges vanish [cf., Eq. (5)], this can be seen as

complementing the set of edges connecting the neighbours of

the deleted vertex, hence the name.

The second rule deletes pairs of Pauli spiders, i.e., spiders

whose phase is a multiple of π . For a pair of connected

Pauli spiders u, v, we can split the neighbourhood of {u, v}
into three pieces: U the spiders only connected to u, V the

spiders only connected to v, and W , the spiders connected

to both. We can then delete the pair of spiders u, v provided

we introduce complete bipartite graphs on (U,W), (V,W),

and (U,V):

.

(7)

Again, thanks to Eq. (5), this can be seen as complementing

the sets of edges present in the three bipartite graphs (U,W),

(V,W), and (U,V).

022406-4

REDUCING THE NUMBER OF NON-CLIFFORD GATES IN … PHYSICAL REVIEW A 102, 022406 (2020)

Since the rules (LC) and (P1) both delete at least one

spider, we can simply apply them repeatedly until no rule

matches. This gives us a terminating procedure for simpli-

fying our diagram. Note that we do not target the spiders in

any specific order. Different orders of application will yield

different diagrams (i.e., these rules are not confluent), but we

always obtain the same amount of non-Clifford spiders at the

end.

At this point, the simplification procedure in Ref. [12]

employs a variation of (P1) to remove a few more Pauli

spiders and terminates. In particular, nothing is done to elim-

inate non-Clifford spiders. This is the goal of the next two

sections.

C. Phase gadgets

We first introduce a useful concept for ZX-diagrams: a

phase gadget. A phase gadget is simply an arity-1 spider with

angle α, connected via a Hadamard edge to a spider with no

angle:

Phase gadgets are a useful tool for working with ZX-

diagrams corresponding to unitaries. For example, the

diagram

(8)

yields an n-qubit unitary U defined by

U :: |x1, ..., xn〉 �→ eiα(x1⊕...⊕xn)|x1, ..., xn〉.

In fact, it is straightforward to show concretely (or in the

ZX-calculus) that this unitary is equal to a ladder of CNOT

gates, followed by a single phase gate, followed by the reverse

ladder of CNOT gates. For example, on 4 qubits:

(9)

Since these gates are diagonal in the computational basis, they

commute with each other. This also follows straightforwardly

from the (f) rule:

Arbitrary diagonal unitaries, i.e., unitaries of the form

U :: |x1, ..., xn〉 �→ ei f (x1,...,xn)|x1, ..., xn〉

for some f : {0, 1}n → R, can easily be expressed in terms

of phase gadgets. For example, for f (x1, x2, x3, x4) = π
4

x1 ⊕
x4 + π

8
x1 ⊕ x2 − π

4
x1 ⊕ x3 we get

In fact, the angles appearing in the phase gadgets correspond

to the Fourier expansion of the semi-boolean function f . That

is, any function f : {0, 1}n → R can be expressed as follows:

f (x) = α +
∑

	y
α	y(x1y1 ⊕ . . . ⊕ xnyn), (10)

where 	x, 	y ∈ {0, 1}n and α, α	y ∈ R. In the context of diagonal

unitaries, α yields a global phase (which we ignore), and each

α	y corresponds to a phase gadget. A brief discussion of the

form (10), and its relation to the usual Fourier transform of

a semi-boolean function, can be found in the Appendix of

Ref. [24]

Phase polynomial techniques perform transformations on

the function f in order to reduce the T-count needed to

implement U (or some U ′ that is Clifford-equivalent to U).

One of these methods is TODD [9], which we use as a

postprocessing step for our algorithm (cf. Section II F). In

the sequel, we will consider not just phase gadgets arising

from unitaries such as Eq. (8), but phase gadgets appearing

in arbitary graphlike ZX-diagrams. Hence, our simplification

procedure can be seen as a generalization of phase polynomial

techniques.

D. Full simplification of ZX-diagrams

In this section, we will introduce rules that reduce the

number of non-Clifford spiders in the ZX-diagram, and hence

the T-count in the resulting circuit.

First, it is worth noting that the (P1) rule from section

II B was only able to remove an interior Pauli spider adjacent

to another interior Pauli spider. We can now introduce two

variations of this rule, (P2) and (P3), which together allow us

to remove any remaining interior Pauli spider, at the cost of

022406-5

ALEKS KISSINGER AND JOHN VAN DE WETERING PHYSICAL REVIEW A 102, 022406 (2020)

introducing a phase gadget:

We apply (P2) when the interior Pauli spider is connected

to any other interior spider, while (P2) is applied when it

is connected to some boundary spider. Applying these rules

to every remaining interior Pauli spider yields a diagram

where every internal spider is either non-Clifford or part of

a phase gadget. If the phase gadget is Clifford, then it can

be removed by either (P1) or by two applications of (LC).

Hence we can reduce to a case where all phase gadgets are

non-Clifford.

We can now apply the following two rules, which both

strictly decrease the number of non-Clifford spiders:

When a phase gadget is connected to exactly one other spider,

its phase can be combined with the phase on that spider via

(ID). This is essentially an application of the rules (i1) and

(i2).

When two phase gadgets are connected to exactly the

same set of spiders, they can be fused into one via the

gadget-fusion rule (GF). This rule can be shown using the

ZX-calculus:

where (b′) is the n-ary generalization of the rule (b), which

follows from the other rules (see, e.g., [18], Sec. 9.4). For

unitaries of the form (8), it corresponds to a well-known

simplification used in phase-polynomial circuits, where two

phases acting on the same parity of the input qubits can be

summed together.

Each of the rewrite rules (ID) and (GF) removes a non-

Clifford spider, and transforms another non-Clifford spider

into a Clifford spider, which can be removed by one of the

previous rules. We can now fully describe our simplification

procedure for graphlike ZX-diagrams.

Algorithm II.3. ZX-simplify: Starting with a graph-like

ZX-diagram, do the following:

(1) Apply (LC) until all interior proper Clifford vertices

are removed.

(2) Apply (P1), (P2), and (P3) until all interior Pauli

vertices are removed or transformed into phase gadgets.

(3) Remove all Clifford phase gadgets using (LC) and

(P1).

(4) Apply (ID) and (GF) wherever possible. If any

matches were found, go back to step 1, otherwise we are done.

This algorithm always terminates as every step either re-

moves a spider or a phase gadget. In terms of complexity

we see that if the original diagram had n spiders, that this

algorithm takes at most n steps. Each step might need us to

toggle the connectivity of all the neighbors of the involved

spider. As this spider has at most n neighbors, this could

involve n2 operations on the diagram. The complexity of the

algorithm is therefore bounded above by O(n3) elementary

graph operations. In practice though, the ZX-diagrams result-

ing from quantum circuits will be quite sparse, and we tend

to see a time scaling roughly between O(n) and O(n2) on our

benchmark circuits.

It will be useful to have a name for the diagrams produced

by this simplification procedure.

Definition II.4. We say a graphlike ZX-diagram is in re-

duced gadget form when

(1) Every internal spider is a non-Clifford spider or part of

a non-Clifford phase gadget.

(2) Every phase gadget has more than one target.

(3) No two phase gadgets have the same set of targets.

E. Phase teleportation

The simplification procedure described in the previous

section produces a ZX-diagram that does not look like a

circuit. In order to get a different, simplified circuit out, we

022406-6

REDUCING THE NUMBER OF NON-CLIFFORD GATES IN … PHYSICAL REVIEW A 102, 022406 (2020)

could apply (a variation of) the circuit extraction procedure

of Ref. [12] as described in Ref. [25]. Alternatively, we can

short-circuit the extraction using a trick we refer to as phase

teleportation.

We begin by replacing every non-Clifford phase in our

starting circuit C with a fresh variable name, α1, . . . , αn, and

storing the angles in a separate table τ : {1, . . . , n} → R.

We can then perform the simplification procedure de-

scribed in the previous section symbolically. That is, we work

on a ZX-diagram whose spiders are labeled not just with phase

angles, but with polynomials over the variables (α1, . . . , αn).

Then, consider what happens when two variables are added

together during the (ID) and (GF) rules. One of two things

can occur: (a) the two variables have the same sign or (b) they

have different signs:

Since none of our simplifications will copy any of the vari-

ables we started with, these are the only occurences of αi and

α j in the ZX-diagram. Hence, in case (a), if we replace αi with

αi + α j and α j with 0, we get an equivalent diagram.

Put another way, in case (a), we can update our table τ by

setting τ ′(i) := τ (i) + τ (j), τ ′(j) := 0, and τ ′(k) := τ (k) for

k /∈ {i, j}. Then, (C, τ) and (C, τ ′) describe circuits which are

provably equivalent by the rules of ZX-calculus. Case (b) is

similar, except we should set τ ′(i) := τ (i) − τ (j).

This observation yields the following algorithm:

Algorithm II.5. Phase teleportation: Starting with a cir-

cuit, do the following:

(1) Choose unique variables α1, . . . , αn for each non-

Clifford phase and store the pair (C, τ), where C is the

parametrized circuit and τ : {1, . . . , n} → R assigns each

variable to its phase.

(2) Interpret C as a ZX-diagram and run the ZX-simplify

algorithm on the simplified diagram while doing the follow-

ing:

Whenever (ID) or (GF) are applied to a pair of vertices or

phase gadgets containing variables αi and α j , respectively,

update the phase table τ as described for cases (a) and (b)

above.

(3) When ZX-simplify finishes, the pair (C, τ ′) describes

an equivalent circuit.

Even though we do compute the reduced gadget form of the

circuit C, the new circuit we output has the same structure as

C itself, but with some of the phases changed. As a result, no

new gates are introduced, but many non-Clifford phase gates

will have their angles set to 0 or to multiples of π/2. Hence,

running a dedicated gate minimizing circuit optimisation rou-

tine afterwards will often be much more effective.

F. Circuit optimisation and TODD

We now briefly describe a combined optimization routing

consisting of first running the phase teleportation procedure,

then doing some simple postprocessing, and finally applying

the TODD algorithm described in Ref. [9].

The circuit postprocessing works by doing forward and

backward passes through the circuit. During the forward pass,

we commute 1-qubit gates as far forward as possible using

standard gate commutation rules, canceling and combining

gates whenever we can. We then take the adjoint of the circuit

and repeat the process, and keep repeating the process until no

more gates are removed.

We then apply the ancilla-free version of the TODD al-

gorithm using the C++ tool Topt [26]. This tool is designed to

optimize CNOT+Phase circuits, so we first cut our circuit into

Hadamard-free chunks. Then, before running Topt on each

chunk, we again use standard gate commutation laws to pull

as many gates as possible from neighboring chunks into the

current one. Since Topt is nondeterministic, we run it multiple

times and we take the best result. Running Topt on each chunk

in this manner then yields the T-counts reported in the last

column of Table I .

III. RESULTS

In this section we benchmark the algorithms described in

the previous section against a suite of benchmark circuits. The

goal is reducing the total number of non-Clifford gates, but for

all of our benchmark circuits, those gates are all T := Zπ/4,

so from hence forth, we will simply refer to the number of

non-Clifford gates as the T-count.

For our benchmarks, we have used all of the Clifford+T

benchmark circuits from Refs. [7,11] (minus some of the

larger members of the gf(2n)-mult family). See Table I.

These benchmark circuits were also used in Refs. [8,9] and

include components that are likely to be of interest to quantum

algorithms, such as adders or Grover oracles. Of these 36

benchmark circuits, we are at or improving upon the best

previously known ancilla-free T-count for 26 circuits ∼72%),

and we improve on 6 (∼ 17%). If we apply some simple

postprocessing afterwards and feed the resulting circuit into

the TODD phase polynomial optimiser [9], we improve on

the state of the art for 20 circuits (∼ 56%). These two meth-

ods seem to complement each other well in the ancilla-free

regime, obtaining significantly better numbers than either of

the two methods alone, and matching or beating all other

methods for every circuit tested.

For 20 of the 36 circuits, we exactly match the best pre-

viously known result, which is interesting, since the methods

we use are quite different in nature from previous methods.

The circuits where PyZX seems to do considerably better

are ones that contain many Hadamard gates. The fact that

PyZX achieves improvements when there are many Hadamard

gates is as expected, as most other successful methods em-

ploy a dedicated phase-polynomial optimiszer [7–9,11] that is

hampered by the existence of Hadamard gates. On the other

hand, the only circuits where phase polynomial techniques

significantly outperform our methods are in the gf(2n)-mult
family. After some simple preprocessing, these circuits have

022406-7

ALEKS KISSINGER AND JOHN VAN DE WETERING PHYSICAL REVIEW A 102, 022406 (2020)

TABLE I. Benchmark circuits from [27] and [28]. The columns n

and T contain the amount of qubits and T gates in the original circuit.

Best is the previous best-known ancilla-free T-count for that circuit

and Method specifies which method was used: RMm and RMr refer to

the maximum and recursive Reed-Muller decoder of Ref. [8], T-par

is Ref. [7], TODD is Ref. [9], and NRSCM refers to Ref. [11]. PyZX

and PyZX+TODD specify the T-counts produced by, respectively,

our method, and our method combined with TODD. Numbers shown

in bold are better than previous best, and italics are worse.

Circuit n T Best Method PyZX PyZX

+TODD

adder8 24 399 213 RMm 173 167

Adder8 23 266 56 NRSCM 56 56

Adder16 47 602 120 NRSCM 120 120

Adder32 95 1274 248 NRSCM 248 248

Adder64 191 2618 504 NRSCM 504 504

barenco-tof3 5 28 16 T-par 16 16

barenco-tof4 7 56 28 T-par 28 28

barenco-tof5 9 84 40 T-par 40 40

barenco-tof10 19 224 100 T-par 100 100

tof3 5 21 15 T-par 15 15

tof4 7 35 23 T-par 23 23

tof5 9 49 31 T-par 31 31

tof10 19 119 71 T-par 71 71

csla-mux3 15 70 58 RMr 62 45

csum-mux9 30 196 76 RMr 84 72

cycle173 35 4739 1944 RMm 1797 1797

gf(24)-mult 12 112 56 TODD 68 52

gf(25)-mult 15 175 90 TODD 115 86

gf(26)-mult 18 252 132 TODD 150 122

gf(27)-mult 21 343 185 TODD 217 173

gf(28)-mult 24 448 216 TODD 264 214

ham15-low 17 161 97 T-par 97 97

ham15-med 17 574 230 T-par 212 212

ham15-high 20 2457 1019 T-par 1019 1013

hwb6 7 105 75 T-par 75 72

hwb8 12 5887 3531 RMm&r 3517 3501

mod-mult-55 9 49 28 TODD 35 20

mod-red-21 11 119 73 T-par 73 73

mod54 5 28 16 T-par 8 7

nth-prime6 9 567 400 RMm&r 279 279

nth-prime8 12 6671 4045 RMm&r 4047 3958

qcla-adder10 36 589 162 T-par 162 158

qcla-com7 24 203 94 RMm 95 91

qcla-mod7 26 413 235a NRSCM 237 216

rc-adder6 14 77 47 RMm&r 47 47

vbe-adder3 10 70 24 T-par 24 24

aAn error in a previously reported T-count.

almost no Hadamard gates, hence they are very well-suited to

phase polynomial techniques.

It should be noted that while the circuits of Table I are all

written in the Clifford+T gate set, our optimization routine is

agnostic to the values of the non-Clifford phases. We have also

tested our routine on the quantum Fourier transform circuits of

Ref. [11] that include more general non-Clifford phases, and

in each case found that our non-Clifford gate count exactly

matched their results.

The optimization routines are implemented in the open

source Python library PyZX [29]. All circuit optimizations

were run on a consumer laptop. Our method took a few

seconds to run for most circuits, with some of the bigger ones

taking up to a few minutes. We tested the correctness of the

optimization by generating the matrix of the original and the

optimised circuit for thousands of small randomly generated

circuits and checking equality, in addition to doing the same

for the smaller benchmark circuits.

We can also use the ZX-calculus for verification of equality

[30]. For all benchmark circuits, we composed the original

circuit with the adjoint of the optimized one, and then ran

our simplification routine on this circuit. In every case, the

resulting circuit was reduced to the identity. Since the set

of rewrites needed to do this reduction is different from the

ones used to produce the original optimized circuit, this gives

extra confidence that our optimization routine is implemented

correctly, as it is very unlikely that an error in our rewrites

would cancel itself in this way. With the same validation

scheme we have also verified correctness of all the optimized

benchmark circuits of Ref. [11], except for qcla-mod7, which

was then shown to be incorrect using the FEYNMAN tool [31].

IV. CONCLUSION

We have implemented a quantum circuit optimization rou-

tine that uses ZX diagrams to go beyond the rigid structure of

the circuit model. This routine matches or beats the previous

best-known T-count for the majority of the benchmark circuits

we have tested. We have, furthermore, shown that combining

our routine with the TODD compiler [9] achieves T-counts

that are better than either of these methods separately. Finally,

our simplification routine is powerful enough to validate the

correctness of our optimized circuits.

Notably, our simplification is completely parametric in

non-Clifford phase angles: phase teleportation treats all non-

Clifford angles as free parameters which are simply com-

bined or eliminated. As a consequence our simplification

procedure generalizes from concrete circuits to parametrized

circuits, where the analog of T-count reduction is elimina-

tion of redundant free parameters. This could potentially

yield significant improvements in the performance of hybrid

classical/quantum algorithms relying on parametrized cir-

cuits, such as the quantum variational eigensolver [32].

Our routine can be improved or made more versatile in

a variety of ways. Our method currently does not affect the

amount of CNOT or Hadamard gates in the circuit. This

is because we only use the simplified ZX-diagram to track

cancellation of phase gates, instead of using it to extract a

new circuit directly. While direct circuit extraction is possible,

at this stage such a circuit often contains more Clifford gates

than we started out with. In future work, we aim to improve

our circuit extraction methods to produce better circuits di-

rectly from the ZX-diagrams.

We currently only consider ancilla-free optimization,

whereas it has been shown [7,9] that allowing additional

ancillae can greatly decrease the required T-count. A promis-

ing approach to introducing ancillae into our simplification

procedure is by treating the reduced ZX-diagram as a phase

polynomial circuit where every non-input corresponds to a

022406-8

REDUCING THE NUMBER OF NON-CLIFFORD GATES IN … PHYSICAL REVIEW A 102, 022406 (2020)

new ancilla in the |+〉 state and every non-output corresponds

to projecting (i.e., post-selecting) onto 〈+|. For example, by

”unfusing spiders” in the skeleton ZX-diagram depicted in

Fig. 1(c), we can obtain a post-selected circuit of the form

The middle part of the diagram can be described as a phase

polynomial (cf., Sec. II C), and hence can be further re-

duced by powerful phase polynomial techniques such as in

Refs. [8,9]. In order to obtain a computation that is determin-

istically realizable, it will be necessary to replace postselected

nodes with measurements and classical corrections, which

may be possible with relatively low overhead using techniques

such as those in Refs. [9,33,34]. While this can be done

straightforwardly for several small examples, we leave devel-

opment of an efficient algorithm for extracting deterministic

circuits with ancillae and classical control as a topic of future

work.

While the ZX-calculus forms a powerful language for rea-

soning about low-level gate sets (e.g., Clifford+T), it can only

reason about Toffoli and CCZ gates in an indirect manner, by

first translating those gates into Clifford+T representations.

The ZH-calculus [35] in contrast, makes it straightforward

to reason about mid-level quantum gates such as Toffoli and

CCZ gates. It then stands to reason that we can achieve

further optimizations for circuits defined in terms of these

mid-level gates (such as adders and classical oracles), by

first doing simplifications in the ZH-calculus, then translating

the diagram into a Clifford+T gate set, and doing further

simplifications in the ZX-calculus.

One final open question concerns the power of our circuit

equality validation scheme, using the ZX-calculus simpli-

fier. We have already noted that this scheme seems to be

powerful enough to validate any optimization made by our

simplification routine or the one found in Ref. [11]. It is

then an interesting question to explore the exact power (and

limitations) of this scheme.

Note added: Recently, Zhang and Chen reported nearly

identical numbers to those in Table I, using an independent

approach based on Pauli rotations [36]. It is a topic of ongoing

research as to why these seemingly quite different methods

produce the same T-counts.

ACKNOWLEDGMENTS

The authors are supported in part by AFOSR Grant No.

FA2386-18-1-4028. We thank E. Campbell and L. Heyfron

for useful discussions and for help running the Topt tool as

well as M. Amy for checking various optimized circuits in the

Feynman verifier [31]. We furthermore thank Q. Wang and N.

de Beaudrap for interesting discussions on the ZX calculus,

phase gadgets, and circuit optimization. Finally, we thank W.

Zeng and the Unitary Fund, as well as Cambridge Quantum

Computing, for their support of the PyZX project.

[1] S. Aaronson and D. Gottesman, Improved simulation of stabi-

lizer circuits, Phys. Rev. A 70, 052328 (2004).

[2] R. Raussendorf and J. Harrington, Fault-Tolerant Quantum

Computation with High Threshold in Two Dimensions, Phys.

Rev. Lett. 98, 190504 (2007).

[3] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, Surface

code quantum computing by lattice surgery, New J. Phys. 14,

123011 (2012).

[4] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards

fault-tolerant universal quantum computation, Nature (London)

549, 172 (2017).

[5] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, A meet-in-

the-middle algorithm for fast synthesis of depth-optimal quan-

tum circuits, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 32, 818 (2013).

[6] O. Di Matteo and M. Mosca, Parallelizing quantum circuit

synthesis, Quant. Sci. Technol. 1, 015003 (2016).

[7] M. Amy, D. Maslov, and M. Mosca, Polynomial-time T-depth

optimization of Clifford+ T circuits via matroid partitioning,

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 33, 1476 (2014).

[8] M. Amy and M. Mosca, T-count optimization and Reed-Muller

codes, Trans. Inf. Theory 65, 4771 (2019).

[9] L. E. Heyfron and E. T. Campbell, An efficient quantum com-

piler that reduces T count, Quantum Science and Technology 4,

015004 (2018).

[10] N. Abdessaied, M. Soeken, and R. Drechsler, Quantum circuit

optimization by Hadamard gate reduction, in International Con-

ference on Reversible Computation (Springer, Berlin, 2014), pp.

149–162.

[11] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, Au-

tomated optimization of large quantum circuits with continuous

parameters, npj Quantum Information 4, 23 (2018).

[12] R. Duncan, A. Kissinger, S. Pedrix, and J. van de Wetering,

Graph-theoretic simplification of quantum circuits with the ZX

calculus, Quantum 4, 279 (2020).

[13] B. Coecke and R. Duncan, Interacting quantum observables, in

Proceedings of the 37th International Colloquium on Automata,

Languages and Programming (ICALP), Lecture Notes in Com-

puter Science (Oxford University, Oxford, 2008).

[14] B. Coecke and R. Duncan, Interacting quantum observables:

categorical algebra and diagrammatics, New J. Phys. 13,

043016 (2011).

[15] M. Backens, The ZX calculus is complete for stabilizer quan-

tum mechanics, New J. Phys. 16, 093021 (2014).

[16] A. Kissinger and J. van de Wetering, PyZX: Large scale au-

tomated diagrammatic reasoning, in Proceedings 16th Interna-

tional Conference on Quantum Physics and Logic, Chapman

University, Orange, CA, USA., 10-14 June 2019, edited by B.

Coecke and M. Leifer, Electronic Proceedings in Theoretical

Computer Science Vol. 318 (Open Publishing Association,

2020), pp. 229–241.

022406-9

https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1038/nature23460
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1088/2058-9565/1/1/015003
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TIT.2019.2906374
https://doi.org/10.1088/2058-9565/aad604
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/16/9/093021

ALEKS KISSINGER AND JOHN VAN DE WETERING PHYSICAL REVIEW A 102, 022406 (2020)

[17] A. D. Bookatz, QMA-complete problems, Quant Info. Comput.

14, 2014 (2014).

[18] B. Coecke and A. Kissinger, Picturing Quantum Processes: A

First Course in Quantum Theory and Diagrammatic Reasoning

(Cambridge University Press, Cambridge, 2017).

[19] R. Penrose, Applications of negative dimensional tensors, in

Combinatorial Mathematics and its Applications (Academic

Press, New York, 1971), pp. 221–244.

[20] E. Jeandel, S. Perdrix, and R. Vilmart, A complete axiomati-

sation of the ZX calculus for Clifford+T quantum mechanics,

in Proceedings of the 33rd Annual ACM/IEEE Symposium on

Logic in Computer Science, LICS ’18 (ACM, New York, NY,

2018), pp. 559–568.

[21] A. Hadzihasanovic, K. F. Ng, and Q. Wang, Two complete

axiomatisations of pure-state qubit quantum computing, in Pro-

ceedings of the 33rd Annual ACM/IEEE Symposium on Logic

in Computer Science, LICS ’18 (ACM, New York, NY, USA,

2018) pp. 502–511.

[22] E. Jeandel, S. Perdrix, and R. Vilmart, Diagrammatic rea-

soning beyond Clifford+T quantum mechanics, in Proceed-

ings of the 33rd Annual ACM/IEEE Symposium on Logic

in Computer Science, LICS ’18 (ACM, New York, NY,

2018), pp. 569–578.

[23] R. Vilmart, A near-minimal axiomatisation of zx-calculus for

pure qubit quantum mechanics, in 2019 34th Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS) (IEEE,

Canada, 2019), pp. 1–10.

[24] M. Amy, P. Azimzadeh, and M. Mosca, On the controlled-NOT

complexity of controlled-NOT–phase circuits, Quant. Sci.e

Technol. 4, 015002 (2018).

[25] M. Backens, H. Miller-Bakewell, G. de Felice, L. Lobski, and

J. van de Wetering, There and back again: A circuit extraction

tale, arXiv:2003.01664 (2020).

[26] L. Heyfron, Topt circuit optimiser, https://github.com/Luke-

Heyfron/TOpt.

[27] M. Amy, T-par: A quantum circuit optimizer based on sum-

over-paths representations, https://github.com/meamy/t-par.

[28] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov,

optimizer: Benchmark quantum circuits before and after opti-

mization, https://github.com/njross/optimizer.

[29] A. Kissinger and J. van de Wetering, PyZX: A circuit op-

timisation tool based on the ZX-caculus, http://github.com/

Quantomatic/pyzx.

[30] N. Chancellor, A. Kissinger, J. Roffe, S. Zohren, and

D. Horsman, Graphical Structures for Design and Ver-

ification of Quantum Error Correction, arXiv:1611.08012

(2016).

[31] M. Amy, Towards large-scale functional verification of univer-

sal quantum circuits, in Proceedings of the 15th International

Conference on Quantum Physics and Logic, Halifax, Canada,

3-7th June 2018, edited by P. Selinger and G. Chiribella,

Electronic Proceedings in Theoretical Computer Science Vol.

287 (Open Publishing Association, 2019), pp. 1–21.

[32] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,

P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, A varia-

tional eigenvalue solver on a photonic quantum processor, Nat.

Commun. 5, 4213 (2014).

[33] R. Duncan and S. Perdrix, Rewriting measurement-based quan-

tum computations with generalised flow, in International Col-

loquium on Automata, Languages, and Programming (Springer,

Berlin, 2010), pp. 285–296.

[34] A. Kissinger and J. van de Wetering, Universal MBQC with

generalised parity-phase interactions and Pauli measurements,

Quantum 3, 134 (2019).

[35] M. Backens and A. Kissinger, ZH: A complete graphical

calculus for quantum computations involving Classical Non-

linearity, in Proceedings of the 15th International Conference on

Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018,

edited by P. Selinger and G. Chiribella, Electronic Proceedings

in Theoretical Computer Science Vol. 287 (Open Publishing

Association, 2019), pp. 23–42.

[36] F. Zhang and J. Chen, Optimizing T gates in Clifford+T

circuit as π/4 rotations around Paulis, arXiv:1903.12456

(2019) .

022406-10

https://doi.org/10.1088/2058-9565/aad8ca
http://arxiv.org/abs/arXiv:2003.01664
https://github.com/Luke-Heyfron/TOpt
https://github.com/meamy/t-par
https://github.com/njross/optimizer
http://github.com/Quantomatic/pyzx
http://arxiv.org/abs/arXiv:1611.08012
https://doi.org/10.1038/ncomms5213
https://doi.org/10.22331/q-2019-04-26-134
http://arxiv.org/abs/arXiv:1903.12456

