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1. Introduction 

Scatter storage (hash coding) techniques are used to 
minimize the time required to enter and retrieve infor- 
mation in tables. 'Rather similar techniques can be used 
for internal tables, such as the symbol tables of com- 
pilers and assemblers, and large files which are stored 
on random-access devices such as disks or drums. 
Some of these techniques are described in an excellent 
survey paper [5] and more recently in [1, 2, and 6]. 

Our aim is to describe a method for entering infor- 
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mation so that subsequent retrievals are very efficient. 
Suppose that each item consists of  an identifying name 
or key, which may be regarded as an integer, and an 
associated value. I f  m keys kx, - . -  , k m  are stored at 
addresses a(kl), . . . ,  a(km) in a table T of length 
n _> m (i.e. T(a(ki))  = kl for i = 1, . . .  , m) and a 
key k is given, the problem is to determine efficiently 
whether k is in T, and if so, to find a(k). In order to 
compare the efficiency of different algorithms, we count 
the number  of  fetches of  elements of T, i.e. probes, that  
they require. 

In practical applications it usually happens that  most 
entries in the table are looked up several times. Bell and 
K a m a n  [2] found that their hashing routine was en- 
tered 10,988 times, but with only 735 different keys, 
when a typical COBOL program was compiled. As a 
more extreme example, a table of  opcode mnemonics 
or reserved words may be built up once and thereafter 
used purely for retrieval [1]. Thus it is very important  to 
minimize the number  of  probes required to look up keys 
which are already in the table. The number  of  probes 
required to look up (and perhaps insert) keys which are 
not already there is not so important .  

The idea of our method, which is described in de- 
tail in Section 2, is to take more care than usual when 
keys are inserted, in an at tempt  to reduce the number  of  
probes required for subsequent lookups. Although we 
present the method as a modification of the " l inear  
quotient" method of [2], the same idea could be used to 
modify some other methods, e.g. the "quadra t ic  quo- 
t ient" method of [1]. 

In Section 3 we consider the number  of  probes re- 
quired to insert and look up entries with our method, 
and compare  our method with other methods. The re- 
suits of  Monte  Carlo experiments are described in 
Section 4. Some theoretical results are derived in Sec- 
tion 5, which could be skipped by the casual reader. In 
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Section 6 we draw some conclusions and mention a few 
practical considerations. Finally, an example of  a possi- 
ble FORTRAN implementation is given in the Appendix. 

2. The Method 

Let n > 3 be a prime number,  and let T be a table 
(i.e. an array) of length n containing rn nonzero keys 
k l ,  " ' "  , k m .  We shall describe how keys are looked 
up and inserted in T. In the fORTRAN subroutine given 
in the Appendix, subscripts run f rom 1 to n, but here 
it is simpler to assume that they run f rom 0 to n -- 1. 
Note that  whenever keys are added to T, the values 
associated with the keys must also be added to another 
table of length n, and  if keys are moved in T, the asso- 
ciated values must be moved appropriately. 

Let k be a nonzero integer key (k = 0 is not allowed 
because 0 is reserved to denote an empty space in T). 
As in the linear quotient method [2], integers r = R(k )  
a n d q  = Q(k),  sat isfying0 < r < n a n d 0  < q < n, 
are computed.  Any pseudorandom functions R and Q 
may be used: a good choice on a machine with reason- 
ably fast division is 

R(k )  = k mod n (1) 

and 

2. i + j < s: Insert k by setting T(hl,i) ~ T(h~) and 
T(hO ~-- k, i.e. the key at hi is moved to hl.j to make 
room for k at h i .  

Note that, once s is known, no more than ½s(s -- 1) 
probes (at locations h0,1, . . .  , h0,,-1, h~.l, . . .  , 
hi,a_2, . . . ,  ha-2.a) are needed to determine how to 
insert k. Two examples, showing the relevant entries in 
T, are illustrated in Figure 1. 

We shall describe the reason for moving the entry at 
hl to hl.j in case 2 above. Let 

m 

c = ~_, p (k i )  (6) 

be the total number  of probes required to look up all 
of  the keys k l ,  . . .  , k m  in T. I f  each entry has the 
same probabil i ty of  being looked up, then c should be 
kept as low as possible, because c /m  is just the expected 
number  of probes to look up an entry in T. Thus we 
should add a new key k so that  the resultant increase, 
A, in c is minimized. In case 1 above, p(k )  becomes 
s + 1, so A = s + 1. In case 2, p(k)  becomes i + 1 and 
p(T(h~)) increases by j ,  so A = i + j + 1. Thus, to 
keep A as low as possible, we should move the entry at 
h i i f i + j  < s. 

3. Comparison with Other Methods 

Q(k) = (k mod(n - 2)) + 1 .  (2) 

(We divide by.n - 2 rather than by n - 1 because n is 
odd, and as noted in [4], the parity of  k mod(n -- I) is 
the same as the parity of  k.) 

The algorithm for looking up k in T is the same as 
for the linear quotient method:  if 

h~ = (r + sq) m o d n  (3) 

for s > 0, then T(ho), T(hl), . . .  are inspected until 
for some s, either (a) T(h,) = k, so k is found (after 
p(k)  = s +  1 probes);  or (b) T(h,) = 0 ( o r s  > 0 a n d  
h, = h0), so k is not in T. ( I f s  > 0 and h, = h0, then 
because n is prime and 0 < q < n, the whole table 
has been searched.) 

Suppose that T is not full, k is not in T, and we 
wish to insert k. On looking up k, the above algorithm 
terminates with s >__ 0 such that T(ho) ~ O, . . . ,  
T(h,_l) ~ 0, and T(h,) = O. 

Define 

qi = Q(T(h~)) for i > 0, (4) 

and 

h i , j  = (hi + jqi)  mod n for j > 1. (5) 

Among all i a n d j  such that  T(hl, j)  = 0, choose i a n d j  
to minimize i + j ,  and in case of a tie, to minimize i. 
There are two possibilities: 
1. i + j >_ s: Insert k by setting T(h,) <---- k (as in the 
linear quotient  method).  

Several scatter storage methods have been proposed;  
see [5]. Among the best are the linear quotient method 
[2] and the quadratic quotient method [1]. Since the 
linear and quadratic quotient methods per form simi- 
larly, we shall compare  our method with the linear 
quotient method. 

I f  a table of  length n contains m entries, then the 
load factor  a is defined by o~ = m / ( n  + 1). I f  terms of 
order 1/n are neglected, then for the methods under 
consideration, the expected number  of  probes to make 
an entry or perform a lookup is a function of a alone. 
We assume that  the functions Q and R are " g o o d , "  i.e. 
that  all possible pairs (q, r) occur independently and 
with equal probability. We are interested in A(a),  the 
expected number  of probes to look up an entry which 
is in the table, and to a lesser extent in B(a),  the ex- 
pected number  of probes to look up a nonentry. 

For  the linear quotient method [1, 3, 5], 

B(a) = 1/(1 -- a) (7) 

and 

A ( a )  = ( l / a )  f B(/3)d¢~ (8) 

= ( l / a )  l o g ( l / ( 1  --  a ) ) .  

For  our method, B(a) = 1/(1 -- a) is the same as for 
the linear quotient method. It  is more difficult to derive 
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Fig. 1. Two  possible cases. 

C A S E  1. (s = 3) 

T(ho) # 0 ~ T(ho,t) # 0 ~ T(ho.2) # 0 

T(hl) # 0 ~ T(hLa) # 0 

T(h2) # 0 
$ 

T(h~) = 0 

C A S E  2. (s = 3, i = 0, j = 2) 

T(ho) # 0 ~ T(h0,m) # 0 ~ T(h0,2) = 0 

T(hl)  # 0 

T(h~) # 0 

T(hs) = 0 

Fig. 2. The  expected n u m b e r  o f  probes  to look up an  entry.  

1.5 

CHAINING 

Fig. 3. The expected number of probes as a function of e = 
1 - ~)i. 
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an expression for A(a). I f  a key is inserted when the 
load factor is 3, then the increase A in c will satisfy 

A > d (9) 

provided that 

T(ho) # O, T(h0.l) # 0, . . . ,  T(ho.d_l) # O, 
T(hl) # 0, . . . ,  T(hl,d_2) # O, . . . ,  T(ha_l) # O. 

Since the probability that any T(hi.s) # 0 is 3, we might 
conclude that (9) holds with probability 3 a(d+l)/2. Then 
the expected value of A would be ~,a~=0 3 d(d+l)/2, giving 

= ~ ae(a+l)/2/(1 + d(d + 1) /2)  (10) 
d=0 

= 1 + ~x/2 + a3/4 + a6/7 + . . . .  

However, the approximation (10) to A(a) is not quite 
correct because the probabilities P(T(h~,j) # O) are 
not independent. The lack of independence is caused by 
our rule for inserting keys in case 2 above. In Section 5 
we show that 

A(a) = 1 + a /2  + a3/4 + a ' /15  (11) 
- -  a5/18 + 2a6/15 + --- , 

and computation shows that the approximation (10) 
may underestimate A(a) by up to 5 percent. 

Figure 2 shows A(a) for our method, the linear 
quotient method, and the direct chaining method 
[3, 5]. It is clear that the different methods are ap- 
proximately equally efficient if a is small, but our 
method is appreciably more efficient than the linear 
quotient method if a is close to one. Direct chaining 
has different areas of application and is not really 
comparable to the other two methods. With direct 
chaining some space is taken up by links, but no links 
are required for our method. The space gained by not  
needing links may be used to increase the table size, 
reducing a and A(~). Thus, in applications where 
either method may be used, our method will be more 
efficient than direct chaining if there is only a small 
amount  of information associated with each key. 

Our method is certainly preferable to the linear 
quotient method if the table is nearly full; then A(a) 
is of order log n for the linear quotient method, whereas 
for our method (see Section 5), 

A(~x) < 2.5. (12) 

4.  S o m e  M o n t e  Car lo  E x p e r i m e n t s  

To test the theoretical results, we filled a table of 
length n = 4,999, using pseudorandom keys. As the 
table was being filled, we kept track of the total number 
of probes made, so the average number required to make 
an entry was easily computed. We also kept track of the 
total number of probes which would be required to 
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look up each entry once, so the average number  needed 
to look up an entry could be found. 

The experiment was repeated 1,000 times, and the 
results are summarized in Table I. A (a) is the expected 
number  of  probes to look up an entry for our method 
(as predicted in Section 5); A(a) is the observed mean 
number  of  probes to look up an entry; X(a) = ( I / a )  
log (1/(1 - a))  is the expected number  of  probes to 
look up an entry for the linear quotient method; /~(a )  
is the observed mean number  of  probes to make an 
entry for our method;  and 

;(a)  = (/~(a) - X(a))/(X(a) -- A(a))  (13) 

is the minimal number  of lookups per entry required to 
make our method preferable to the linear quotient 
method (considering the expected number  of probes 
required to insert na keys and then make ~na lookups). 

It is clear f rom the table t h a t / / ( a )  agrees very well 
with A (a). F rom the last column of the table, we see 
that  our method should be more efficient than the linear 
quotient method if an entry is looked up three or more 
times on the average, and this is true in most  practical 
applications. Monte Carlo experiments with n = 257 
and n = 997 gave similar results. (,,l(a) was slightly 
less than A(a) for the smaller values of  n.) 

5 .  T h e o r e t i c a l  R e s u l t s  

In Section 3 we derived the approximation (I0) for 
A(a) .  Here we briefly describe how a much better 
approximation may be found. Suppose that  n is large, 
so terms of order 1/n may be neglected. In the notation 
of Section 2, let k be a key at position he in the table, 
and let p~(a) be the probabili ty that T(h~+l) # O, . . .  , 
T(h,+v) # 0 for v >__ 0. To  derive (10) we assumed that  
po(a) = a ~, but this is not quite correct for v >__ 1. 
I f  6 is small and 6n new keys are inserted in the table 
according to the algorithm described in Section 2, then 

(a+6)  po(a--b~)--ap.(a) 
V--1 

= 6a ~ + (~/(1--a))  ~ . , a  ~-~ (p~(a)--p~+x (a)) (14) 
i ~ O  

v 

+ E P,,;(a) + 
i = 0  j = l  

where 

" ~'~+J~'~+J-~ (15) 
• " "p i+ l (p i - l - p j )p i -2  "'" po 

is the probabili ty that an entry is made after moving 
the key at h~ to h;.j. (see Section 2, case 2). Dividing 
both sides of (14) by 6, and taking the limit as 6 ~ 0, 
we have 

v - - 1  

(d/da)(ap,,) = (a~--ap~) / (1--a)  + ~_, a"- 'p,  
i=6 (16) 

v 

7"=1 i = 0  

Table I. Results of Monte Carlo Experiments 

0.20 1.1021 1.1021 1.1157 1.1548 2.85 
0.40 1.2178 1.2175 1.2771 1.4337 2.62 
o. 60 1.3672 I. 3668 1.5272 1.9248 2.48 
0.80 1.5994 1.5991 2.0118 2.9713 2.32 
0.90 1.8023 1.8020 2.5584 4.2740 2.26 
0.95 1.9724 1.9725 3.1534 5.8382 2.26 
o. 99 2.2421 2.2422 4.6517 10.3922 2.36 

for v = 1, 2, . . . .  With the initial conditions p~(0) = 0 
for v = 1, 2, . . .  , this infinite system of differential 
equations defines the functions p~(a) (except for 
p0(a) = 1). I f  the sum involving P~.s is omitted, then 
the system of equations has the solution p~(a) = a ~, 
which is correct for the linear quotient method. 

We want to find 

A(o~) = ( I / a )  F(/~) d/3, (17) 

where 

F(a) = 1 + a + a'px + a3plp2 .d[_ . . .  (18) 

is the expected increase A in c when a new key is inserted. 
I f  the system of differential equations (16) is solved 

by numerical integration, then it is convenient to write 
( 1 7 )  as 

(a /aa)A(a)  = (F(a) - A ( a ) ) / a  (19) 

and append (19) to the system of differential equations 
(with the initial condition A (0) = 1). 

The system of differential equations (16) and (19) 
may be solved by a formal  power series expansion, 
which gives 

A(a)  = 1 + a / 2  + a3/4 + aV15 -- a5/18 

+ 2a6/15 + 9a7/80 -- 293a8/5670 (20) 

- -  319a9/5600 + . . . .  

This gives a satisfactory approximat ion to A(a) unless 
a is close to 1. I f a  is close to 1, a large number  of terms 
must  be taken in (20), so it appears better to integrate 
the system numerically. It is worthwhile to make the 
change of variable 

a = 1 - -  e2 ( 2 1 )  

to avoid numerical difficulties because of the vertical 
tangent of A(a) at a = 1. The function A,(1 -- d) is 
quite well behaved for ~ E [0, 1]; see Figure 3. By 
numerical extrapolation to ~ = 0 we find that  

lim A(a) ~ 2.4941, (22) 

so the inequality (12) certainly holds for all a. 

6 .  C o n c l u s i o n  

We have shown that  our method compares  favorably 
with the linear quotient method,  and the difference is 
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considerable  if the hash table is nearly full, provided 
that most  entries are l o o k e d  up several t imes.  

So far we have not  ment ioned  h o w  entries may  be 
deleted,  and the theoretical  results derived above  are 
not  valid if they are. Care must  be taken when deleting 
an entry in order to ensure that other entries are still 
accessible.  The s implest  solution is to reserve a special 
key to denote  a deleted entry, although checking for this 
special key increases the cost  per probe.  The number of  
probes required will also increase if the table contains  
many  deleted entries. 

Finally, we note that the a lgori thm described above 
is suitable for use with a table stored in a computer 's  
high-speed,  random-access  m e m o r y .  If  the table is 
stored on a device such as a disk or drum, s o m e  modifi-  
cat ions may  be desirable. For example ,  suppose  that 
several keys  and their associated values can be stored 
on one disk track. After a probe has been made  on a 
certain track, another probe on that track may  be 
cheaper than a probe on a different track. Thus if a 
col l is ion occurs when we are attempting to make  a 
new entry on s o m e  track, it may  be worthwhi le  to try 
to make  the entry somewhere  on that track before 
making  a probe on s o m e  other track. Such a strategy 
would  increase the expected number of  probes but 
would  decrease the number  expected on different 
tracks. Similar considerat ions  apply if a computer  with 
a paged m e m o r y  is used. 

Appendix. A Fortran Subroutine 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C KAI 
C FOUND: 
C 
C NODE= 
C L O O K U P  
C 
C 
C 
C L O O K U P  

THIS ROUTINE WILL LOOK UP AND INSERT DR DELETE INTEGER KEYS 
IN THE TABLE KEYTAB, VALUES ASSOCIATED WITH THE KEYS MAY BE 
STORED IN THE TABLE KVTAB. THE ROUTINE IS DESIGNED TO BE 
EFFICIENT( EVEN IF THE TABLE IS NEARLY FULL, PROVIDED MOST 
ENTRIES ARE LOOKED UP SEVERAL TIMES, 
GLOBAL VARIABLES: 

KEYTAB: AN ARRAY OF LENGTH LEN FOR THE KEYS. IT MUST BE 
INITIALIZED TO ALL ZEROS BEFORE THE FIRST CALL OF 
HASH. LEN AND tEN2 = LEN - 2 ARE SET IN A DATA 
STATEMENT BELOW, LEN MUST BE AN ODD PRIME, 

KVTAB: AN ARRAY OF LENGTH LEN FOR THE VALUES ASSOCIATED WITH 
THE KEYS. KEYTAB AND KVTAD ARE IN COMMON /HTABS/, 

PARAMETERS= 
KEY: AN INTEGER KEY INOT O OR - I t  AS THESE VALUES ARE 

RESERVED FOR EMPTY SPACES AND DELETED E N T R I E S I .  
RETURNED AS THE ADDRESS OF THE KEY IN KEYTABw OR ZERO, C 
A FLAG RETURNED TRUE IFF THE KEY WAS ALREADY IN THE 
TABLE. 
AN INDICATOR: 
ONLY (MODE = 1) 
IF THE KEY IS IN THE TABLEt THE ADDRESS KA IS 
REIURNEO ITHE ASSOCIATED VALUE IS AT KVTAB(KAI), 
OTHERWISE KA = 0 IS RETURNED. 
AND ENTER IHODE = 2I  

C CHECK FOR AN EMPTY SPACEe A DELETED ENTRY, OR A HATCH, 
IF ( K T , E Q . O t  GO TO 30 
IF ( K T , E Q . - [ )  GO TO 6 0  
IF (KT.EQoKEV) GO TO 60 
IC = lC * 1 

C COMPUTE ADDRESS OF NEXT PROBE. 
KA = KA ÷ I~  
IF IKA,GT,LENI KA = KA - LEN 

C SEE IF WHOLE TABLE HAS BEEN SEARCHED. 
IF (KA.NE,|R) GO TO 20 

C THE KEY IS NOT IN THE TABLE. 
30 FOUND = ,FALSE. 

C RETURN WITH KA = O UNLESS AN ENTRY HAS TO BE MADE. 
IF ( ( M O D E , E O . 2 | . A N D . ( I C * L E . L E N Z I . A N D . | K E Y ° N E . O I , A N D .  I K E Y . N E . - I I )  

GO TO TO 
KA = O 
RETURN 

C A DELETED ENTRY HAS BEEN FOUND. 
~0 IA = KA 

C COMPUTE ADDRESS OF NEXT PROBE. 
50 [A = IA * IQ 

IF (IA,GT.LEN) IA = [A - LEN 
IS = KEYTABIIA) 

C CHECK FOR AN EMPTY SPACE OR A COMPLETE SCAN OF THE TABLE. 
IF I I I S , E Q . O I . O R . ( I A . E Q . I R ) )  GO TO 30 

C CHECK FOR A MISMATCH OR DELETED ENTRY. 
IF I I I S , N E . K E Y ) , O R , I I S . E Q . - [ ) I  GO TO 50 

C KEY FOUND. MOVE IT AND THE ASSOCIATED VALUE TO SAVE PROBES 
C ON THE NEXT SEARCH FOR THE SAME KEY, 

KVTABIKA) = KVTAB(IA) 
KEYTAB(KA) = IS 
KEYTAB( IA I  = - 1  

C THE KEY IS IN THE TABLE. 
60 FOUND = .TRUE.  

C D E L E T E  IT  IF MODE = 3 .  
IF (MODE.EQ,3I  KEYTABIKAI = - I  
RETURN 

C LOOK FOR THE BEST WAY TO MAKE AN ENTRY. 
70 IF I I C . L E . O I  GO TO 120 

C SET DEL IF A DELETED ENTRY HAS BEEN FOUND. 
DEL = K I . N E . O  
IA = KA 
I S  = O 

C COMPUTE THE MAXIMUM LENGTH TO SEARCH ALONG CURRENT CHAIN.  
8 0  I X  = I C  - IS 

C COMPUTE INCREMENT JQ FOR CURRENT CHAIN, 
JO = M O D I I A B S I K E Y T A B I I R I | t  LEN2I • 1 
JR = IR 

C LOOK ALONG THE CHAIN.  
90 JR = JR * JO 

IF ( J R . G T , L E N )  JR = JR - LEN 
KT = KEYIABIJR( 

C CHECK FOR A HOLE tAN EMPTY SPACE OR A DELETED ENTRYI .  
IF ( I K T * E Q . O I , O R , I K T , E Q , - I ) I  GO TO l O O  
IX = IX - I 
IF ( I X . G T . O l  GO TO 90 
GO TO l i D  

C SKiP IF THIS IS AN EMPTY SPACE AND A DELETED ENTRY HAS 
C ALREADY BEEN FOUND, 

I O O  IF ( D E L , A N D , I K T . E Q , O ) )  GO TO l i D  
C CHECK FOR A DELETED ENTRY° 

IF I K T , N E . O )  DEL = ,TRUE. 
C SAVE LOCATION OF HOLE, 

IA = JR 
KA = IR 
IC = IC - IX 

C MOVE DOWN TO THE NEXT CHAIN.  
I10 I S  = IS + I 

IR = IR + I 0  
IF ( [ R . G T . L E N I  IR = IR - keN 

C GO BACK IF  A BETTER HOLE HIGHT STILL BE FOUND, 
IF ( IC .GT, IS )  GO TO BO 

C SKIP IF THERE IS NOTHING TO MOVE. 
IF ( I A . E Q . K A I  GO TO IZO 

C MOVE AN OLD ENTRY AND ITS ASSOCIATED VALUE TO HAKE ROOM F U R  
C THE NEW ENTRY* 

K V T A B I I A )  = KVTAB|KAI  
KEYTABI IA I  = KEYTABIKA|  
ENTER THE NEW KEYv BUT NOT I T S  ASSOCIATED VALUE, 

120 KEYTABIKAI = KEY 
RETURN 
END 

C IF THE KEY IS IN THE TABLEt THE ADDRESS KA IS 
C RETURNED, OTHERWISE THE KEY l S  ENTERED AT K E Y T A B I K A I ,  Received November 1971; revised January 1972 
C THE CALLING PROGRAM MUST ENTER THE ASSOCIATED VALUE 
C AT KVTABIKA~.  IF AN ENTRY CAN NOT DE MADE BECAUSE 
C THE TABLE IS FULL (OR BECAUSE KEY = O OR - l i p  
C KA = 0 IS RETURNED, 
C LOOKUP AND DELETE (MODE = 31 References 
C IF THE KEY IS IN THE TABLEt IT IS DELETED AND ITS 
C FORMER" ADDRESS KA IS RETURNED, IF THE KEY IS NOT 
C THERE, KA = 0 IS RETURNED, (THE SUBROUTINE CAN BE 
C S I H P L I F I E D  CONSIDERABLY IF KEYS ARE NEVER DELETED, I 1. Bell, J . R .  The quadratic quotient method: a hash code 

SUBROUTINE HASH IKEVt  MODEL KA, FOUND( eliminating secondary clustering. Comm. ACM13, 2 (Feb. 1970), 
LOGICAL FOUNDw DEL 

C THE NEXT 3 CARDS MUST BE CHANGED IF THE TABLE LENGTH IS NOT 4 9 9 9 .  107-109. 
COMMON /HTADSZ KEYZAB(49991,  KVTAB(69991 2.  Bell, J.R., and Kaman, C.H. The linear quotient hash code. 
DATA LEN 1~999/ 
DATA LENa /499Tl Comm. A C M  13, 11 (Nov. 1970), 675-677. 
lC = -I 3. Johnson, L.R. An indirect chaining method for addressing on 

C COMPUTE ADDRESS OF FIRST PROBE [ I R )  AND INCREMENT l I D ) .  
C ANY INDEPENDENT PSEUDO-RANDOM FUNCTIONS OF THE KEY MAY BE USED, secondary keys. Comm. ACM4, 5 (May 1961), 2 1 8 - 2 2 2 .  
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