Reducing Traffic Generated by Conflict Misses in Caches’

Pepijn J. de Langen
pepijn @ce.et.tudelft.nl

Ben Juurlink
benj@ ce.et.tudelft.nl

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
P.O.Box 5031, 2600 GA Delft, The Netherlands

ABSTRACT

Off-chip memory accesses are a major source of power con-
sumption in embedded processors. In order to reduce the
amount of traffic between the processor and the off-chip
memory as well as to hide the memory latency, nearly all
embedded processors have a cache on the same die as the
processor core. Because small caches dissipate less power
and are cheaper than large caches, a small cache is prefer-
able to a large cache. Furthermore, because set-associative
caches consume more power than direct-mapped caches, a
direct-mapped cache is preferable to a set-associative one.
Small, direct-mapped caches generally incur many conflict
misses, however. In this paper we propose and evaluate a
structure called the Conflict Detection Table (CDT). This
table can be used to determine if a memory access is ex-
pected to hit the cache. If a hit is expected and a miss
occurs, then a conflict is detected and appropriate action
can be taken. In addition, we propose two cache structures
that employ this technique: the Bypass in Case of Conflict
(BCC) cache and the Sub-block in Case of Conflict (SCC)
cache. The BCC cache bypasses the cache when a conflict
is detected, whereas the SCC cache fetches a sub-block of
the missing cache block in such a case. Experimental re-
sults using several embedded workloads show that the BCC
and SCC cache reduce the amount of traffic significantly in
many cases. Furthermore, overall they incur the same num-
ber of cache misses as the direct-mapped cache. This shows
that the BCC and SCC cache reduce the amount of power
consumed with a negligible reduction in performance.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories

*This research was supported in part by the Netherlands
Organisation for Scientific Research (NWO).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CF’04, April 14-16, 2004, Ischia, Italy.

Copyright 2004 ACM 1-58113-741-9/04/0004 ...$5.00.

235

General Terms

Design, Measurement, Performance

Keywords

Caches, conflict misses, power reduction, embedded proces-
sors

1. INTRODUCTION

Off-chip memory transfers consume a significant amount
of power, often more than the datapaths and the control
units [2]. In order to limit the amount of off-chip memory
traffic, it is essential that embedded processors make effec-
tive use of the on-chip cache. Embedded processors often ex-
ploit a small, direct-mapped cache, because small caches are
more power efficient and are cheaper than large caches, and
because set-associative caches dissipate more power than
direct-mapped caches [11]. Small, direct-mapped caches,
however, generally produce many conflict misses and, as a
result, generate a significant amount of processor-memory
traffic [3].

In this paper we present a novel technique to detect and
eliminate conflict misses in the first level cache. The struc-
ture we propose is called the Conflict Detection Table (CDT).
The CDT contains the tag part of the addresses referenced
by recently executed load/store instructions and is indexed
by the lower-order bits of the program counter. The idea
behind the CDT is the following. If an entry corresponding
to a load/store instruction is found in the CDT and the data
tag stored in this entry matches the tag of the current data
address, a (spatial) hit is expected because the referenced
word was loaded in the cache the previous time this instruc-
tion was executed. Furthermore, if a hit is expected but the
cache access yields a miss, then a conflict is detected because
the word must have been replaced by another instruction.

We propose two cache structures that employ the CDT.
The first, called the Bypass in Case of Conflict (BCC) cache,
bypasses the cache when a conflict is detected. The second,
called the Sub-block in Case of Conflict (SCC) cache, is a
sector cache that fetches only the missing sector (or sub-
block) when a conflict is detected. Both the BCC as well as
the SCC cache are direct-mapped.

This paper is organized as follows. Section 2 briefly dis-
cusses related work. In Section 3 we explain how recurring
conflict misses can be detected and appropriate action can
be taken. This is experimentally verified in Section 4. Con-
clusions are given in Section 5.



2. RELATED WORK

Jouppi [8] proposed employing a small (consisting of four
to eight entries), fully associative victim cache in order to re-
duce conflict misses in direct-mapped caches. Blocks evicted
from the primary cache are not immediately placed in the
level-2 cache but are given a second chance in the victim
cache. The victim cache is fully associative, however, and
fully associative caches consume more energy than direct-
mapped caches. Memik et al. [10] proposed several tech-
niques to reduce the energy dissipated by cache organiza-
tions equipped with a victim cache.

The Dual Data Cache proposed by Gonzdlez et al. [4] in-
cludes a mechanism that detects if a load instruction inter-
feres with itself. This happens, for example, when a vector is
accessed repeatedly and the vector is larger than the cache.
In such a case, the vector displaces itself from the cache.
This situation is even worse when the vector is accessed with
a stride unequal to one and the stride and the cache size are
not co-prime, because in this case not all blocks are used to
cache the vector. This mechanism, however, does not de-
tect cross-interference, i.e., it does not discover situations in
which data is replaced by data referenced by a different load
instruction.

Johnson et al. [7] try not to evict a block if it is more heav-
ily used than the arriving block that generated a miss. To do
so they divide the memory into regions called macroblocks
and employ a table called the Memory Address Table (MAT)
that contains information about how often each macroblock
is used. If the MAT indicates that the block to be replaced
is more heavily used than the arriving block, the arriving
block is not stored in the cache. The MAT behaves like a
cache, and it appears that it must be rather large in order
to be effective. In the future we intend to compare the per-
formance attained by the MAT with that of the BCC and
SCC caches.

Tam [12] proposed the Allocation By Conflict (ABC) re-
placement policy. In this organization a 1-bit counter is
associated with each cache block, which is increased (de-
creased) each time an acces to this block yields a miss (hit).
A block is evicted from the cache only when two consecue-
tive accesses produce a miss. A comparison between this
cache and the BCC and SCC caches will also be part of
future work.

There are also static (compiler) approaches aimed at re-
ducing conflict misses. For example, Catthoor et al. [1] an-
alyze the lifetimes of array variables. Arrays that are life
simultaneously are placed in memory in such a way that
they cannot conflict in the cache.

3. CONFLICT DETECTION AND
ELIMINATION

A conflict miss occurs when a memory word is referenced
twice but is in between replaced by another word. Conflict
misses occur frequently in direct-mapped caches, because
each memory word is mapped to only one cache location.
Consider, for example, the following simple loop

for (i=0; i<n; i++)
alil = blil+c[il;
If the differences between the base addresses of the arrays

a, b, and c are a multiple of the cache size, each a[i], b[i],
and c[i] all map to the same cache line and each will replace

236

Program Counter Data Address

tag index

l [ [ ] l [

pajoadxa ny @4

conflict detected

cache miss

Figure 1: Conflict Detection Table (CDT)

the other in the cache so that there is no chance to exploit
the spatial locality exhibited by this code. Such ‘ping-pong’
effects will degrade the cache performance severely.

To detect conflict misses in direct-mapped caches, we pro-
pose a small structure called the Conflict Detection Table
(CDT). The principle idea behind the CDT is that when
consecutive executions of a load/store instruction access the
same cache line, a cache hit is expected for all but the first
access. If a hit is expected but a cache miss occurs, a differ-
ent instruction must have accessed a word that is mapped
to the same cache line.

As illustrated in Figure 1, the CDT is a cache that is in-
dexed by the lower-order bits of the program counter. Every
entry contains the higher-order bits of the instruction ad-
dress to determine if an access produces a hit and the tag of
the address referenced the previous time the corresponding
load/store instruction was executed. Each time a load/store
instruction is executed, the CDT is accessed to determine if
there is an entry for the current instruction. If no entry is
found, one is allocated and the data tag field is set to the
tag of the current address. If an entry is found, the data tag
stored in this entry is compared to the tag of the current
address. If they match, we expect that the requested data
is already present in the cache, because it was fetched the
last time this instruction was executed. From this it follows
that if a cache miss is encountered, the requested data must
have been replaced by a different instruction and a conflict
is detected. In any case, the tag of the current address is
stored in the CDT.

A conflict can only be detected when a cache miss occurs.
The information about possible conflicts, therefore, does not
need to be available until after the tag comparison. This
implies that the CDT will not increase the time to hit the
cache. Furthermore, since the amount of required logic to
implement the CDT is fairly low, it will not consume much
power.



1.2

1.1 B
Q1 —
ttr:LU 0.9 S S [ adpcm-dec
+ Il adpcm-enc
G 0.8 ml [ = [Jipeg-dec
e 0.7 4 e — - []jpeg-enc
=] 0.6 L | Il mpeg2-dec
g . [ g721-dec
S 0.5 — - W g721-enc
v 04 || | [ pegwit-dec
'E Il pegwit-enc
© 0.3 = - Il gsm-dec
8 0.2 || L [Jgsm-enc

[Jepic
0.1+ ] r [ unepic
O — I
256B 1kB 4kB 16kB
cache size

Figure 2: Amount of traffic produced by the SCC cache, relative to the amount of traffic produced by a

conventional, direct-mapped cache.

When a conflict is detected, it is not known in advance
which instruction will be the first to re-use this cache line.
Therefore, for reducing the miss rate, it is not certain what
will be most efficient: replacing the current line or bypassing
the cache. For reducing the amount of traffic, however, it
is almost always more efficient to fetch a smaller number of
bytes instead of a whole cache line. Traffic can, therefore,
be reduced by fetching only the requested word instead of
the whole cache line if a conflict is detected.

We propose two cache structures that employ the DCT
to detect and eliminate conflict misses. Both caches are
direct-mapped but have the additional possibility to bypass
the cache or to store only part of the requested cache line.
The first one employs sub-block caching [6] and is called the
Sub-block in Case of Conflict (SCC) cache. It fetches and
stores only the missing sub-block when the CDT indicates
a conflict miss. The second one uses cache bypassing and
is called the Bypass in Case of Conflict (BCC) cache. If
the CDT detects that the cache line has been replaced by
another instruction, this cache will not store the following
words referenced by this instruction, as long as the instruc-
tion references the same cache line.

4. EXPERIMENTAL VALIDATION

In this section we experimentally verify if the BCC and
SCC cache reduce the amount of off-chip memory traffic
without a significant performance degradation.

4.1 Experimental Setup

As benchmarks, we employed the MediaBench [9] bench-
marking suite, which consists of a number of audio and video
codecs as well as encryption and decryption routines. These
benchmarks are representative of embedded multimedia ap-
plications. The MiBench [5] benchmarking suite, which is
specifically aimed at embedded systems and also contains
workloads from other application domains, was not available
at the time this project was started. Moreover, MediaBench
and MiBench have several benchmarks in common.

A modified version of the sim-safe simulator from the

237

SimpleScalar toolset was used to generate memory traces.
These traces were fed to our trace-driven cache simulator,
which generates several statistics. From these statistics, the
number of transferred bytes can be computed, as well as the
miss rate.

The cache size ranges from 256 bytes to 16 kilobytes. All
caches have a line size of 32 bytes, are direct-mapped, and
employ the write-back policy. The sub-block size of the SCC
cache is equal to the word size. For the Conflict Detection
Table, we have used a direct-mapped structure with 128 en-
tries. We measured the total amount of traffic between the
cache and main memory, including request (address) traffic.

For traffic, we will show the relative changes between the
new (BCC/SCC) and the original direct-mapped caches.
For miss rates, however, relative differences do not provide
proper information. If, for example, in one case the miss rate
increases from 1% to 2%, and in another case it increases
from 40% to 80%, the performance penalty is far more se-
vere with the latter one than with the first one. Therefore,
one should consider absolute differences between the miss
rates of two caches rather than relative differences.

4.2 Results

Figure 2 and Figure 3 depict the amount of traffic pro-
duced by the SCC cache and the BCC cache, respectively,
for various benchmarks and cache sizes. In both figures,
the amount of traffic is normalized to the amount of traffic
generated by the conventional, direct-mapped cache.

It can be seen that in most cases both the SCC cache
and the BCC cache produce significantly less traffic than
a direct-mapped cache. Specifically, in 85% of all bench-
mark/cache size combinations, the SCC cache produces less
traffic than the direct-mapped cache. The BCC cache im-
proves upon the direct-mapped cache in 67% of all cases.
Especially when the cache size is small, a traffic reduction
of more than 50% can be achieved by the BCC as well as
the SCC cache. On average, the amount of traffic produced
by the SCC cache is 25% smaller than the amount of traf-
fic generated by the direct-mapped cache. For the BCC



1.7

1.6
é 1.5
c 14 [ adpcm-dec
“ 1.3
+ 1'2 Il adpcm-enc
‘s 11 - [[]jpeg-dec
2] o [Jjpeg-enc
> L | Il mpeg2-dec
o 0.9 1 —
g 08 - | [ g721-dec
S 0'7 B W g721-enc
) 0.6 | ] pegwit-dec
= 0.5 — Il pegwit-enc
= 0.
S 0.4 Il gsm-dec
8 0.3 = gsm»enc

0.2 - [Jepic

0.1 4 [ unepic

0 — | |
256B 1kB 4kB 16kB
cache size

Figure 3: Amount of traffic produced by the BCC cache, relative to the amount of traffic produced by a

conventional, direct-mapped cache.

cache, the average reduction is 21%. For larger cache capac-
ities, fewer benchmarks benefit from the proposed conflict
detection technique. In a small number of cases, the BCC
and the SCC cache actually produce more traffic than the
direct-mapped cache. In one case, namely for the mpeg2-dec
benchmark using the BCC cache of 16 kilobytes, the BCC
cache produces 75% more traffic than the direct-mapped
cache. A possible explanation is that if a certain instruc-
tion decides to bypass the cache, all further executions of
this instruction will also bypass the cache as long as this in-
struction remains in the CDT and accesses the same cache
line. However, the data stored in the cache may no longer
be needed. The SCC cache never generates more than 11%
as much traffic as the direct-mapped cache.

The efficacy of the BCC and SCC cache is clearly very
dependent on the type and amount of locality that is exhib-
ited by an application. For some benchmarks, in particular
pegwit-dec and pegwit-enc, they do not significantly pro-
duce less traffic than direct-mapped caches. In most cases,
however, they reduce the amount of off-chip traffic consider-
ably and, hence, the amount of energy consumed by an ap-
plication. We further remark that although the BCC cache
produces the least amount of traffic for some combinations
of benchmarks and cache sizes, it is less effective than the
SCC cache since it also increases the amount of traffic sig-
nificantly in some cases.

The results discussed above show that the BCC and the
SCC cache reduce the amount of off-chip memory traffic.
However, if they would increase the miss rate significantly,
no energy reduction would be achieved. To validate this,
Figure 4 and Figure 5 depict the miss rates generated by the
direct-mapped cache, the BCC cache, and the SCC cache,
for cache capacities of 1kB and 4kB, respectively. It can
be seen that in most cases the miss rates of the BCC cache
and the SCC cache are comparable to the miss rate of the
direct-mapped cache. In some cases, however, the miss rate
of the BCC cache is significantly larger than the miss rate of
the direct-mapped cache. In one case, for mpeg2-dec using
a cache size of 1kB, it is 16% larger. As explained above, in

238

[I Conventional [l BCC [Jscc

Cache

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15 —
0.1
0.05

miss rate

=

J9p-wddpe
Jus-wddpe
J9p-badl
Jua-badl
J9p-zbadw
29p-12Lb
Jua-1z/b
J3p-umbad
Jua-Imbad
J9p-wsbh
Jus-wsbh
Jida
Jidaun

benchmark

Figure 4: Miss-rates of various caches of 1kB

this case bypassing the cache is clearly not effective. This
also explains why the BCC produces the large amount of
traffic for the mpeg2-dec benchmark. The SCC cache never
incurs more than 8% more misses than the direct-mapped
cache. Furthermore, in several cases the SCC cache per-
forms better than the direct-mapped cache. On average,
they perform equally.

We conclude that the SCC cache is the most efficacious
cache structure. It generates significantly less off-chip traffic
than a direct-mapped cache, while performing equally as
well.

5.  CONCLUSIONS

We have proposed a technique which can detect and is
often able to reduce the negative effects of recurring con-
flict misses. The proposed technique employs a small struc-



[T Conventional [l BCC [Jscc

Cache

0.23

0.2
0.18
0.15
0.13

0.1
0.08
0.05
0.03

miss rate

E

J9p-wddpe
Jua-wddpe
J9p-badf
Jua-badf
J9p-zbadw
J9p-17/b
oua-17/b
J8p-mbad
Jua-Imbad
Jua-wsh
oida
s ] | |

benchmark

Figure 5: Miss-rates of various caches of 4kB

ture called the Conflict Detection Table (CDT). This conflict
detection mechanism does not require much logic and we,
therefore, estimate that it will not increase the cycle time.
Consequently, it can easily be applied to on-chip caches that
lack associativity. We have proposed two caches that em-
ploy the Conflict Detection Table: the Bypass in Case of
Conflict (BCC) cache and the Sub-block in Case of Conflict
(SCC) cache.

On average, the BCC cache decreases the amount of pro-

duced traffic significantly compared to the conventional direct-

mapped cache. It was also shown, however, that this cache
sometimes increases the amount of traffic. Furthermore, the
miss rate can suffer badly from inefficiently bypassing the
cache. The SCC cache also decreases the amount of pro-
duced traffic considerably in most cases. Only in a few cases,
the SCC produced more traffic than a conventional direct-
mapped cache. Furthermore, these increases are small. In
addition, the miss rate of the SCC cache is never consid-
erably higher than that of the conventional direct-mapped
cache. On average, the SCC incurs as many cache misses
as the conventional direct-mapped cache. We conclude that
using the Conflict Detection Table to fetch sub-blocks into
the cache instead of whole cache lines, significantly decreases
the amount of produced traffic, and hence also the amount
of power consumed.

As future work, we intend to compare these results with
other dynamic caching techniques. Furthermore, a detailed
power model should be used to provide more detailed in-
formation on the actual energy reduction. The conflict de-
tection can be extended with counters to provide a better
decision on what to cache. Finally, tuning the size and as-
sociativity of the Conflict Detection Table may improve the
amount of produced traffic and the miss rate.

239

REFERENCES

F. Catthoor, K. Danckaert, C. Kulkarni,

E. Brockmeyer, P. Kjeldsberg, T. Van Achteren, and
T. Omnes. Data Access and Storage Management for
Embedded Programmable Processors. Kluwer Academic
Publishers, 2002.

F. Catthoor, F. Franssen, S. Wuytack,

L. Nachtergaele, and H. De Man. Global
Communication and Memory Optimizing
Transformations for Low-Power Signal Processing
Systems. In Proc. VLSI Signal Processing Workshop,
1994.

P. de Langen and B. Juurlink. Off-Chip Memory
Traffic Measurements of Low-Power Embedded
Systems. In Proc. ProRISC Workshop on Clircuits,
Systems and Signal Processing, pages 351-358, 2002.
A. Gonzilez, C. Aliagas, and M. Valero. A Data
Cache with Multiple Caching Strategies Tuned to
Different Types of Locality. In Proc. Int. Conf. on
Supercomputing, pages 338-347, 1995.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,

T. Mudge, and R. Brown. MiBench: A Free,
Commercially Representative Embedded Benchmark
Suite. In Proc. Annual Workshop on Workload
Characterization, 2001.

J. Hennessy and D. Patterson. Computer Architecture
(3rd ed.): A Quantitative Approach. Morgan
Kaufmann Publishers Inc., 2003.

T. L. Johnson and W. mei W. Hwu. Run-Time
Adaptive Cache Hierarchy Management via Reference
Analysis. In Proc. Int. Symp. on Computer
Architecture, pages 315-326, 1997.

N. Jouppi. Improving Direct-Mapped Cache
Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers. In Proc.
Int. Symp. on Computer Architecture, pages 364-373,
1990.

C. Lee, M. Potkonjak, and W. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communicatons Systems. In Int.
Symp. on Microarchitecture, pages 330-335, 1997.

G. Memik, G. Reinman, and W. Mangione-Smith.
Reducing Energy and Delay Using Efficient Victim
Caches. In Proc. Int. Symp. on Low Power Electronics
and Design, pages 262—265. ACM Press, 2003.

G. Reinman and N. Jouppi. An Integrated Cache
Timing and Power Model. Technical report, COMPAQ
Western Research Lab, Palo Alto, California, 1999.

E. Tam. Improving Cache Performance Via Active
Management. PhD thesis, University of Michigan, Ann
Arbor, 1999.



