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Abstract

Nowadays in current cities the increasing levels of pollution emissions and fuel consumption derived from the road
traffic directly affect to the air quality, the economy, and specially the health of citizens. Therefore, improving
the traffic flow is a mandatory task in order to mitigate such critical problems. In this work, we propose a Swarm
Intelligence approach for optimizing signal light timing programs in metropolitan areas. In this way, we can
improve the traffic flow of vehicles with the global target of reducing their fuel consumption and gas emissions (CO

and NOx). In this article we optimize the timing programs of signal lights and analyze their effect in pollution
by following the standard HBEFA as traffic emission model. In concrete, we are focused here on two large and
heterogeneous urban instances located in the cities of Malaga and Seville (in Spain). In comparison with timing
programs of signal lights predefined by experts (close to real ones), our proposal obtains significant reductions in
terms of the emission rate and the total fuel consumption.
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1. Introduction

In current metropolitan areas, the increasing
levels of air contamination and fuel consumption
derived from the urban road traffic have become
highly serious problems that directly affect to the

C. Olivera acknowledges CONICET, the ANPCyT for
Grant PICT 2011 Category I-B and SeCyT (UNS) for

Grant PGI 24/N026.

Preprint submitted to Elsevier Science July 2, 2012



air quality, the economy, the building/structure
maintenance, and especially to the health of cit-
izens. Improving the traffic flow of vehicles is a
mandatory task in order to mitigate such critical
issues. Traditionally, traffic congestion has been
dealt with changes in urban infrastructures (e.g.
sense of traffic in streets or roundabouts), although
this is usually not possible and always expensive.
Recently, a number of works in the literature
proposed the optimization of timing programs of
signal lights as one of the most influent methods
to improve the flow of vehicles [20,22,23,28].
In this sense, the use of automatic intelligent

methods have demonstrated their usefulness to
the optimization of timing programs of traffic
lights [3,23]. However, authors in general have
addressed specific cases of study with few inter-
sections and small number of signal lights [5],
and most of them apply ad-hoc algorithms de-
signed only for one specific instance [3,23]. The
use of artificial intelligent techniques for large and
heterogeneous urban areas is still an open issue.
Moreover, the optimization of timing programs
from the perspective of the reduction of gas emis-
sion and hydrocarbons consumption have not ever
been dealt, to the best of our knowledge.
All this motivated us to propose in this work an

optimization strategy, based in a Particle Swarm
Optimization (PSO) algorithm [16], to find suc-
cessful signal light timing programs with regards
to two main factors: emissions of CO and NOx,
plus the global amount of fuel consumed by vehi-
cles. Several features led us to use PSO instead of
other evolutionary methods:
– First of all, using a Fitness Cloud preliminary
analysis [31], we tested that PSO is able to
tackle the signal light timing problem (SLTP)
efficiently. A description of this analysis is given
in Section 5.3.

– Second, the PSO is a well-known algorithm
shown to perform a fast converge to quasi-
optimal solutions [8]. This is a highly desirable
feature for the optimal timing program of traffic
lights, where new adaptive (and automatically
computed) schedules should be required to face
updating events in traffic scenarios.

– Third, the Standard PSO is easy to implement,
and requires few tuning parameters [8,16].

– Fourth, PSO is a kind of Swarm Intelligence al-
gorithm that can inform us on future issues to
deal with this problem by using independent
agents for online adaptation (a promising line of
research).
Coupled with PSO, we use in our optimization

strategy the microscopic simulator SUMO (Simu-
lator of Urban Mobility) [4] for the evaluation of
optimized timing programs codified as vector so-
lutions. Such timing programs are used in signal
lights that control the flow of vehicles through a
given scenario (urban instance). As done in other
similar initiatives [13,14,21], we use a traffic simu-
lator since it provides an immediate and continu-
ous source of information about the vehicles flow.
In the case of SUMO, we can also work with the
traffic emission model HBEFA (HandBook Emis-
sion FActors) [15] for road transport in order to rec-
ollect information about the emission rates and the
fuel consumption. This information is used by PSO
to evaluate the timing programs of signal lights.

As main contributions of this work, we can men-
tion the following ones:
– We propose an optimization strategy for the re-

duction of emissions in large and heterogeneous
urban areas with hundreds of vehicles and signal
lights (high dimensionality and complexity).

– We use real information: we have modeled two
urban scenarios located in the cities of Seville
andMalaga, in Spain. Our optimization strategy
has been then evaluated on realistic instances.

– In comparison with predefined (by experts) tim-
ing programs close to real ones, our PSO will be
shown to obtain quantitative improvements in
terms of the two main objectives: reducing the
emission rates and the global fuel consumption.

– We consider for the first time the use of a swarm
intelligent approach coupled with the traffic
emission model HBEFA [9], for the reduction of
pollution and fuel consumption in urban areas.
The structure of this article is as follows. In Sec-

tion 2, a review of related works in the literature
is presented. Section 3 explains the SUMO simula-
tion tool and the HBEFA emission model. Then in
Section 4, our optimization approach is described.
Experiments and analysis of results are detailed in
Section 5. Finally, concluding remarks and future
work are given in Section 6.
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2. State of the Art

In the last decade, a number of works can be
found in the related literature that deal with the
traffic congestion problem by means of accurate
signal lights timing programs [6,18,23,24,26,29]. In
all these approaches, global trip times and wait-
ing times of vehicles in traffic lights are optimized,
although none of them considered the influence
of solutions on emissions and fuel consumption
factors. On the contrary, a few of works can be
found that incorporated emission/consuming fac-
tors into the traffic control strategies by enhancing
the traffic flow [11,20] with different results. In [11],
just for one intersection (crossroad), the improve-
ment of traffic lights timing programs and their
impact on the final emission rates were examined.
In [20], the authors proposed a signal time model
that reduce the vehicles’ delays, the fuel consump-
tion, and the gas emissions by considering the cy-
cle length and the green time of traffic lights in
one intersection in Nanking city (China). In [7],
a microscopic simulator was used for the evalua-
tion of traffic control strategies in a sub-network
selected from the Haidian district of Beijing. This
last work was focused on analyzing the relation be-
tween vehicles’ emissions and their instantaneous
speeds/accelerations, although traffic signal opti-
mization was not considered and only two control
strategies were studied.
At the same time, advanced algorithms have

emerged as accurate techniques for solving traf-
fic lights scheduling and traffic control prob-
lems [23,26]. However, the environmental impact
of the traffic flow is ignored or partially considered.
An example of this can be found in [32] where
a Genetic Algorithm (GA) was used for the air
pollution reduction considering the optimization
of traffic signals in one intersection. In [33], the
authors showed how the cycle programs of traffic
lights affect the gas concentrations on a given road
intersection by using Neural Networks.
Concerning Swarm Intelligence approaches, few

of them can also be found for the schedule of
traffic lights. One of the most representative was
proposed in [6], where the authors applied a PSO
for training a fuzzy logic controller located in each

intersection by determining the effective time of
green for each phase of the traffic lights. Peng
et al. [25] presented a PSO with isolation niches
to the schedule of traffic lights. In that work, a
purely academic small instance with a restrictive
one-way road with two intersections was used to
test the PSO. More recently, an Ant Colony Op-
timization (ACO) [12] has been proposed to the
signal light timing. In this work, two interesting
uncertainty and convergence analysis were per-
formed, although in the scope of one simple traffic
intersection. In these last works, environment fac-
tors were not considered at all, and only academic
instances were studied.

All these approaches focused on different aspects
of the traffic light scheduling. As a summary, four
limitations can be found in general:
– They tackled limited vehicular networks with

very few traffic lights and a small number of
other elements (roads, intersections, directions,
etc.). In contrast, our PSO can find optimized
timing programs for large scenarios with hun-
dreds of traffic lights, vehicles, and other city el-
ements.

– They were designed for only one specific sce-
nario. Some of them studied the influence of
the traffic density. Our approach can be eas-
ily adapted to different scenario topologies and
cities.

– In most of the cases, existing works were not
compared against other techniques. Our PSO is
compared here against two different approaches:
a Random Search algorithm (to show that it
is intelligent), and the cycle program genera-
tor provided by SUMO (that uses human expert
knowledge).

– Previous works did not consider the optimiza-
tion of environmental factors. Our approach con-
siders a series of factors (CO,NOx, and fuel con-
sumption) that, coupled with pure traffic flow in-
dicators (vehicles arriving at destinations, global
trip times, etc.), provide the expert with opti-
mized signal light timing programs: a small step
to the future smart city.

3



… … … … … … 40 5 40 10 36 6 22 … … … … … … …

intersection id=“i+1” intersection id=“i”

phase duration=“36” Solution: a particle
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algorithm

Current state of intersection

i =“rrrr GGr rrrr GGr”

Figure 1. Timing program (phase duration) of signal lights within intersections. Integer codification inside a PSO solution

3. SLTP: Timing and Emission Models

A urban traffic scenario is basically composed
by: intersections, traffic lights, roads, directions,
and vehicles moving through their own different
routes. The traffic lights are located in intersec-
tions and control the flow of vehicles by following
their programs of color states, and timing cycles or
phase durations. In this context, all traffic lights
located in the same intersection are governed by a
common program, since they have to be necessar-
ily synchronized for traffic security. In addition, for
all the traffic lights in an intersection, the combina-
tion of color states during a cycle period is always
kept valid [19] and it must follow the specific traffic
rules of intersections, in order to avoid vehicle col-
lisions and accidents. In this sense, we work only
with valid combinations of color states for each in-
tersection, which are kept feasible during the opti-
mization process. This avoids invalid combinations
of color states and restricts the optimization ap-
proach to work only with feasible states.
From an environmental point of view, since dif-

ferent timing programs lead to different flow of ve-
hicles, their underlying speeds, accelerations, and
decelerations potentially result in different levels
of emissions [33]. In short, decelerations occur be-
fore red lights, whereas green lights cause the ac-
celeration of vehicles. Therefore, traffic emissions
are likely influenced by timing program of traf-
fic lights [7]. In this context, timing and emission
models are detailed in the following subsections.

3.1. Timing Model

Our main objective is to find optimized timing
programs (TP) for all the signal lights located in a
given urban area with the aim of reducing the emis-
sions and the fuel consumption of vehicles. Specifi-
cally, timing programs are refereed to the time span
that a set of signal lights (in a junction) keep their
color states. At the same time, these programs have
to coordinate signal lights in adjacent intersections
with the aim of improving the global flow of vehi-
cles circulating according to traffic regulations.

For this reason, we have focused on amicroscopic
view of themanagement of traffic agents but, at the
same time, we want to evaluate the behavior of all
the vehicles in the complete urban scenario during
a given time interval (macroscopic analysis).

An example of this mechanism can be observed
in Figure 1, where the intersection with id="i"

contains seven phases with durations 40, 5, 40, 10,
36, 6, and 22 seconds (simulation steps). In these
phases, the states have twelve signals (colors), cor-
responding each one of them to one of the twelve
signal lights located in the studied intersection.
These states are the valid ones generated by SUMO
(Simulation of Urban Mobility) [4] attending to
real traffic rules. In this instance, the fifth phase
contains the state “Grrr GG Grrr GG” meaning
that six traffic lights are in green (G), and the six
others are in red (r) during 36 seconds. The fol-
lowing phase changes the state of the four traf-
fic lights to other valid combination, for example,
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“yGGG rr yGGG rr” (y means yellow) during 6
seconds, and so on. The last phase is followed by
the first one, and this cycle (timing) is repeated
during all the analysis time. All the intersections in
the complete scenario perform their own timing cy-
cles of phases at the same time, hence conforming
the global schedule of signal lights. As commented
before, computing TP consists in optimizing the
combination of phase durations of all traffic lights
(in all intersections) with the aim of improving the
global flow of vehicles.
A final indication in this sense concerns the be-

havior of the vehicles involved in a SUMO simu-
lation, that depends on both road directions and
speed. SUMO employs a space-discrete extended
model as introduced by Krauß et al. [17]. In this
model, the streets are divided into cells and the ve-
hicles circulating through the streets go from one
cell to another if both, the sense and the direc-
tion are allowed. The speed of each vehicle depends
on its distance to the vehicle in front of it, with
a preestablished maximum speed typical of urban
areas (50 km/h in our study).

3.2. HBEFA: Road Traffic Emission Model

Many research efforts have attempted to develop
emission of road transportation models. Due to
their simplicity, a macroscopic point of view has
become very popular [2] in this sense. This kind of
model computes fuel consumption (FC) and emis-
sions factor (EF) based on average link speeds in a
global way. That is, changes of vehicle’s speed and
accelerations levels are computed as mean values
for the whole network. For this reason,manymicro-
scopic models have been proposed. In particular,
HBEFA (Handbook of Emission Factors for Road
Transport) provides emission factors for all current
vehicle categories: PC (Passenger Car), LDV (light
delivery vehicles), HDV (heavy duty vehicles), ur-
ban buses, motor cycles, and for a wide variety of
traffic situations. The HBEFA allows experts to se-
lect different types of emission factors (EFs). These
EFs depend on many variables of vehicles such as:
size, type, cylinder capacity, fuel mode of the vehi-
cle (gasoline or diesel), type of exhaust technology
(with/without catalytic converter), driving style

(acceleration and speed), road gradient, and the
maintenance [9].

SUMO version 0.12.0 [4] allows us to simulate
vehicular environmental factors based on HBEFA.
Therefore, it is possible to define vehicles with in-
formation about acceleration, deceleration times,
maximum velocity, and even their HBEFA-based
emission class (PC, LDV, HDV, etc). Then, after
a simulation procedure with SUMO, we can ob-
tain information about CO, NOx, fuel consump-
tion, and other pollutant agents to evaluate the
obtained timing programs by our PSO. For this
study, we retrieve the information about CO and
NOx emissions, and fuel consumption.

4. Optimization Strategy

This section describes our optimization ap-
proach to compute the optimal timing programs
of traffic lights. It details the solution encoding,
the fitness function, and finally the global opti-
mization procedure.

4.1. Solution Encoding

In our approach, the optimal TP is encoded by
means of a vector of integers (see Figure 1) follow-
ing the SUMO structure of programming cycles
(timing), where each element represents a phase
duration of one state of the signal lights involved
in a given intersection.

In spite of its simplicity, this solution represen-
tation allows our PSO to take into account the de-
pendency of variables (epistasis), not only between
phase durations of a state of traffic lights in an in-
tersection, but also between traffic lights in adja-
cent ones.

4.2. Fitness Function

In order to evaluate each timing program solu-
tion (s) generated by our PSO, the following fitness
function is minimized, which considers the infor-
mation obtained from the events happening during
the traffic flow analyzed:
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Ftp(s) = (CO+NOx+Fu)(s)+ω·

(

Gtt(s) + (C(s)× St)

V 2(s) + P

)

(1)

The main objective is to maximize the number
of vehicles that reach their destinations (V) and
minimize both, emission levels (CO andNOx) and
fuel consumption (Fu), during the simulation time
(St). The global trip time of all the vehicles (Gtt)
has to be also minimized. The number of vehicles
that arrive to their destinations is squared (V 2(s))
in order to prioritize it over the other terms and
factors. Obviously, the number of vehicles that do
not reach their destinations and remain circulat-
ing C(s) after the simulation has to be minimized.
The global trip time concerns an aggregation of the
trip time of vehicles that reach their destinations
during the simulation process. On the contrary, ve-
hicles with uncompleted travels C(s) consume all
the simulation time St and then, an additional pe-
nalization is induced by multiplying these two fac-
tors. It is worth mentioning that terms in Equa-
tion 1 are in the range of values [1e+ 0 · · · 5e+ 2]
and therefore, additional weighting values were not
considered in this formulation. Only the value ω
which is set to 0.5 is considered in order to en-
hancing environmental terms in the overall fitness
computation.
Finally, the balanced proportion of colors in the

phase duration of the states should promote those
states with more traffic lights in green located in
streets with a high number of vehicles circulating,
and traffic lights in red located in streets with a
low number of vehicles moving. The proportion of
colors in each phase (ph) of all the tl intersections
can be formulated as follows:

P =

tl
∑

k=0

ph
∑

j=0

sk,j ·

(

Gk,j

rk,j

)

, (2)

where Gk,j is the number of traffic lights in
green, and rk,j is number of traffic lights in red in
the phase state j (with duration sk,j) and in the
intersection k. The minimum value of redk,j is 1
in order to avoid division by 0.

4.3. Optimizing Timing Programs with PSO

The optimization strategy is composed by two
main parts: the Particle Swarm Optimizer (PSO),
and the simulation procedure with the SUMO traf-
fic microsimulator.

The PSO algorithm [16] is a population-based
metaheuristic inspired by the social behavior of
birds within a flock, and was initially designed for
continuous optimization problems. In PSO, each
potential solution to the problem is called particle
position and the population of particles is called
the swarm. We have followed the specification of
the Standard PSO 2011 [10]. In this algorithm,
each particle position xi is updated each iteration
g by means of the Equation 3.

xi
g+1 = xi

g + vig+1 (3)

where term vig+1 is the velocity of the particle,
given by the Equation 4.

vig+1 = w · vig +Grig − xi
g +HS(Gr, ∥ Gr − xg ∥) (4)

with

Grig =
xi
g + p′ig + l′ig

3
(5)

and

p′ig = xi
g + c · (pig − xi

g) (6)

l′ig = xi
g + c · (lig − xi

g) (7)

In this formula, pig is the best solution that the

particle i has seen so far, lig is the best particle of
a neighborhood of k other particles (also known as
the social best) randomly (uniform) selected from
the swarm, and w is the inertia weight of the par-
ticle (it controls the trade-off between exploration
and exploitation). The acceleration coefficient c >
1 is a normal (Gaussian) random value with µ =
1/2 and ρ = 1/12. This coefficient is sampled anew
for each component of the velocity vector. Finally,
HS is a distinctive element of the Standard PSO
2011 with regards to the previous ones. It is basi-
cally a random number generator within a Hyper-
sphere space, with Gr as center of gravity. That is,
Gr is calculated as the equidistant point to p′g, l

′

g,
and xg. This is a new rotation invariance mecha-
nism provided by the Standard PSO 2011 to (pos-

6



sibly) avoid the intrinsic coordinate dependence
showed by all previous versions of PSO [10].
Since the optimal SLTP requires solutions en-

coded with a vector of integers (representing
phase durations), we have used the quantisation

method provided in the standard specification of
PSO 2011 [10]. This quantisation is applied to
each new generated particle (in Equation 3), and
transforms the continuous values of particles to
discrete ones. It consists of a Mid-Thread uniform
quantiser method as specified in Equation 8. The
quantum step is set here to ∆ = 1.

Q(x) = ∆ · ⌊x/∆+ 0.5⌋ (8)

Algorithm 1 Standard PSO 2011 for the SLTP
1: initializeSwarm()
2: while g < maxIterations do

3: for each particle xi
g do

4: bng=bestNeighbourSelection(xi
g , n)

5: vig+1=updateVelocity(w, vig , xg , ϕ1, pg , ϕ2, bng )

6: xi
g+1=Q(updatePosition(xi

g , v
i
g+1))

7: evaluate(xi
g+1) //SUMO Simulation and Eq. 1

8: pig+1=update(pig)
9: end for

10: end while

Algorithm 1 describes the pseudo-code of the
Standard PSO 2011 for the optimal SLTP. The al-
gorithm starts by initializing the swarm (Line 1).
The corresponding elements of each particle (solu-
tions) are initialized with random values represent-
ing the phase durations. These values are within
the time interval [5, 60] ∈ Z+, and constitute the
range of possible time spans (in seconds) a traffic
light can kept a signal color (only green or red, the
time for yellow is a constant value set in sumo to
5 seconds). Then, for a maximum number of iter-
ations, each particle flies through the search space
updating its velocity and position (Lines 4, 5, and
6), it is then evaluated (Line 7), and its personal
best position pi is also updated (Line 8). Finally,
the best particle found so far is returned.
The simulation procedure is then used for as-

signing a quantitative quality value (fitness) to the
solutions, thus leading to optimized timing pro-
grams tailored to a given urban scenario instance.
This task is tackled by the SUMOmicroscopic traf-
fic simulator, which accepts new timing programs

of traffic lights and compute the required values in
Equation 1.

When our PSO generates a new solution, it
is used for updating the timing program. Then,
SUMO is started to simulate the instance with
streets, directions, obstacles, traffic lights, vehi-
cles, speed, routes, etc., under the new defined
schedule of timing programs. After the simulation,
SUMO returns the global information necessary
to compute the fitness function. Each solution
evaluation (Line 7 at Algorithm 1) requires a sim-
ulation procedure since vehicle routes in SUMO
are generated deterministically. Each new timing
program is then loaded for each simulation proce-
dure. In this sense, what real traffic light human
schedulers actually demand are constant timing
programs for specific areas and for preestablished
time periods (rush hours, nocturne periods, etc.),
which led us to take this focus.

5. Experiments and Results

In this section we present the experimental
framework followed to assess the performance of
our PSO algorithm for creating optimized TPs.
First, we describe the scenario instances, the im-
plementation details of our approach, and the pa-
rameter settings. Later, results and comparisons
to other techniques are presented. A study of the
resulting timing programs is also carried out in
order to show the actual benefits of using our pro-
posal and their impact into the living environment
of urban areas.

5.1. Urban Scenario Instances

As we are interested in developing an optimiza-
tion solver capable of dealing with close-to-reality
generic urban areas, we have generated two sce-
narios by extracting actual information from real
digital maps. These two scenarios cover similar ar-
eas of approximately 0.75 km2, and they are phys-
ically located in the cities of Malaga and Seville,
in Spain. The information used concerns: traffic
rules, traffic element locations, buildings, road di-
rections, streets, intersections, etc. Moreover, we
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Figure 2. Process of creation of real-world instances for study. Urban centre of Malaga (36◦43’01”N 4◦25’58”O) and Seville
(37◦38’14”S 5◦97’23”O) instance views. After selecting the area of interest (Google Earth view), it is interpreted by means

of the OpenStreetMap tool, and then exported to SUMO format

have set the number of vehicles circulating, as well
as their speeds by following current specifications
available in the Mobility Delegation of the City
Hall of Malaga (http://movilidad.malaga.eu/).
This information was collected from sensorized
points in certain streets obtaining a measure of
traffic density in several time intervals. In the case
of Seville we consulted the Mobility Delegation of
Seville Council (http://www.trajano.com/).
In Figure 2, the selected areas of the two cities

are shown with their corresponding snapshots of
Google Earth, OpenStreetMap, and SUMO. This
figure illustrates the process of generating the traf-
fic network instances. The specific features of these
areas are as follows:
(i) Malaga. In the zone between the city cen-

ter and the harbor. This second scenario
(Figure 2, top) is composed by streets with
different widths and lengths, and several
roundabouts. It contains junctions including
from 4 to 16 traffic lights each one. The main
avenues found in this area are: Andalućıa,
Américas and Aurora avenues, Hilera, and
Lehmberg Ruiz streets.

(ii) Seville. Located in the popular district of
Nervión in the city center of Seville (Figure

2, bottom), it is made up of intersections
between streets including each one from 4 to
17 traffic lights. The complete area shows a
representative organization with almost all
the junctions connecting between three and
four streets. The main avenues crossing this
neighborhood are: Menéndez Pelayo, Ed-
uardo Dato, San Francisco Javier, Montoto,
Galván, and Buhaŕıa.

We have chosen these two scenarios since they
constitute different metropolitan areas with het-
erogeneous structures and traffic organizations.
The number of studied intersections is 70 for the
two instances, with 250 circulating (PC and LDV
types) vehicles through each one of them. We have
to notice that in spite of having in both instances
a similar number of intersections (70), the num-
ber of signal lights is not exactly the same, since
they contain different intersection shapes (304
traffic lights in Malaga and 368 ones in the case of
Seville).

In the study, each vehicle performs its own route
from its own origin to destination circulating with
a maximum speed of 50 km/h (typical in urban ar-
eas). The routes were previously generated by fol-
lowing random paths. The simulation time was set
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Table 1
SUMO and PSO parameters

Solver Phase Parameter Value

Simulation Time (steps) 500 s

Area 0.75 km2

SUMO Details Number of Vehicles 250

Vehicle Speed 0-50 km/h

Vehicles Types PC/LDV

N. of Studied Intersections 70

Max. N. of Evaluations 9,000

Swarm Size 30

Particle Size (N. Traffic Lights)
368

304

PSO Parameters Local Coefficient (ϕ1) 2.0

Social Coefficient (ϕ2) 2.0

Maximum Inertia (wmax) 0.5

Minimum Inertia (wmin) 0.1

Velocity Truncation Factor (λ) 0.5

to 500 seconds (iterations of microsimulation) for
each instance. This time was determined as a max-
imum time for a car to complete its route, even if
it must stop in all the traffic lights along its way.
Vehicles are located in their own origins and they
move from the initial simulation steps. When a ve-
hicle leaves the scenario network, it reaches its des-
tination and it will not appear again.

5.2. Experimental Setup

We have used the implementation in C++ of
the PSO algorithm provided by the MALLBA [1]
framework. The simulation phase is carried out by
executing (for the evaluation of particles) the traf-
fic simulator SUMO release 0.12.0 for Linux. The
experiments were performed in the computing fa-
cilities of the Department of Computer Science of
the University of Malaga (Spain). Most of them are
equipped with modern dual core processors, 1GB
RAM, and Linux Debian O.S. They operate under
a Condor [30] middleware platform that acts as a
distributed task scheduler (each task dealing with
one independent run of PSO).
For each scenario instance we have carried out 30

independent runs of our PSO. The swarm size was
set to 30 particles performing 300 iteration steps,
hence resulting a number of 9,000 solution evalu-
ations (SUMO simulations) per run and instance.
As previously mentioned, the particle size directly
depends on the number of traffic lights of each in-

Algorithm 2 Pseudocode of RANDOM
1: generate(x) //initial solution
2: i← 0
3: while i < Max Number of Evaluations do

4: generate(xi) //new solution
5: if f(x) ≥ f(xi) then

6: x← xi

7: end if

8: i← i+ 1
9: end while

stance. The remaining parameters are summarized
in Table 1. These parameters were set after prelim-
inary executions. Specific parameters of PSO were
selected as recommended in the study about the
convergence of this algorithm in [8].

Additionally, we have implemented a Ran-
dom Search algorithm, also in the scope of the
MALLBA library, with the aim of establishing
comparisons against our PSO. Thus, by perform-
ing the same experimentation procedure with PSO
and Random Search algorithm we expect to obtain
some insights into the power of our proposal (how
much intelligent it is). The pseudocode of the Ran-
dom Search algorithm (RANDOM from now on)
is shown in Algorithm 2. The maximum number
of evaluations was set to 9, 000, as for PSO.

SUMO provides a deterministic algorithm for
generating cycle programs (SCPG). Then we also
compare the cycle programs obtained by our PSO
against the ones obtained by SUMO. This last al-
gorithm basically consists in assigning to the phase
durations of the traffic logics fresh values in the
range of [6,31], according to three different factors:
(i) the proportion of green states in the phases,
(ii) the number of incoming lanes to the intersec-

tion, and
(iii) the braking time of the vehicles approaching

to their traffic lights.
Further information about this algorithm can be

found in [4].

5.3. Evolvability of PSO on the SLTP Landscape

Previous to the performance experimentation,
we have carried out a Fitness-Cloud analysis [31]
with the aim of verifying whether our optimization
strategy with PSO is able to successfully tackle the
signal light timing problem or not, for the scenario
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particle calculation versus new generated fitness

instances worked here. Therefore, for the execution
of our PSO that resulted with the median perfor-
mance (out of 30 independent runs), we plotted in
Figure 3 the mean fitness (Mean f(n)) of particles
involved in the new particle calculation (local best,
current particle, etc. in Equations 3 and 4) versus
the fitness value (f ′) of the new generated particle
(solution). This plot is related to the Malaga in-
stance, although similar plots can be observed for
Seville urban area.
From Figure 3, the most interesting observation

concerns the regression line which has been cal-
culated from all the points in the fitness cloud.
We can observe that the regression line shows a
positive slope with regards to the diagonal line.
This means that, in most of cases, new generated
particles obtained better fitness values than the
previous ones, from which they were calculated.
Therefore, an improvement in solutions is generally
reached throughout the PSO iteration process, and
hence, applying our PSO to the signal light timing
is advantageous. Let us go and see how much.

5.4. Results and Comparisons

In this section, we describe the quality of timing
programs obtained by our PSO in contrast to the
ones obtained with RANDOM and SCPG signal
light schedules. First, we analyze the individual
performance of our optimization strategy. Then,
we compare it against other techniques. Later, we
analyze the results in the domains of gas emissions
and fuel consumption.
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Figure 4. Trace progress of the best fitness values in 30
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Figure 5. Swarm fitness histogram through 300 iterations
in the optimization of the Seville scenario

5.4.1. Algorithm Performance

In order to show a first view of the internal be-
havior of our PSO, Figure 4 plots the trace progress
of the 30 independent runs of our technique when
solving Seville instance. In these plots, we can ob-
serve that, for all executions of our algorithm, the
computed solutions are close each other in quality,
but different among them. In fact, final solutions
are in the range of fitness value between 105 and
99. A similar behavior can be observed for Malaga
where the range of solution fitness are between 99
and 84.5. In terms of convergence and robustness,
we can then offer the experts with a varied set of
accurate timing programs at a first stage of opti-
mization.

Concerning each individual execution, a rep-
resentative example can be observed in Figure 5
where the absolute frequency of the fitness distri-
bution of the entire swarm through the optimiza-
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Figure 6. Boxplot representation of distributions results of Malaga and Seville. The results of SCPG (human experts solution)
are represented with a � point since this technique always returns the same deterministic result for a given instance

tion process is plotted. In concrete, it illustrates
the trace run with best performance out of the
thirty independent runs of our PSO tackling the
Seville instance. We can notice that the initial
particles are diverse and with bad fitness values
(≃ 115), although during the second half of the
optimization process they convergence to solutions
with desirable low fitness values (≤ 99).

5.4.2. Comparisons

Table 2 contains the maximum, median, mini-
mum, mean, and standard deviation of the fitness
values obtained (out of 30 independent runs) by
the proposed PSO for the two scenario instances:
Malaga and Seville. Additionally, the values ob-
tained by the RANDOMalgorithm, and the results
of the SCPG are also provided in order to allow
comparisons. We can clearly observe in this table
that PSO got the best results (marked in boldface).
Furthermore, the maximum values of our proposal
are lower than the mean values showed by both,
RANDOM and SCPG algorithms.
With the aim of providing these comparisons

with statistical meaning we have applied different
t-test [27] to the numerical values and distribu-
tions of the results. We have used this parametric
test since the resulting distributions show the con-
ditions of normality and equality of variances. The
confidence level was set to 95% (p-value=0.05),
which allows us to ensure that all these distribu-
tions are statistically different if they result in p-

value<0.05.
In effect, the t-test of independent samples ap-

Table 2
Median fitness values obtained by PSO, RANDOM, and

SCPG for Malaga and Seville instances.

Instance Value PSO RANDOM SCPG

Maximum 9.90E+01 1.09E+02 1.02E+02

Median 9.19E+01 1.08E+02 1.02E+02

Malaga Minimum 8.34E+01 1.05E+02 1.02E+02

Mean 9.16E+01 1.07E+02 1.02E+02

Std. 3.77E+00 1.52E+00 0.00E+00

Maximum 1.05E+02 1.19E+02 1.26E+2

Median 1.03E+02 1.17E+02 1.26E+2

Seville Minimum 9.90E+01 1.17E+02 1.26E+2

Mean 1.03E+02 1.18E+02 1.26E+2

Std. 2.30E+00 9.74E-01 0.00E+0

plied to the mean values of the distributions of
PSO and RANDOM (Table 2) resulted in p-values

≪ 0.05, for the two instances: Malaga and Seville.
In a similar way, the t-test of a simple sample

applied to the mean of the distribution of PSO
against the simple value of SCPG also resulted
in p-values ≪ 0.05. Therefore, we can claim that
our PSO obtained statistically better results than
the other two compared algorithms: RANDOM
(stochastic search) and SCPG (deterministic).
This also means that our algorithm is intelligent
and competent when compared to greedy infor-
mation and human expert guidelines.

From a graphical point of view, Figure 6 shows
the boxplots of the distribution results of PSO,
and RANDOM. The results of SCPG are repre-
sented with a � point since this technique always
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Figure 7. Average CO and NOx concentrations emitted by vehicles circulating through Malaga and Seville urban areas.
Concentrations correspond to the best performed timing programs (particle) for each PSO iteration. The distribution of
results are concerning 10 independent runs (out of 30) of PSO for each instance. Right most bargraphs represent the average
results for the two gas emissions factors for PSO and SCPG

returns the same deterministic result. As expected,
the distributions of PSO show better lower quar-
tiles, medians, and upper quartiles thanRANDOM
and SCPG. For Malaga instance, the RANDOM
algorithm obtained worse results than SCPG. In
the contrary, for Seville the results of RANDOM
are better than the one of SCPG. Possibly, in spite
of the pure stochastic search performed by RAN-
DOM, the fitness guidance incorporated in this al-
gorithm makes it to perform better than SCPG for
the most complex instance (Seville), with a higher
number of signal lights (368).

5.5. Analysis of Environmental Factors

In this section, we analyze the impact of using
our resulted timing programs with regards to the
studied environmental factors. Then, we show here
the real advantage of using our PSO in practice,
able of computing realistic and comprehensive sig-
nal light schedules.

5.5.1. Emission Factors

As we commented in the introduction, in this
work we are mainly focused on CO andNOx emis-
sion factors. These two chemical compounds are
the most commonly found in tailpipe’s concentra-
tion tests [7] of vehicles with gasoline and diesel
engines, respectively. In the case of gasoline cars,
HC (Hydroxide Carbonate) emissions can be also
detected, although in a very lower concentration
than CO [7] molecules. Therefore, we have opted
to work here with CO and NOx by following the
HBEFA emission model.

Figure 7 shows the evolution of CO (top) and
NOx (bottom) concentrations registered in opti-
mized timing programs throughout the iteration
progress of our PSO, for the two urban instances:
Malaga and Seville. In this figure, the average dis-
tribution of emission results of 10 selected inde-
pendent runs (out of 30) performed by PSO are
shown. The mean results of these distributions are
additionally represented in bargraphs (right) along
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Figure 8. Mean vehicle’s fuel consumption of PSO solutions each iteration step (30 independent runs) for Malaga and

Seville instances. The mean of consumed fuel with SCPG timing programs are also represented with dotted lines

with SCPG results.
A first observation in Figure 7 concerns the opti-

mization process ofCO andNOx factors registered
throughout the PSO operation. We can clearly see
that, at initial steps of iteration, generated timing
programs (by PSO) returned high levels of CO and
NOx for the two scenario instances (dark color).
However, as the optimization process reached the
middle steps (≃150 iterations) the gas emission
concentrations became lower, to stabilize at final
steps (clear color). As expected, refined timing pro-
grams at final steps led the vehicles to circulate flu-
idly, which minimized their accelerations, deceler-
ations, and waiting times in traffic lights and traf-
fic jams.
As a second observation, the comparison of the

resulting CO and NOx mean factors in Figure 7
(right) reveals that, for the two urban instances,
the emission concentrations are always lower for
the timing programs optimized by PSO than in
SCPG. It is worth mentioning that the improve-
ment reached by PSO (compared to SCPG) is
higher in Seville than in Malaga, both of them
quite high, in any case. The improvement consists
on 11% in Malaga and 23.1% in Seville with re-
gards to CO, and 15% in Malaga and 29.3% in
Seville with regards to NOx. Probably, the differ-
ent network topologies (more intricate in Seville)
joined with the different number of signal lights
(368 in Seville and 304 in Malaga) led optimized
timing programs to decrease the emission factors
largely in Seville, although properly in Malaga.

5.5.2. Fuel Consumption

As shown in [33], most of fuel consumption in
vehicles is registered during velocity changes of ac-
celeration, deceleration, and waiting times. There-
fore, improving the traffic flow should reduce the
amount of fuel consumed by all vehicles in a given
urban scenario.

In order to test this last effect in the scope of the
studied scenario instances, we have plotted in Fig-
ure 8 the progressive reduction of fuel consumption
obtained from timing programs throughout the op-
timization procedure of our PSO. The mean fuel
consumed with SCPG timing programs are also
represented with dotted lines. We can see that for
Malaga and Seville, there is a progressive reduction
in the combustible used by circulating vehicles. It
is noticeable that, in the case of Seville, the im-
provement in fuel consumption of PSO can be ob-
served just from the very initial timing programs,
with regards to SCPG. In the case of Malaga, the
fuel consumption is also reduced during the opti-
mization process, although obtaining better values
than SCPG occurs only after 55 iterations.

Final fuel consumption values are anyway ad-
vantageous for both instances. For Malaga, PSO
obtained a reduction of 6% with regards to SCPG
timing program. Even better values where reached
for Seville, where an improvement of 18.2% was
computed with regards to SCPG. Therefore, we
can claim that optimized timing programs (ob-
tained automatically by our PSO) are able to re-
duce the mean fuel consumption by improving the
global traffic flow.
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Figure 9. Simulation traces of the traffic flow (cars as triangles) resulting from timing programs generated by both, SCPG

and PSO in Seville. The pictures show snapshots at the end of the simulation time. The reader can notice that the SCPG
leaves a dense traffic, while PSO has cleaned the routes and the traffic is very fluid and sparse

5.5.3. Traffic Flow Simulation View

Finally, with the aim of better understanding
the final implications of using (or not using) an op-
timized timing program, Figure 9 shows the sim-
ulation traces of the traffic flow resulted from so-
lutions generated by both, SCPG and PSO. The
pictures were captured at the final of the simula-
tion time and correspond to two simulation proce-
dures of a selected area of Seville instance includ-
ing: Buhaŕıa avenue, Montoto street, and Juan de
Zoyas street. As we can observe, the traffic density
of the SCPG timing program is clearly higher than
the one of PSO, even showing the former several
intersections with traffic jams. As to the PSO tim-
ing program, all intersections are unblocked at the
end of the study.

6. Conclusions

In this work, we have proposed an optimization
strategy able to find successful timing programs of
signal lights with the aim of reducingCO andNOx
emissions, as well as the global fuel consumption

of vehicles. For this study we have used two big
traffic networks located in the city downtowns of
Malaga and Seville (in Spain).

A series of experiments and analysis have been
carried out from different points of view: the per-
formance of the optimization technique and the
quality of solutions with regards to two environ-
mental factors. From these, the following conclu-
sions can be extracted:
(i) A Fitness-Cloud analysis suggests that the

use of our proposal to the optimal SLTP is
advantageous.

(ii) Indeed, our PSO shows a successful perfor-
mance in large realistic traffic scenarios. For
the two studied instances, our proposal ob-
tained results statistically better than the
two other compared algorithms: the SUMO
cycle programs generator (SCPG) and a
Random Search algorithm (RANDOM).

(iii) The final timing programs obtained by PSO
can improve the CO and NOx emissions for
the two cities. In particular, PSO timing pro-
grams can reduce the concentrations of CO
by 29.3%, with regards to SCPG. Similar re-
sults can be observed for NOx emissions.
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(iv) PSO timing programs can also reduce the
global fuel consumption of vehicles by 18.2%,
with regards to SCPG programs. Therefore,
we can claim that optimized timing programs
are able to reduce the mean fuel consumption
by improving the global traffic flow.

(v) In terms of complete cities with thousands of
signal lights operating and thousands of ve-
hicles circulating, we can not still ensure a
linearly proportional improvement, although
we could guarantee benefits enough to con-
sider our optimization a viable strategy.

As a future work, with the final aim of assist-
ing human experts in the decision making process,
we will be tackling the optimal timing program
with other metaheuristic algorithms, and other op-
timization strategies like multiobjective or paral-
lel versions. We are also interested in using other
traffic simulators, and create new larger dimension
instances, as close as possible to a whole city.
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