
Reducing Wasteful Recurrence of Aborts and Stalls

in Hardware Transactional Memory

Koshiro HASHIMOTO∗, Masamichi ETO∗†, Shoichiro HORIBA∗,

Tomoaki TSUMURA∗ and Hiroshi MATSUO∗

∗Nagoya Institute of Technology

Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†Currently with Central Japan Railway Company

1-1-4, Meieki, Nakamura, Nagoya, Japan

Abstract—Lock-based thread synchronization techniques have
been commonly used in parallel programming on multi-core pro-
cessors. However, lock can cause deadlocks and poor scalabilities.
Hence, transactional memory has been proposed and studied for
lock-free synchronization. However, the performance can decline
with some conflict patterns in TM. Therefore, this paper proposes
two methods to restrain the occurrence of very harmful conflicts.
The one relieves starving writers who will keep stalling for a long
time. The other serially executes highly conflicted transactions
which tend to abort repeatedly. The result of the experiment
shows that the merged model of these two methods improves the
performance 72.2% in maximum and 28.4% in average.

Index Terms—Hardware transactional memory, starving
writer, futile stalls.

I. INTRODUCTION

As electric power consumption and calorific power are

increasing, and semiconductor devices keep downscaling, it

becomes difficult to raise clock frequencies of microproces-

sors. In response to this distress, multi-core processors now

attract a great deal of attention. On multi-core processors,

multiple threads run in parallel for speed-up. For running

multiple threads in parallel on shared memory systems, mutual

exclusion is required, and lock has been commonly used.

However, lock-based methods can cause deadlocks, and this

leads to poor scalability and high complexity. To solve these

problems, transactional memory has been proposed as a lock-

free synchronization mechanism.

If there is a potential of deadlock when several transactions

are stalling, one of the transactions aborts to solve the dead-

lock on transactional memory systems. However, the victim

transaction is determined without considering the conflicting

pattern among the transactions. Hence, the performance can

severely decline when some harmful conflict patterns occur.

To restrain the occurrence of such very harmful conflicts,

this paper proposes two new methods. The one relieves starv-

ing writer which will keep stalling for a long time. The other

serially executes highly conflicted transactions which tend to

abort repeatedly. Both models can reduce the total number of

aborts and recurrence of aborts.

II. RESEARCH BACKGROUND

In this section, we describe the overview of the Transac-

tional Memory (TM) [1].

A. Outline of Transactional Memory

TM is an application of transaction mechanism, which is

originally for database consistency, to shared memory syn-

chronization. In TM systems, a transaction is defined as an

instruction sequence which covers a critical section, and the

transaction satisfies atomicity and serializability. To ensure

atomicity and serializability, TM keeps track of memory

accesses, checking whether each requested datum has been

accessed by another transaction yet or not. When a transaction

tries to access the same memory address which has been

accessed by another transaction, TM detects it as a conflict

between the transactions.

If TM detects a conflict, TM selects a transaction between

the conflicted transactions and stalls the transaction. Then, if

one of the conflicted transaction is aborted to avoid deadlocks,

the aborted transaction is restarted after its abort. On the other

hand, if there occurs no conflict through a transaction, TM

commits the transaction. As far as there is no conflict among

some transactions, the transactions can concurrently run under

the TM without any blocking. Hardware implementations of

TM are called hardware transactional memories (HTMs).

B. Conflict Detection and Resolution

To detect a conflict, TM must keep track of whether each

shared datum is accessed or not. To achieve this, each cache

block has two additional bit-fields called read bit and write

bit in general HTM. When a cache block is read through a

transaction, HTM sets the read bit for the cache block. In the

same way, when a cache block is overwritten, its write bit is

set. When a transaction is committed or aborted, HTM resets

all these bits which are set through the transaction. To handle

these bits, HTM uses an improved cache coherence protocol.

To keep caches coherent, the states of cache blocks must be

updated. When changing each state, the read bit and the write

tsumura
テキストボックス
This paper is author's private version of the paper published as follows:Proc. 2013 High Performance Computing & Simulation Conference (HPCS2013), pp.374–381Copyright (C) 2013 IEEE



bit of the cache block are tested on TM system. If one of

the bits is set, a transaction finds that there may be a conflict

with another transaction. The access patterns which regarded

as conflicts are read-after-write, write-after-read, and write-

after-write.

If there is no conflict, the transaction receiving a coherence

request from another transaction sends back an ACK. On the

other hand, if a conflict is detected, a NACK will be sent

back. In eager conflict detection model, when the sender of a

request receives a NACK, it knows that there is a conflict with

the NACK sender, and stalls, waiting for the NACK sender to

commit. The stalled transaction will keep sending the same

coherence request. If the opponent transaction commits, the

stalled transaction finally receives an ACK. In lazy conflict

detection model, when a transaction tries to commits, all

accessed data in the transaction are checked whether they bring

conflict or not. In this model, it takes a long time until conflicts

are detected, and more transaction executions will be wasted.

C. Version Management

On TM systems, the interim results of the transactions may

be discarded because transactions are executed speculatively.

Hence, when a transaction modifies a value on memory, HTM

needs to save its address and both new and old values. Now,

every transaction definitely have one commit and the commit

can not be omitted. Therefore, there is almost no room to

reduce the overheads for commit, which are caused on lazy

version management TMs. On the other hand, the number of

aborts could be reduced by improving transaction scheduling.

Therefore, there is room to reduce the overheads for abort,

which are caused on eager version management TMs. Hence,

our study aims to improve transaction scheduling on Log-

based Transactional Memory (LogTM) [2] which adopts

eager conflict detection and eager version management.

III. RELATED WORKS

So far, various scheduling techniques for HTM have been

proposed. To improve the performance of parallel executions,

Yoo et al. [3] have proposed a method which brings the

concept of adaptive transaction scheduling (ATS) in TM.

ATS can improve the performance of workloads, which lack

for parallelism bacause of high contentions, by dynamically

dispatching transactions and controlling the total number of

concurrent transactions using runtime feedbacks.

Geoffrey et al. [4] have proposed a method which focuses

on common memory location which is accessed in multiple

transactions. In the method, locality of memory access on each

consecutive execution is called similarity and the similarity is

calculated with bloom filter. If the similarity exceeds a thresh-

old value, the transactions are serialized. Akpinar etal. [5] have

proposed some novel ideas for conflict resolution policies in

HTMs such as alternating priorities of transactions in many

various ways based on the total number of stalled or aborted

transactions. In addition, they take into consideration the most

common performance bottlenecks such as InactiveStall and

FriendlyFire.

Fig. 1. An example of Starving Writer.

To reduce energy consumption, Gaona et al. [6] have pro-

posed a method which serializes transactions when a conflict

arises. Then, if a conflicted transaction has finished, the

transaction wakes up the highest-priority transaction among

all of the stalled transactions.

In contrast to these methods, we focus on the recurrence

of aborts. Because, the restarted transaction which is aborted

multiple times tends to be aborted again and this case makes

large effect in performance. That is, the conflicts which cause

recurrent aborts are very harmful. Therefore, we propose two

methods which restrain the recurrence of conflicts.

IV. METHOD FOR RELIEVING STARVING WRITERS

In this section, we point out a drawback of TM which is

called starving writers. After that we propose a method for

relieving starving writers and describe implementation of the

method.

A. Problem of Starving Writers

When there runs a writer transaction which includes a store

instruction to a certain address and multiple reader transactions

each of which includes a load instruction from the same

address, the writer transaction can be a starving writer [7].

Even if one of the readers is aborted, the writer can not

restart because of other readers. Thereafter, the aborted reader

is restarted and its load instruction is re-issued. This access is

granted by other readers because the access pattern read-after-

read (RaR) is not regarded as a conflict. Then, the reader also

blocks the writer again. Therefore, the writer keeps stalling

for a long time.

Fig.1 shows an example where three threads run concur-

rently. Here, thr.1 and thr.3 execute the same transaction



Tx.X, which includes load A, and thr.2 executes Tx.Y which

includes store A. Assume that thr.3 has already executed

load A, and now thr.2 tries to execute store A. This access

request by thr.2 brings a conflict, and thr.2 receives a NACK

from thr.3 and stalls Tx.Y (t1). In this case, thr.2 can not

execute store A until thr.3 commits or aborts Tx.X. After

that, thr.1 tries to execute load A (t2). This is a RaR access,

and brings no conflict. Now, thr.2 can not continue unless both

of thr.1 and thr.3 abort or commit their transactions. Hence, if

thr.3 aborts its transaction Tx.X by conflicting with thr.2 (t3),

thr.2 can not continue because thr.1 has already accessed to the

address A. Then, thr.3 restarts Tx.X and accesses the address

A (t4), and thr.2 can not continue even after thr.1 aborts its

Tx.X.

In this way, when there are multiple reader threads which

try to read a location, a writer thread which tries to write

to the same location will be starving. Such a writer thread is

called a starving writer. The reader threads conflicting with the

starving writer will abort their transactions repeatedly (t5, t6),

and the starving writer will be starving over a long period of

time. This will cause a large performance deterioration. When

more transactions run concurrently, the number of reader

threads will also increase. In such a case, a writer can not

continue its execution unless all of the reader threads commit

or abort their transactions.

On traditional HTMs, two methods can be used for allevi-

ating the problem of recurrent conflicts. Exponential backoff

is an algorithm for defining how long an aborted transaction

should be wait before its restart. The backoff period for

each transaction is initially defined short, and is increased

exponentially as the transaction is aborted repeatedly, for

avoiding useless aborts. However, under the starving writer

situation, reader transactions will still abort repeatedly because

backoff periods are initially defined as short.

Magic waiting is another algorithm for avoiding recurrence

of conflicts. Following this algorithm, when a transaction

is aborted, it will postpone its restart until the conflicted

opponent transaction will be committed. With this algorithm,

a transaction conflicts only once with another transaction, and

recurrent aborts can be avoided. However, some transactions

should be kept waiting even when they does not repeat aborts,

and the transaction concurrency may be drastically reduced.

B. Relieving Starving Writers

To relieve starving writers, we propose a method that if a

reader satisfies two conditions mentioned below, magic waiting

is applied to the reader and the reader waits for the conflicted

writer to commit.

Condition SW-I

A reader transaction, which already issued its load

instruction, sends a NACK to another writer trans-

action which tries to issue store instruction. In other

words, a write-after-read conflict occurs, and a reader

blocks a writer.

Condition SW-II

The last two aborts on a reader transaction were

caused by conflicts on the same address.

If a reader transaction satisfies both of these two conditions,

the writer transaction which is blocked by the reader trans-

action is assumed as a starving writer. Then, magic waiting

is applied to the reader. As a result, the readers, blocking a

starving writer, will not be aborted and the starving writer will

be preferentially committed and relieved.

C. Additional Hardware and Execution Model

To implement the mothod for relieving starving writers

which is described in section IV-B, we have installed following

three hardware units in each core.

write-after-read flags (WaR flags)

WaR flags are used for keeping track of whether a

write-after-read (WaR) conflict occurs or not. When

the total number of threads is n, these flags have n-bit

width, and i-th bit WaR[i] is used for the opponent

thread whose thread ID is i. When the own core

executes a thread which already loaded from a certain

address, and a thread on the i-th core tries to store

to the same address, the associated WaR[i] is set.

Conflicted Address Register (CA reg)

CA reg is used for storing the conflicted address

which caused an abort. When the own transaction

is aborted due to the opponent transaction and the

opponent thread ID is i while WaR[i] is set, CA reg

is referred. Then, the current conflicted address is

compared to the registered address. If the addresses

are same, M-W flag which is explained below is

set. In contrast, if the addresses are not same, the

registered address is overwritten with the current

conflicting address.

Magic Waiting flag (M-W flag)

Magic waiting is applied if an abort occurs while

M-W flag is set.

When a processor has 32 cores and can execute 32 threads,

and each cache block has 64-bit width, WaR flags, CA reg and

M-W flag respectively have 32-bit, 64-bit and one-bit width.

Thus, the total cost of these hardwares is only 388Bytes.

In Fig.2, thread thr.1 runs transaction Tx.X on Core1, thr.2

runs Tx.Y on Core2 and thr.3 runs Tx.X on Core3. This figure

shows the execution model of relieving starving writers with

the states of hardwares on Core2.

At first, when thr.2 tries to store some value to the address A

after thr.3 loads from A, a write-after-read conflict is detected

(t1). Then, thr.1 loads from A and thr.2 also conflicts with thr.1

(t2). Thus, Core1 and Core3 set their own WaR[2] because the

ID of opponent thread is 2.

After that, when each of thr.1 and thr.3 tries to load from

the address B, another conflict is detected (t3, t4) and CA reg

is referred because WaR[2] is already set. At this time, B is

registered to CA reg because no address has been stored in CA

reg. Then, thr.1 and thr.3 abort their Tx.X because they detect

deadlock.

After they abort, all conflicts are solved, and WaR flags

on Core1 and Core3 are reset. Next, thr.1 and thr.3 restart



Fig. 2. Execution model for relieving Starving Writers.

Tx.X and the conflicts on A are detected again (t5, t6). At this

time, they set WaR[2] just like at t1 and t2. After that, the

conflicts on B are also detected again (t7, t8). At this moment,

on each of Core1 and Core3, CA reg is referred and M-W flag

is set because the current conflicted address B is same with

the registered address. Therefore, thr.1 and thr.3 regard thr.2

as a starving writer and applies magic waiting to themselves

after they abort. Thus, the starving writer Tx.Y is relieved.

V. METHOD FOR AVOIDING FUTILE STALLS

This section describes futile stalls. Then, we propose a

method for avoiding futile stalls and describe implementation

of the method.

A. Problem of Futile Stalls

When conflict-prone transactions run concurrently, the sit-

uation, where a logically earier transaction will be stalled by

another logically later transaction, happens frequently. After

such a conflict, if the transactions conflict with each other

again, the later transaction will be aborted and the earier

transaction can continue. In this case, the previous stall of

the earier transaction becomes simply futile.

Fig.3 shows an example of futile stalls. In this figure, three

threads (thr.1∼thr.3) execute the same transaction Tx.X. First,

when thr.2 tries to access an address which is already accessed

by thr.1, thr.2 stalls its Tx.X (t1). Next, thr.1 tries to access

another address which is already accessed by thr.2, Tx.X on

thr.1 is aborted (t2) because Tx.X on thr.1 is logically later

than Tx.X on thr.2. Then, thr.2 can continue its Tx.X. In this

case, thr.2 has stalled its Tx.X and waited for the commit of

Tx.X on thr.1, but Tx.X on thr.1 is aborted. Hence, thr.2 need

not have stalled its Tx.X. Such a stall is called futile stall.

Fig. 3. An example of Futile Stalls

After then, if thr.2 and thr.3 conflict with each other (t3),

the logically earier transaction Tx.X on thr.2 stalls futilely

again, and the opponent Tx.X on thr.3 is aborted (t4). Even

after thr.2 commits its Tx.X (t5), Tx.X on thr.1 and Tx.X on

thr.3 conflict each other, and thr.1 stalls its Tx.X (t6), and

thr.3 aborts its Tx.X (t7). As you can see in this example,

under the situation where the transactions, which potentially

cause conflict frequently, run concurrently, many stalls become

futile, and some transactions such as Tx.X on thr.3 will

be aborted repeatedly. If larger number of transactions run

concurrently, more conflicts will occur, and consequently, the

total performance will severely decline with frequent aborts

and many futile stalls.

B. Avoiding Futile Stalls

To avoid recurrence of aborts in highly conflicted transac-

tions, we propose a method that if a transaction satisfies two

conditions mentioned below, the transaction is serialized. As

a result, the highest-priority transaction would not be stalled

and its opponent transactions would not be aborted. Here,

we use two criteria to determine whether each transaction

should be serialized or not. The criteria are about the total

number of aborts and executed instructions. Each criterion is

defined using a certain threshold value A(tx) or L(tx), where

tx indicates transaction ID. The two threshold values are

configured for every transaction. The reason for considering

the total number of executed instructions is that when multiple

transactions, which have a lot of instructions, are executed in

serial order, the performance may drastically decline.

Condition FS-I

A transaction is more than A(tx) times aborted

repeatedly before commit.



Condition FS-II

The total number of the executed instructions in a

transaction is less than the threshold value L(tx).

If multiple transactions satisfy both of these two conditions,

the transactions will be executed in serial order. Then, a lot

of harmful conflicts are avoided. Incidentally, the number of

executed instructions in a transaction can be measured much

larger than the number of instructions the transaction actually

contains. A major reason is switching on interrupts. Hence,

some transactions should be executed in serial order even if

the observed number of executed instructions is occasionally

larger than L(tx). To deal with this case, we configure another

threshold value S(tx), which is smaller than L(tx), and this

is used for the transactions which did not satisfy Condition

FS-II. If the total number of the executed instructions in a

transaction becomes less than S(tx) after it is larger than

L(tx), the transaction should not be so large in fact, and is

considered to satisfy Condition FS-II.

C. Additional Hardware and Execution Model

To implement the method for avoiding futile stalls which is

described in section V-B, we have installed following several

hardware units in each core. To explain each hardware briefly,

we assume that an ID of the transaction which is executed by

the own core is i.

Abort Counter (A-Counter)

A-Counter is used for recording the total number of

aborts in each transaction. The recorded value is reset

on every commit.

Recurrence flags (R-flags)

R-flags are used for keeping track of whether aborts

are repeated or not. When the value of A-Counter

becomes equal to the threshold value A(tx), the i-th

bit in R-flags is set.

Instruction Counter (I-Counter)

I-Counter is used for recording the total number

of executed instructions in each transaction. The

recorded value is reset on every abort and commit.

ID of Opponent Thread (O-id)

O-id is used for recording the ID of the opponent

thread which waits for commit of the own transac-

tion. When the own thread commits its transaction,

the thread refers O-id to know the opponent transac-

tion who waits the commit, and clears O-id.

Short Tx flags (Stx-flags)

Stx-flags are used for keeping track of whether exe-

cuted instructions are few or not. When a transaction

is committed while the value of I-Counter is smaller

than specific threshold value L(tx), the i-th bit in

Stx-flags is set.

Long Tx flags (Ltx-flags)

Ltx-flags are used for keeping track of whether exe-

cuted instructions are many or not. When a transaci-

ton is committed while the value of I-Counter is

larger than specific threshold value L(tx), the i-th

bit in Ltx-flags is set. On the other hand, if the value

Fig. 4. Execution model for avoiding Futile Stalls.

of I-Counter is smaller than threshold value S(tx),
the i-th bit is reset.

Serializing flag (S-flag)

S-flag is used for controlling the order of serialized

transactions. The last thread who tries to execute a

serialized transaction sets this flag. Thus, this flag is

set when the own thread starts to wait a commit of

another transaction. This flag is reset when another

thread starts to wait a commit of the own transaction.

Here, typical parallel programs seem to have less than 10

kinds of transactions. Thus, we estimate the cost for additional

hardware units which can deal with such typical programs.

When a processor has 32 cores and can execute 32 threads,

A-Counter, R-flags, I-counter, O-id, Stx-flags, Ltx-flags and S-

flag respectively have 4-bit, 16-bit, 10-bit, 5-bit, 16-bit, 16-bit

and 1-bit width. Thus, the total cost is only 272Bytes.

Fig.4 shows an example of parallel execution on highly con-

flicted transactions. In this example, Tx.X on thr.2 is futilely

stalled by the other two transactions. Therefore, a commit

of Tx.X on thr.2 is delayed. To avoid this, highly conflicted

transactions should be serialized. Serialization process consists

of two steps. The first step is for deciding which transactions

should be serialized and the second is for controlling the

order of serialized transactions. In the first step, the value

of A-Counter is incremented every abort (t1, t2). When the

value reaches to the threshold A(tx), R-flag is set (t2). If the

transaction is executed while R-flag is set, the total number

of instructions is counted on I-Counter (t3). If a transaction

which has the thread ID i is committed while the value of I-



Fig. 5. Ordered wake-up mechanism.

Counter is smaller than the threshold L(tx), Stx[i] is set (t4).

On the other hand, if the transaction is committed while the

value of I-Counter is larger than L(tx), Ltx[i] is set. If Ltx-flag

is not set and Stx-flag is set, the transactions are considered

to be executed in serial order.

Fig.5 shows the execution model of the second step. Here,

Tx.X is the transaction which is decided to be serialized in

the first step, and three threads now try to execute Tx.X

concurrently. First, when thr.2 tries to execute Tx.X, thr.2 sends

req start to all threads to confirm that no other thread is

executing this transaction (t1). At this time, no other thread

executes Tx.X except for thr.2 (t2). Therefore, thr.2 starts to

execute Tx.X as usual (t3). Then, thr.2 sets its S-flag because

the serialized transaction is executed only on thr.2. Next, when

thr.1 tries to execute Tx.X, thr.2 already started Tx.X. Thus,

thr.1 does not start Tx.X and waits for the commit of Tx.X on

thr.2. At this moment, thr.2 clears S-flag and sets 1 on O-id

because the ID of the opponent thread is 1 (t4). In addition,

thr.1 sets S-flag (t5). After that, when thr.3 tries to execute

Tx.X, thr.3 sets its S-flag (t6) and waits for the commit of

Tx.X on thr.1 and thr.1 resets its S-flag and sets 3 on O-id.

Then, when thr.2 commits Tx.X (t7), thr.2 refers O-id in order

to know who is waiting its commit. Because 1 is stored in

O-id, thr.2 wakes up thr.1 to start Tx.X and clears its O-id.

Thereafter, thr.1 starts to execute Tx.X. Just like at t7, when

thr.1 commits Tx.X, thr.1 wakes up thr.3 and clears its O-id

(t8). Finally, thr.3 commits Tx.X and clear its S-flag (t9). As

described above, serialized transactions are controlled.

TABLE I
SIMULATION PARAMETERS.

Processor SPARC V9
total number of cores 32 cores
frequency 1 GHz
issue width single-issue
issue order in-order
non-memory IPC 1

D1 cache 32 KBytes
ways 4 ways
latency 1 cycle

D2 cache 8 MBytes
ways 8 ways
latency 20 cycles

Memory 4 GBytes
latency 450 cycles

Interconnect network latency 14 cycles

TABLE II
INPUT PARAMETERS FOR BENCKMARK PROGRAMS.

GEMS
Btree priv-alloc-20pct
Contention config 1
Deque 4096ops 128bkoff
Prioque 8192ops
Slist 500ops 64len

SPLASH-2
Barnes 512BODIES
Cholesky tk14.0
Radiosity -p 31 -batch
Raytrace teapot

STAMP
Genome -g256 -s16 -n16384 -t16
Kmeans -m40 -n40 -t0.05 -p16
Vacation -n2 -q90 -u98 -r16384 -t4096 -c16

VI. PERFORMANCE EVALUATION

A. Simulation Environments

We used a full-system execution-driven functional simulator

Wind River Simics [8] in conjunction with customized memory

models built on Wisconsin GEMS [9] for evaluation. Simics

provides a SPARC-V9 architecture and boots Solaris 10.

GEMS provides a detailed timing model for the memory sub-

system. This system has 32 processors, each with two levels

of private caches. Illinois-based directory protocol maintains

cache coherence over a high-bandwidth switched interconnect.

The detailed simulation parameters are shown in TABLE I.

We have evaluated the execution cycles of 12 workloads from

GEMS microbench, SPLASH-2 benchmark suite [10], and

STAMP benchmark suite [11]. The input parameters for the

benchmark programs are shown in TABLE II.

Each workload was executed with 31 threads, because one

of the 32 cores should be a default core which cannot be used

for user programs. However, STAMP benchmark can run only

if the total number of threads is power of 2. Therefore, only

STAMP benchmark programs were evaluated with 16 threads.

B. Evaluation Results

The evaluation results with following four models are shown

in Fig.6 and TABLE III.

(B) LogTM (baseline)



Fig. 6. Ratio of execution cycles w/ GEMS, SPLASH-2 and STAMP benchmark suites.

TABLE III
REDUCED CYCLES RATE.

GEMS SPLASH-2 STAMP all

(S) Mean 8.5% 10.3% 1.7% 7.5%
Max 17.3% 18.7% 1.9% 18.7%

(F) Mean 31.7% 26.8% 0.9% 19.8%
Max 72.7% 71.5% 1.8% 71.5%

(H) Mean 36.6% 34.0% 2.1% 28.4%
Max 72.2% 70.4% 3.1% 72.2%

(S) Proposed method for relieving starving writers

(F) Proposed method for avoiding futile stalls

(H) Hybrid model of (S) and (F)

For model (F) and (H), we configured the threshold values

A(tx) as 4, L(tx) as 512, and S(tx) as 128. Fig.6 shows

the execution cycles of each model. Each bar is normal-

ized to the total number of executed cycles of the baseline

LogTM (B). The legend shows the breakdown items of total

cycles. They represent the executed cycles out of transactions

(Non trans), the executed cycles in the transactions which

are committed/aborted (Good trans/Bad trans), the aborting

overhead (Aborting), the stall cycles (Stall), the magic waiting

cycles (MagicWaiting), the barrier synchronization cycles

(Barrier), and the exponential backoff cycles (Backoff). For

the simulation of multi-threading on a full-system simulator,

the variability performance [12] must be considered. Hence,

we tried 10 times on each benchmark, and measured 95%

confidence interval. The confidence intervals are illustrated as

error bars in this figure.

First, the performance is improved with model (S) in

the most of the programs. This model reduces Bad trans,

Aborting, Stall and Backoff in Barnes, Btree, Deque, Pri-

oque, and Radiosity, because a lot of aborts are restrained.

Especially, in Btree, the total number of aborts and the total

number of recurrence of aborts are reduced to approximately

1/8 and 1/4 respectively. In addition, the model (S) slightly

achieves speed-up in Contention, Cholesky Genome, Kmeans

and Vacation because a lot of aborts are restrained, although

ratio of Aborting is low. In these programs, the total number of

aborts is reduced at most 72.9% (Kmeans) and at least 17.1%

(Genome). Although model (S) increases MagicWaiting, the

performance improvement by relieving starving writers more

than offsets the bad effect in the most programs.

Meanwhile, model (F) achieves considerable performance

gain in Deque (72.2%), Prioque (54.6%), and Raytrace

(71.5%). In particular, the total number of aborts is reduced

99.8% in Deque, 99.6% in Prioque, and 99.8% in Raytrace.

Nonetheless, MagicWaiting represents only 0.4%, 4.0% and

1.1% of the total cycles in each program. However, in several

programs, the results of model (F) did not vary from those

of traditional model (B). In addition, MagicWaiting takes

up quite a lot of ratio in Barnes, Cholesky, and Radiosity.

The reason will be that the threshold value A(tx) is not

appropriate for these programs and too much transactions are

serialized. Therefore, serializing specific transactions leads to

performance deterioration, and the good effect by serializing

other transactions is cancelled out.



Finally, in each program except Barnes, hybrid model (H)

reduces the same or more cycles than the better one of

(S) and (F). In Barnes, transactions which achived speed-up

with model (S) are serialized at early phase of the program.

Therefore, the result is closed to the model (F). However,

the results of Radiosity and Genome are more improved than

those of other methods. In these programs, some transactions,

which would be starving writers, are relieved with model (S)

and the transactions would not be aborted. On the other hand,

highly conflicted transactions, which are aborted many times

with even model (S), are executed in serial order with model

(F) and the transactions would not be aborted. Therefore,

more appropriate method is applied automatically to each

transaction.

VII. CONCLUSIONS

In this paper, we proposed two methods to restrain the

occurrence of very harmful conflicts. The one relieves starving

writer, and the other serially executes highly conflicted trans-

actions to avoid futile stalls. Through an evaluation with mi-

crobench in GEMS, SPLASH-2 and STAMP suite benchmark

programs, it is found that the hybrid model of the two proposed

methods improves the performance 72.2% in maximum and

28.4% in average.

Incidentally, performance slightly declines with the method

for avoiding futile stalls in some programs. Therefore, one

of our future work is dynamically and more appropriately

configuring the threshold value of A(tx), L(tx) and S(tx).
How to utilize the idle cores with stalled transactions is also

left for our future work.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” in Proc. 20th Annual Int’l Symp.

on Computer Architecture, May. 1993, pp. 289–300.

[2] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: Log-based Transactional Memory,” in Proc. 12th Int’l Symp.

on High-Performance Computer Architecture, Feb. 2006, pp. 254–265.
[3] R. M. Yoo and H.-H. S. Lee, “Adaptive Transaction Scheduling for

Transactional Memory Systems,” in Proc. 20th Annual Symp. on Paral-

lelism in Algorithms and Architectures (SPAA’08), Jun. 2008, pp. 169–
178.

[4] G. Blake, R. G. Dreslinski, and T. Mudge, “Bloom Filter Guided
Transaction Scheduling,” in Proc. 17th International Conference on

High-Performance Computer Architecture (HPCA-17 2011), 2011, pp.
75–86.

[5] E. Akpinar, S. Tomić, A. Cristal, O. Unsal, and M. Valero, “A Compre-
hensive Study of Conflict Resolution Policies in Hardware Transactional
Memory,” in Proc. 6th ACM SIGPLAN Workshop on Transactional

Computing (TRANSACT’11), 2011.
[6] E. Gaona, R. Titos, M. E. Acacio, and J. Fernández, “Dynamic Se-

rialization Improving Energy Consumption in Eager-Eager Hardware
Transactional Memory Systems,” in Proc. Parallel, Distributed and

Network-Based Processing 2012 20th Euromicro International Confer-

ence (PDP’12), 2012, pp. 221–228.
[7] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,

and D. A. Wood, “Performance Pathologies in Hardware Transactional
Memory,” in Proc. 34th Annual Int’l Symp. on Computer Architecture

(ISCA’07), 2007, pp. 81–91.
[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,

J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[9] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood., “Mul-
tifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset,” ACM SIGARCH Computer Architecture News, vol. 33, no. 4,
pp. 92–99, Sep. 2005.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in Proc. 22nd Annual Int’l. Symp. on Computer Architecture

(ISCA’95), 1995, pp. 24–36.
[11] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:

Stanford Transactional Applications for Multi-Processing,” in Proc.

IEEE Int’l Symp. on Workload Characterization (IISWC’08), Sep. 2008.
[12] A. R. Alameldeen and D. A. Wood, “Variability in Architectural

Simulations of Multi-Threaded Workloads,” in Proc. 9th Int’l Symp. on

High-Performance Computer Architecture (HPCA’03), Feb. 2003, pp.
7–18.


