
Programming B. Wegbriet
Languages Editor

Reduction: A Method
of Proving Properties
of Parallel Programs
Richard J. Lipton
Yale University

When proving that a parallel program has a given
property it is often convenient to assume that a state-
ment is indivisible, i.e. that the statement cannot be
interleaved with the rest of the program. Here sufficient
conditions are obtained to show that the assumption that
a statement is indivisible can be relaxed and still pre-
serve properties such as halting. Thus correctness proofs
of a parallel system can often be greatly simplified.

Key Words and Phrases: deadlock free, reduction,
interruptible, indivisible, parallel program, semaphore,
verification method, process, computation sequence

CR Categories: 4.32, 4.35, 5.24

1. Introduction

Suppose that P is a parallel program and R is some
statement contained in P. It is often easy to prove that

(I) P has some property Z as long as the statement R is
"uninterruptible."

A statement is uninterruptible provided it is never inter-
leaved with the rest of P, i.e. provided it is treated as one

Copyright (~ 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the Second ACM
Symposium on Principles of Programming Languages, Palo Alto,
Calif., Jan. 20-22, 1975.

This work was supported in part by Army Research Office
grant DAHC-75-G-0037.

Author's address: Department of Computer Science, Yale
University, 10 Hillhouse Avenue, New Haven, CT 06520.

717

"indivisible" action. For instance, R might be the three
instructions or actions:

begin
r ~ - - x ;
increment r;
x ~-- r; end;

Assuming that R is uninterruptible or indivisible reduces
R to the single instruction:

x~-x+l ;

In contrast to (1), it is usually not easy to prove that

(2) P has property 2; when R is interruptible.

The basic question considered in this paper is: When are
assertions (1) and (2) equivalent?

Define P/R to be the parallel program obtained
f rom P by reducing R to one indivisible action (i.e. R
is considered to be uninterruptible). P/R is called the
reduction o f P by R. Then the type of result we obtain
is:

(3) P/R has property 2; iff P has property Z.

In proving (3), restrictions must be placed on R. These
restrictions, however, are satisfied by a wide range of
statements. These results are then used as follows. Sup-
pose that one desires to prove that P has property Y~.
P is then reduced to P ' , P ' is reduced to P", and so on,
finally yielding Q. Now Q is shown to have property 2;;
thus several applications of (3) show that P also has
property 2;. The reason this method is fruitful is that Q
is usually much "s impler" than P. There are two ways
in which Q is simpler: (i) Q has fewer actions than P.
It follows that a proof that Q has property Z must
consider fewer cases than a proof that P has property ~..
(ii) Assertions about Q are often simpler than assertions
about P. For example, we will later investigate an
example where in Q the sum of two variables a + b is
always a constant, while in P, a -k- b is a complex func-
tion of the state of P. This difference in the assertions
that can be made about a + b is important: the fact that
a d- b is constant allows an easy proof that Q does not
halt.

The previous proof procedures for parallel programs
have consisted essentially of Floyd's assertion method
[3] adapted to parallel programs (Ashcroft [1], Lauer
[5], and Levitt [6]). The basic drawback to this method
is that because of the many possible computat ions in a
parallel program, the assertion method tends to involve
the consideration of many cases. The arbitrary inter-
leaving of a parallel program is then a major obstacle for
the assertion method. It seems to lead to complex asser-
tions of the form if process-I is at statement lx and
process-2 is at statement 15 and . . . , then This
should be compared with the main advantage of the
reduction method: The computat ions of P/R are a
proper subset of the computat ions of P. Of course, the
reduction method can be used in conjunction with the
assertion method.

This paper is composed of five sections. In Section 2

Communications December 1975
of Volume 18
the ACM Number 12

the basic definitions of parallel programs and indivisi-
blity are presented. In Section 3 the concept of reduct ion
is presented. It is then proved that certain reductions,
called D-reductions, preserve a number of properties
such as halting. In Section 4 several examples that
demonst ra te the power of the reduction method are
presented.

2 . P a r a l l e l P r o g r a m s

For the basic definition of parallel programs in this
paper, Algol or a similar language will be supplemented
with the parallel s tatement parbegin . . . parend of
Dijkstra [2]. The effect of

parbegin S~ ; . . . ; Sk , parend

is then to interleave the statements $1, • • • , Sk in some
arbitrary order until no further execution is possible.
A computation is then a sequence t l , . . . , t,~ of state-
ments such that tt is executed first, then t2 is executed,
and so on until the last s tatement t,~ is executed. Since
an S~ may be a c o m p o u n d statement, m > k is possible.
For example, if $1 is

begin x ~ - - x + 1; y ~-- if w = 1 then y else 1 ; end

then t~ might be the statement x ~-- x + 1 or the state-
ment

y ~ - - i f w = l t h e n y e l s e 1

Indeed one might even allow t~ to be a "pa r t " of one of
these statements. Thus t~ might be the action that com-
putes the value of the Boolean expression w = 1. The
reason it is not necessary to say exactly what ti can be is
that in the major i ty of cases it simply does not matter.
In some cases, however, it is extremely impor tan t that
some statement be considered indivisible, i.e. that no t~
be a par t of it. Fo r this reason we add to the p a r b e g i n

. . . parend nota t ion as follows: A statement S (we
assume S has a single entry and a single exit) is indivisi-
ble if it is enclosed in brackets to fo rm IS]}. The seman-
tics of {IS] are then:

1. In a given state of the parallel program, [S] can
execute provided in this state control (in the normal
sense) is ready to enter S and after S is applied con-
trol has left S.

2. In a given state of the parallel program, the ef fect of
applying I S] (provided it can execute) is the same
as that of S.

The key to the definition of ~[S] is that we can never
apply it when it cannot fully complete its execution. Fo r
example, consider the indivisible statement

[L : i f a > 0 t h e n a ~ - a - - l e l s e g o t o L ~

It can execute iff a > 0; if a < 0, then control remains
ready to enter and so the indivisible statement cannot be
applied. The effect of this s tatement is always to decre-
ment a by I. This s tatement will be later denoted by

P(a) ; it corresponds to the "wai t" primitive of [2].
Second, consider the indivisible statement

t~a ,-- a + I]

Clearly, it can execute iff true, i.e. it can always execute.
The effect of this s tatement is always to increment a by 1.
This statement will be later denoted by V(a); it cor-
responds to the "s ignal" primitive of [2]. No te this
second example is not equivalent to

a * - - a + l

Without enclosing a ~-- a + 1 in brackets it is possible
to "lose counts ," i.e. in

integer a; (a = O) ;
parbegin a ~- a + 1 ; a ~-- a + 1 ; parend;

the value of a can be 2 or 1.
Finally, consider the indivisible s tatement

[P (a) ; r ~- r + 1; if r : I then P(b); V(a)]
It can execute i f fa > 0 and (r ~ 0 or b > 0). The effect
of this s tatement is to leave a unchanged [P(a) decre-
ments a and V(a) increments a]; always to increment r
by 1; and to replace b by

i f r = 0 t h e n b - lelseb

The expression for b follows f rom the observat ion that
the t h e n statement is evaluated only if r = 0 on entry to
the indivisible statement.

In order to complete the basic definitions of this
paper the not ion of computa t ion is extended to pro-
grams with indivisible statements. Define c~{[S]} to be a
computa t ion provided c~ is a computa t ion and [S~} can
execute in the state that results after c~ is executed. Thus
in the p rogram

integer a (a = 0);
parbegin A: P(a); B: V(a); parend;

the only computa t ions are the sequences B and B, A.
The sequence A, B is not a computa t ion since P(a)
cannot execute initially, for a = 0. This is an impor tan t
point, which must be stressed: Computa t ions are se-
quences of statements that execute; no s tatement can
occur in a computa t ion if it would "b loc k" in the sense
of [2]. The reason that this assumpt ion can be made is
that only properties of programs that depend on their
states (i.e. the values of their p rogram variables will be
studied). N o w the key to this assumpt ion is that the
reachable states in a p rogram with or wi thout "block-
ing" are the same.

3. R e d u c t i o n s

The concept of reduct ion is now defined. It is then
shown that D-reduct ions, a class of reductions, preserve
a number of interesting properties, including for in-
stance, halting.

Definition. Suppose that P is a parallel p rogram with
statement S. Then define P / S , the reduct ion of P by S,

718 Communications December 1975
of Volume 18
the ACM Number 12

to be the parallel p rogram that results when S is re-
placed by IS]}.

The fundamenta l question is: what is the relation-
ship between P and P/S? In particular, let us consider
the quest ion: is it true that P/S halts iff P halts? A
program halts if there is son:e computa t ion a such that
a f is not a computa t ion for all statements f . A parallel
p rogram that does not halt is often called "deadlock
free" [2]. In analyzing parallel programs, as found in
operat ing systems, it is often impor tan t to prove that
they never halt, i.e. that they are deadlock free. This
follows since operat ing systems are often never-ending
tasks and hence must be proved never to halt.

The most optimistic conjecture to make is that all
reductions preserve halting; more exactly,

(4) P/S halts iff P halts.

This is, however, false. Consider the parallel program
E X l :

integer a,b (a = b = 1);
parbegin

repeat P(a); P(b) ; V(a) ; V(b); end;
repeat P(b) ; P(a) ; V(b) ; V(a); end; parend;

It is easy to see that this p rogram halts. Just let both
repeat's execute their first P ' s ; then a = b = 0 and the
program has halted. N o w consider the following pro-
gram E X 1 / S :

integer a,b (a = b = 1);
parbegin

repeat [[P(a); P(b); V(a); V(b);] end;
repeat P(b); P(a) ; V(b); V(a); end; parend;

Clearly, E X 1 / S does not halt. This follows since the
effect of

[[P(a); P(b); V(a); V(b)]

is to leave both a and b fixed. Therefore, assertion (4) is
false. The failure of assertion (4) can be explained as
follows. In EX1 it is possible to enter S and not ever be
able to leave it. This observation leads to one restriction
on statements S:

(R1) If a statement S is ever entered, then it must be
possible eventually to exit S.

This restriction appears to be strong; as demonstra ted
later, however, it is satisfied by a wide class of state-
ments.

Restriction (R1) alone is not sufficient to ensure the
truth of assertion (4). For example, consider the parallel
p rogram EX2 :

integer x,y (x = y = 0);
parbegin x ~-- 0; repeat A:x ~-- 1; B:y~---x;P(y); end;
parend;

It is easy to see that EX2 halts. Now S = A : x ~-- 1 ;
B: y ~-- x; satisfies restriction (R1). The program
E X 2 / S is:

integer x,y (x = y = 0);
parbegin x ~ 0; repeat {[A : x ~-- 1; B :y ~-- x] ; P(y); end;
parend;

Clearly, this does not halt; this follows since ~A : x *--
1 ; B : y ~-- x] always sets y to I. Thus, restriction (1) is not
sufficient to implyasse r t ion (4). This example fails to
satisfy assertion (4) because the effect A : x * - 1 and
B : y ~-- x when "separa ted" and when " toge ther" is not
the same. When together y is always set to I; when
separated y can be set to 0 or 1. This observat ion leads
to a further restriction:

(R2) The effect of the statements in S when together
and separated must be the same.

This restriction may appear to be difficult to capture
precisely and perhaps just as difficult to satisfy, but this
is not the case. The following is the key definition.

Definition. Suppose that f and g are statements in a
parallel program. Then

(a) f is a right mover provided for any afh a computa-
tation where f and h lie in different processes (in p a r -

b e g i n 5'1 ; . . . ; Sk ; p a r e n d the statements of each S,
form a distinct process), then ahfis also a computa t ion ;
moreover, the values of all the program variables in afh
and ah fa r e the same;
(b) g is a left mover provided for any ahg a computa-
tion where h and g lie in different processes, then agh
is also a computa t ion ; moreover , the values of all the
program variables in c~hg and agh are the same.

Essentially, a right mover is a statement that per-
forms a "seize" while a left mover is a s tatement that
performs a "release" of a "resource ."

In order to see this, consider first the case of a left
mover. If ahf is a computa t ion and f performs a "re-
lease," then afh is also a computa t ion p r o v i d e d f and h
lie in different processes (recall here our restriction on
what is a computa t ion , i.e. no blocking can occur in a
computa t ion) :

1. c~fis a computa t ion since a release can always execute
(here we are using the fact that f and h lie in different
processes).
2. afh is a computa t ion since h could execute after
and f did not seize any resource (i.e. any demand of h
can still be fulfilled).

Second, consider the case of a right mover. If agh
is a computa t ion and g performs a "seize," then c~hg is a
computa t ion provided g and h lie in different processes:

1. ah is a computa t ion ; argue as before.

2. ahg is a computa t ion . If h is a "retease" this follows
immediately by the first case. Thus assume that h is a
"seize" and the result follows by a symmetry argument .

The "p roof s" above can be stated exactly for PV
parallel programs. A program P is a PV parallel pro-
gram provided there is a distinguished subset of the
program variables a l , . . . , ak called semaphores with
integer values such that they can be used only in either
P(a~)'s or V(ai)'s. Then we have essent'ially proven the
following theorem.

THEOREM 1. In any PV parallel program all P(a)'s
are right movers and all V(a)'s are left movers.

719 Communications December •975
of Volume 18
the ACM Number 12

D-reduc t ions can now be defined.
Definition. Replac ing St ; • • • ; Sk with {[$1 ; . . . ; Ski

is a D-reduction prov ided , for some i, S 1 , . . . , S~_1 are
r ight movers and Si+~, . . . , Sk are left movers (Si is
uncons t ra ined) and each $2 , . . . , S~ can a lways exe-
cute.

Res t r ic t ion (R2) co r r e sponds to the fact tha t the
first i - - 1 s ta tements are r ight movers and the last
k -- i are left movers . Res t r ic t ion (R1) co r r e sponds to
the fact tha t the last k - 1 s ta tements can a lways exe-
cute. F o r example , in a PV paral le l p r o g r a m [S~ ; . . . ;
Ski} is a lways a D- reduc t ion p rov ided $2 , . . . , Sk are
V's. This fol lows f rom T h e o r e m 1 and the fact tha t any
V in a P V p r o g r a m can a lways execute.

THEOREM 2. Suppose that S is a D-reduction in P.
Then P halts iff P / S halts.

PROOF. Clear ly if P / S halts, then P halts. This
fol lows since any state of P / S is also a state of P. I t will
now be shown tha t if P halts, then P / S halts. To this
end, assume tha t P hal ts ; moreover , let a be a c o m p u t a -
t ion in P such tha t a halts. I t will now be assumed tha t
S = S1 ; . . . ; S , . The plan of the p r o o f is to cons t ruc t a
c o m p u t a t i o n ~ such tha t all the p r o g r a m var iables agree
af ter a and ¢~ are executed and S ~ , . . . , S , a lways occur
as "consecut ive b locks of s ta tements in /3 ," i.e. where ~
is the ith e lement of the sequence ~, (1) i f¢~ = S i and
j < n, then/3~+t = Si+l ; (2) i f / ~ = Sj a n d j > I, then
¢~i_1 = S~._~. In o rder to avo id complex no t a t i on it will
be assumed there are no goto ' s in S1, . . . , S, , . N o w
two simple l emmas are needed. L e m m a 2 encodes the
key " t r i ck" used in our proof .

LEMMA 1. Suppose that aS,{3 is a computation in P
with i > 1. Then a = XS,_~u where no statement from the
process of S~ is in u.

PROOF OF LEMMA. This fol lows easily f rom the fact
that S, ; . . . ; S , has a single ent ry and the a s sumpt ion
tha t no goto ' s occur in our p rograms . []

LEMMA 2. Suppose that aS~13 is a computation that
halts in P with i < n. Then 5 = XS~+lU where no state-
ment from the process of S~ is in X.

PROOF OF LEMMA. If a n y f occurs in ¢ / w h e r e f i s in the
process of S~, then the first such f must be S,+~. Thus
assume tha t no s u c h f is in ~. In o~S~/~ con t ro l mus t be
r eady to enter Si+l ; therefore o~S~S~+, is a c o m p u t a -
t ion, which is a con t rad ic t ion (recall a S ~ halts) . No te
aS~SS~+t is a c o m p u t a t i o n since by the defini t ion of
D- reduc t ion Si+l can a lways execute. []

I f no S~ is in a, then o~ is a l ready in the desired fo rm
(i.e. let/3 = a) . Therefore suppose tha t some S~ is in a.
By repea ted app l i ca t ions of L e m m a s 1 and 2,

a = XS~a ~ . . . ~"S,u

where no s ta tement f rom the process of S~ is in any
od (j = 2, . . . , n). By the defini t ion of D- reduc t ion for
some k,

=)tO~ 2 . . . o~kS1 . . . S h O t k + l , . . o~n~

is a c o m p u t a t i o n and it agrees with a on all the p r o g r a m

variables . This a rgumen t can be repea ted to fo rm the
desired c o m p u t a t i o n ~. N o w

: ~ 1 5 1 . . . S n # 2 . . . ~ m - l s 1 , , , S n ~ m'

where no Sj is in any ¢~" and a and /3 agree on all p ro-
g ram variables . Then

= ~1S~2 . . . ~ m - l s ~ "

is a c o m p u t a t i o n in P/S; moreover , a and ~ and
agree on all the p r o g r a m variables . I f ~ hal ts in P/S ,
then the t heo rem is proved. Conversely , assume tha t
does no t ha l t in P/S; fur ther assume tha t ~h is a com-
pu t a t i on in P/S. I f h # S, then ~h is a c o m p u t a t i o n in
P ; if h = S, a S 1 , . . . , S, is a c o m p u t a t i o n in P. These
asser t ions fol low since o~ and ~ agree on all p r o g r a m
variables . In ei ther case we have reached a con t rad ic -
t ion. []

The p r o o f of T h e o r e m 2 ac tua l ly es tabl ishes tha t for
each ~ tha t hal ts in P there is a ~ tha t hal ts in P / S such
tha t a and B agree on all p r o g r a m variables . Thus if S is
a D- reduc t ion , then

(5) The final s tates of P equal the final s tates of P/S .

(A final state of a p r o g r a m is a s tate tha t results af ter an
is executed where a is a ha l t ing compu ta t i on .)

T h e o r e m 2 is then seen to be a special case of (5). I t
s tates tha t P has a final s tate iff P / S has a final state. In
general , D- r educ t i on then preserves any p rope r ty tha t
depends only on a p r o g r a m ' s final state.

4. A p p l i c a t i o n s

The reduct ion m e t h o d is now d e m o n s t r a t e d by two
examples . In bo th cases app l i ca t i ons of T h e o r e m s 1 and
2 show tha t a para l le l p r o g r a m does not hal t , i.e. it is
d e a d l o c k free.

The first example is based on the p r o g r a m EX3 :

integer a, b, c (a = b = c = 1);
parbegin repeat P(a) ; P(b) ; V(a); V(b) ; end;

repeat P(b); P(c); V(b); V(c); end;
repeat P(a); P(e); V(a) ; V(c); end; parend;

Essent ia l ly this p r o g r a m is the " s m o k e r ' s e x a m p l e "
except for in i t ia l condi t ions . By T h e o r e m s 1 and 2,
EX3 hal ts iff the fo l lowing p r o g r a m hal ts :

integer a, b, c (a = b = c = 1);
parbegin repeat P (a); P(b) ; V(a) ; V(b) ; end;

repeat P(b); {[P(c); F(b); V(c);] end;
repeat P(a); {~P(c); V(a); V(c);]} end; parend;

The two indivis ible s ta tements behave as fo l lows:

1. [P(c) ; V(b); V(c);]] can execute iff c > 0; its effect is
to inc rement b by 1 and leave a and c unchanged .

2. [P (c) ; V(a); V(c) ;] can execute iff c > 0; its effect
is to inc rement a by 1 and leave b and c unchanged .

Thus c is a lways equa l to 1. I t fol lows tha t

{[P(c); V(b); V(c);] = V(b)

and

720 Communications December 1975
of Volume 18
the ACM Number 12

[e(c); v(a); v(c);] = v(a)

In summary, EX3 halts iff the following program halts:

integera, b (a = b = 1);
parbegin repeat P(a) ; P(b) ; V(a); V(b) ; end;

repeat P(b); V(b); end;
repeat P(a); V(a); end; parend;

Once again Theorems 1 and 2 can be applied; hence,
EX3 halts iff the following program halts:

integera, b (a = b = 1);
parbegin repeat P(a); ~P(b); V(a); V(b);] end;

repeat ~P(b); V(b);] end;
repeat P(a) ; V(a) ; end; parend;

AS with variable c, it is now the case that b is always
equal to 1. Therefore, EX3 halts iff the following pro-
gram halts:

integer a (a = 1) ;
parbegin repeat P(a); V(a); end

repeat end;
repeat P(a) ; V(a) ; end; parend;

Finally, this p rogram trivially never halts. The second
process runs forever, doing nothing! Thus EX3 does
not halt.

Our second example is based on the program EX4:

integer a, b (a = 0, b = N);
parbegin repeat P(a); V(b); end;

repeat P(b); V(a); end parend;

The integer N > 0 represents the amoun t of "buffer
space" available. This is essentially the bounded buffer
example of [4]. Each process consumes f rom one buffer
and produces elements for the other buffer. The value
of a -k b intuitively represents the number of elements in
the buffers. One would like to argue that a q- b is always
equal to N, but it clearly is not. Indeed a -q- b can equal
N or N -- 1 or N -- 2. N o w let us apply Theorems 1 and
2. Then EX4 halts iff the following program halts:

integer a, b (a = 0, b = N);
parbegin repeat ~P(a) ; V(b) ;] end;

repeat ~P(b) ; V(a);] end; parend;

The effect of ~P(a); V(b)] is to decrement a by 1 and
increment b by 1; the effect of {~P(b); V(a)] is to decre-
ment b by 1 and increment a by 1. Thus, a q- b is
"conserved" and is always equal to N. But [P (a) ;
V(b) ~ can execute iff a > 0 and [P(b) ; V(a)] can execute
iff b > 0. Since a q- b = N > 0, it is not possible for the
p rogram above to halt; hence EX4 does not halt.

that in a wide number of nontrivial instances reduction
preserves impor tant properties. Indeed, Theorem 1 can
be extended to show that left and right movers exist in
great abundance in parallel programs. In any P V pro-
g r a m - - a n d even the restriction to P V can be weakened
- - t h a t allows processes to share only global variables
with critical sections [2], any statement that is not a P
or a V is both a left and a right mover. The ramification
of this generalization is that reduction can be applied to
a very wide class of statements.

References
1. Ashcroft, E.A. Proving assertions about parallel programs.
Research Rep. CS-73-01, Dep. of Applied Analysis and Computer
Sci., U. of Waterloo, 1973.
2. Dijkstra, E.W. Cooperating sequential processes. In Program-
mingLanguages, F. Genuys (Ed.), Academic Press, 1968, pp. 43-
112.
3. Floyd, R.W. Assigning meanings to programs. In Mathematical
Aspects of Computer Science, Amer. Math. Soc., 1967, pp. 19-32.
4. Habermann, A.N. Synchronization of communicating proc-
esses. Comm. ACM 15, 3 (March 1972), 171-176.
5. Lauer, H.C. Correctness in operating systems. Ph.D. Th,
Carnegie-Mellon University, 1972.
6. Levitt, K.N, The application of program proving techniques
to the verification of synchronization processes. AFIPS Conf.
Proc., Vol. 41, Part 1, 1972 Fall Joint Computer Conference,
AFIPS Press, Montvale, N.J., 1972, pp. 33-47.

5. C o n c l u s i o n s

That reduct ion aids in a correctness p roof seems to
be clear. Essentially reduction is nothing more than
analyzing a parallel p rogram by collapsing pieces of the
p rogram together. It is interesting to note that the same
technique has long been used in sequential p rograms
(e.g. macros or procedures). But in the parallel case it
was not at all clear that reduct ion was possible. The
main achievement of Theorems 1 and 2 is the realization

721 Communications December 1975
of Volume 18
the ACM Number 12

