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Abstract—In this paper, we aim at reducing power consump-
tion in wireless sensor networks by turning off supernumerary
sensors. Random simplicial complexes are tools from algebraic
topology which provide an accurate and tractable representation
of the topology of wireless sensor networks. Given a simplicial
complex, we present an algorithm which reduces the number
of its vertices, keeping its homology (i.e. connectivity, cover-
age) unchanged. We show that the algorithm reaches a Nash
equilibrium, moreover we find both a lower and an upper
bounds for the number of vertices removed, the complexity of the
algorithm, and the maximal order of the resulting complex for
the coverage problem. We also give some simulation results for
classical cases, especially coverage complexes simulating wireless
sensor networks.

I. INTRODUCTION

Wireless sensor networks attract more and more research
attention due to the extent of their applications as well as the
decreasing costs and sizes of the electronic circuits. Fields
where wireless sensor networks can be used range from
battlefield surveillance to target enumeration in agriculture and
include environmental monitoring. In most applications, the
topology of the network, such as its connectivity and its cov-
erage, is a critical factor. Moreover, sensors are autonomous
systems: they are not plugged in nor physically connected to
each other. Battery life is thus a key problem and energy saving
a crucial point in wireless sensor networks management.
Sensors are often deployed in large numbers, exceeding the
number of necessary sensors. A first approach to reduce energy
consumption would logically be to turn off sensors randomly.
However by doing so one could modify the topology of the
sensor network by creating a coverage hole or breaking the
connectivity. Therefore, we first have to know the network’s
topology before we can figure out energy saving methods. To
guarantee the full knowledge of the topology one solution is
to deploy the sensors according to a regular pattern (hexagon,
square grid, rhombus or equilateral triangle) [1]. However the
target field does not always allow such a precise deployment.
Furthermore, the topology may not be time-invariant: sensors
could be destroyed, their batteries could die, or their com-
munication could be disturbed by seasonal changes. Another
approach is then to consider a random deployment that may
create clusters of sensors or on the contrary, may leave holes
of coverage. There is thus extensive research on the coverage
problem in wireless sensor networks. Location-based [9] and
ranged-based [18] methods require exact location information
for the former or exact distance between sensors for the latter.
Connectivity-based schemes seem of greater interest since

they do not require such knowledge. In [10], Ghrist et al.
introduced the so-called Vietoris-Rips complex, which is only
based on the proximity graph between sensors, and determined
the coverage by computing the homology of this complex.
Coverage computation via homology boils down to simple
linear algebra computations. It is used in [5], [15] and [19]
as a tool for a network operator to evaluate the quality of its
network. A distributed version of some of these algorithms is
presented in [17], [16] in order to detect coverage holes. From
a mathematical point of view, moments of various variables,
such as the Betti numbers or the Euler characteristic of the
covered region, can be obtained in specific regimes [14], or
explicitly in one dimension [6] and in any dimension by means
of Malliavin calculus [7].

In this paper, we present an algorithm which returns which
sensors can be turned off without modifying the topology
of the network. Given a simplicial complex, our algorithm
suppresses vertices in an optimized order, keeping the complex
homology unchanged. We can see an example of execution of
the algorithm in Figure 1.
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Fig. 1. A sensor network before and after the coverage reduction algorithm.

We show that the algorithm reaches a Nash equilibrium:
Every vertex in the final abstract simplicial complex is needed
to maintain the homology. We evaluate a lower and an upper
bound for the number of removed vertices. The average com-
plexity of the algorithm is analyzed for two kind of random
simplicial complexes: Erdös-Rényi complexes and Poisson
random geometric complexes. We show that this complexity
is polynomial for the former and (slighlty) exponential for the
latter. We also give the maximal order of the resulting complex
for the coverage problem.

This is the first reduction algorithm based on simplicial
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complexes using homology aimed at energy savings in wire-
less sensor networks. A classical approach to power manage-
ment in networks is the usage of the connectivity graph, such
as in the dominating graphs problem [12]. However, graphs
are 2-dimensional objects. One vertex has full knowledge of
its neighbors, but there is no representation of the interaction
between these neighbors. Therefore there is no notion of
coverage in graphs. Simplicial complexes allow us to represent
higher order relations, and are thus more convenient for the
representation of wireless sensor networks. Several works may
seem at first glance related to our approach but they do not
exactly fit with our purposes. In [8], [13], the authors use
reduction of chain complexes to compute homology, reducing
the work domain, which make it inapplicable to a coverage
problem. Witness complexes reduction, which is a reduction
to a chosen number of points, is used in [4] to compute
topological invariant. In this work, as in the work on reduction
of chains complexes, authors use reduction to compute the
homology, whereas we use homology results to reduce opti-
mally a simplicial complex. Finally, the authors of [3] present
a game theoretic approach to power management where they
define a coverage function. However this method requires
precise location information as well as coverage knowledge.
Moreover, authors aim at identifying sub-optimal solutions that
does not guarantee an unmodified coverage.

The paper is organized as follows: in Section 2, we intro-
duce simplicial homology concepts and variables that we will
use in the next sections. Section 3 is devoted to the description
of our reduction algorithm. In Section 4, we discuss its
mathematical properties. Some simulation results are given in
Section 5.

II. SIMPLICIAL HOMOLOGY

Graphs can be generalized to more generic combinatorial
objects known as simplicial complexes. While graphs model
binary relations, simplicial complexes represent higher order
relations. A simplicial complex is a combinatorial object
made up of vertices, edges, triangles, tetrahedra, and their n-
dimensional counterparts. Given a set of vertices V and an
integer k, a k-simplex is an unordered subset of k+1 vertices
[v0, v1 . . . , vk] where vi ∈ V and vi 6= vj for all i 6= j. Thus,
a 0-simplex is a vertex, a 1-simplex an edge, a 2-simplex a
triangle, a 3-simplex a tetrahedron, etc.

Any subset of vertices included in the set of the k+1 vertices
of a k-simplex is a face of this k-simplex. Thus, a k-simplex
has exactly k+1 (k−1)- faces, which are (k−1)-simplices. For
example, a tetrahedron has four 3-faces which are triangles.
A simplicial complex is a collection of simplices which is
closed with respect to the inclusion of faces, i.e. all faces
of a simplex are in the set of simplices, and whenever two
simplices intersect, they do so on a common face. An abstract
simplicial complex is a purely combinatorial description of the
geometric simplicial complex and therefore does not need the
property of intersection of faces. For details about algebraic
topology, we refer to [11].

One can define an orientation for an abstract simplicial
complex, where a change in the orientation corresponds to
a change in the sign of the coefficient:

[v0, . . . , vi, . . . , vj , . . . , vk] = −[v0, . . . , vj , . . . , vi, . . . , vk].

Definition 1: Given an abstract simplicial complex X , for
each integer k, Ck(X) is the vector space spanned by the set
of oriented k-simplices of X .

Definition 2: The boundary map ∂k is defined to be the
linear transformation ∂k : Ck → Ck−1 which acts on basis
elements [v0, . . . , vk] of Ck via

∂k[v0, . . . , vk] =

k∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk].

This map gives rise to a chain complex: a sequence of vector
spaces and linear transformations

. . .
∂k+2−→ Ck+1

∂k+1−→ Ck
∂k−→ Ck−1

∂k−1−→ . . .
∂1−→ C0

∂0−→ 0.

Definition 3: The k-th boundary group of X is Bk(X) =
im ∂k+1.

Definition 4: The k-th cycle group of X is Zk(X) =
ker ∂k.

A standard result asserts that for any integer k,

∂k ◦ ∂k+1 = 0.

It follows that Bk ⊂ Zk.
Definition 5: The k-th homology group of X is the quotient

vector space:

Hk(X) =
Zk(X)

Bk(X)
.

Definition 6: The k-th Betti number of X is the dimension:

βk = dimHk = dimZk − dimBk.

We can compute the Betti numbers in a simple case. Let X
be the simplicial made up of 5 vertices [v0], . . . , [v4], 6 edges
[v0, v1], [v0, v2], [v1, v2], [v1, v4], [v2, v3] and [v3, v4], and one
triangle [v0, v1, v2].

v0

v1

v2
v3

v4

Fig. 2. A geometric representation of X
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The boundary maps associated to the simplicial complex X
are in matrix formulation:

∂1 =



[v0v1] [v0v2] [v1v2] [v1v4] [v2v3] [v3v4]

[v0] −1 −1 0 0 0 0
[v1] 1 0 −1 −1 0 0
[v2] 0 1 1 0 −1 0
[v3] 0 0 0 0 1 −1
[v4] 0 0 0 1 0 1

,

∂2 =



[v0, v1, v2]

[v0, v1] 1
[v0, v2] −1
[v1, v2] 1
[v1, v4] 0
[v2, v3] 0
[v3, v4] 0

.

The boundary map ∂0 is the null function on the set of
vertices. Then we can compute:

β0(X) = dimker ∂0 − dim im ∂1

= 5− 4

= 1

β1(X) = dimker ∂1 − dim im ∂2

= 2− 1

= 1

There are several famous types of abstract simplicial com-
plexes, here we focus on two particular abstract simplicial
complexes defined on a metric space.

Definition 7 (C̆ech complex): Given (X, d) a metric space,
ω a finite set of points in X , and ε a real positive number.
The C̆ech complex of parameter ε of ω, denoted Cε(ω), is the
abstract simplicial complex whose k-simplices correspond to
(k + 1)-tuples of vertices in ω for which the intersection of
the k + 1 balls of radius ε centered at the k + 1 vertices is
non-empty.
Thus the C̆ech complex characterizes the coverage of a domain
as we can see in Figure 3.

Definition 8 (Vietoris-Rips complex): Given (X, d) a met-
ric space, ω a finite set of points in X , and ε a real positive
number. The Vietoris-Rips complex of parameter ε of ω,
denoted Rε(ω), is the abstract simplicial complex whose k-
simplices correspond to unordered (k + 1)-tuples of vertices
in ω which are pairwise within distance less than ε of each
other.

In general, unlike the C̆ech one, Vietoris-Rips complexes
are not topologically equivalent to the coverage of an area.
However, the following gives us the relation between coverage
and Vietoris-Rips complexes:

Lemma 1: Given (X, d) a metric space, ω a finite set of
points in X , and ε a real positive number,

R√3ε(ω) ⊂ Cε(ω) ⊂ R2ε(ω).
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Fig. 3. A sensor network and its associated C̆ech complex.

Only graph description is required to build a Vietoris-Rips
complex. In the same way we can build an abstract simplicial
complex from any graph: each k-simplex is included in the
complex if every one of its (k − 1)-faces already are.

The Betti numbers are used to count the number of k-
dimensional holes. For example, β0 counts the number of
0-dimensional holes, that is the number of connected com-
ponents. And β1 counts the number of holes in the plane. If
we are in dimension d, the k-th Betti number for k ≥ d has
no geometric meaning.

III. REDUCTION ALGORITHM

In this section, we present the reduction algorithm. The
algorithm takes as input a fully described abstract simplicial
complex: all k-simplices must be enumerated for every integer
k. Then the algorithm aims at removing superfluous vertices
while maintaining the homology type of the abstract simplicial
complex.

There are several levels of knowledge of the homology type:
you might want to maintain only the same first k0-th homology
group and Betti numbers. For the ease of presentation, we
restrict ourselves to dimension 2, so we consider only the first
two Betti numbers: β0 is the number of connected components,
β1 is the number of holes in the plane. We have thus two
different algorithms, for k0 = 1 and k0 = 2, but the main idea
can be extended to greater dimensions.
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The first algorithm, henceforth referred to as the connec-
tivity algorithm, aims at maintaining β0. The connectivity
algorithm takes as inputs the abstract simplicial complex, plus
the list of connected active vertices that are to stay connected.

The second algorithm, called the coverage algorithm, aims
at maintaining β0 and β1. It takes as inputs in addition to
the abstract simplicial complex, the list of connected vertices
which define the boundary of the area that is to stay covered.

A. Degree calculation

The first part of the algorithm is the calculation of a degree
that we define for every k0-simplex, with k0 the number of
Betti numbers to be kept unchanged:

Definition 9: For k integer, the degree of a k-simplex
[v0, v1, . . . , vk] is the size of the greatest simplex it is part
of:

D[v0, v1, . . . , vk] = max{d | [v0, v1, . . . , vk] ⊂ d-simplex}.

We immediately have D[v0, v1, . . . , vk] ≥ k for any k-
simplex.

We can see examples of value of the degree for 2-simplices
in figure 4.

v0

v1

v2

D[v0, v1, v2] = 3

v0

v1

v2 v3

D[v0, v1, v2] = 4

Fig. 4. Example of values of degrees of triangles

For the remainder of the paper, let sk(X), or sk, be the
number of k-simplices of the abstract simplicial complex X .

Let us denote D1, . . . , Dsk0
the sk0 degrees of a complex,

their computation is done as shown in Algorithm 1.

Algorithm 1 Degree calculation
for i = 1→ sk0 do

Get (v0, . . . , vk0) the vertices of the i-th k0-simplex
k = k0
while (v0, . . . , vk0) are vertices of a (k + 1)-simplex
do
k = k + 1

end while
Di = k

end for
return D1, . . . , Dsk0

B. Indices computation

The second part of the algorithm is the computation of the
indices that we define for each vertex:

Definition 10: The index of a vertex v is the minimum of
the degrees of the k0-simplices it is a vertex of:

I[v] = min{D[v0, v1, . . . , vk0 ] | v ∈ [v0, v1, . . . , vk0 ]},

with k0 the number of Betti numbers to be kept unchanged.
If a vertex v is not a vertex of a k0-simplex then I[v] = 0.

We can see in figure 5 an example of value of indices in
an abstract simplicial complex.

v0

v1

v2 v3

v4

D[v0, v1, v2]=D[v0, v1, v3]=D[v0, v2, v3]=D[v1, v2, v3]=4

D([v1, v3, v4]) = 3

I[v0]=I[v2]=4 and I[v1]=I[v3]=I[v4]=3

Fig. 5. Example of values of indices

Let v1, v2, . . . , vs0 be the vertices of the abstract simplicial
complex, the computation of the s0 indices is done as shown
in Algorithm 2.

Algorithm 2 Indices computation
for i = 1→ s0 do
I[vi] = 0
for j = 1→ sk0 do

if vi is vertex of k0-simplex j then
if I[vi] == 0 then
I(vi) = Dj

else
I[vi] = min{I[vi], Dj}

end if
end if

end for
end for
return I[v1], . . . , I[vs0 ]

The index of a vertex is an indicator of the density of
vertices around the vertex: an index of k0 indicates that at least
one k0-simplex of the vertex is not a face of any (k0 + 1)-
simplices; whereas a high index shows that each k0-simplices
of the vertex is part of higher simplices.

An index of zero indicates that the vertex is not a part of a
any k0-simplex: the vertex is isolated up to the k0-th degree.
For k0 = 1, that means that the vertex is disconnected. For
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k0 = 2, the vertex is only linked to other vertices by edges,
therefore is inside a coverage hole.

C. Optimized order for the removal of vertices

We now consider the entire algorithm and look for an
optimized order to remove vertices which are superficial to
the homology.

First, we consider the particular vertices. The active or
boundary vertices that are given as inputs and define the area
of interest for the homology computation are critical vertices
that are requested to remain in the last complex. They are
flagged as irremovable by a negative index.

Then the indices give us an order for the removal of
vertices: the greater the index of a vertex, the more likely
it is superfluous for the homology of the abstract simplicial
complex. So the vertices with the greatest index are candidates
for removal: one is chosen randomly. The removal of a vertex
leads to the degradation of all the k-simplices it was a vertex
of, to (k − 1)-simplices for every integer k.

We need to ensure that the homology is unchanged, so we
compute the k0 first Betti numbers thanks to the boundary
maps once before the algorithm runs, then every time a
vertex is removed. This computation is instantaneous since the
complex is already built, and only adjacency matrices defining
the complex are needed. If the homology changes, the vertex is
put back into the abstract simplicial complex, with a negative
index to flag it as critical. Otherwise, the removal of the vertex
is confirmed. The degrees of the k0-simplices and the indices
of the vertices are recalculated for the new abstract simplicial
complex.

Lemma 2: When a vertex of index I > k0 is removed, only
the vertices sharing an I-simplex with it, and of index I can
have their index changed to I − 1.

Proof: Let w be the removed vertex of index I , and v any
vertex of the abstract simplicial complex. Since w is removed,
I is the maximum index of the complex.

If v does not share any simplex with w, none of the degrees
of its k0-simplex will change, and neither will its index.

Thus let us consider that the maximum common simplex of
v and w is a k-simplex. If k < I then w have index k < I ,
which is absurd. Then we can assume that k ≥ I . Either the
index of v is strictly less than I and thus comes from a simplex
not shared with w, therefore it is unmodified by the removal of
w. Or the index of v is I , it either still comes from a I-simplex
not shared with w and remains unmodified, or it comes from
a common I-simplex. In the latter, after the removal of w, the
index of v becomes I − 1.

The algorithm goes on removing vertices until every re-
maining vertex has its index below or equal to k0 − 1. We
give in Algorithm 3 the whole algorithm for the conservation
of the k0 first Betti numbers.

Definition 11 (Dominating set): As defined in [12], a set
S ⊆ V of vertices of a graph G = (V,E) is called a
dominating set if every vertex v ∈ V is either an element
of S or is adjacent to an element of S.

Algorithm 3 Reduction algorithm
input: Abstract simplicial complex X , list LC of critical

vertices (active or boundary).
Computation of β0(X), β1(X), . . . , βk0−1(X)
Computation of D1(X), . . . , Dsk0

(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
for all v ∈ LC do
I[v] = −1

end for
Imax = max{I[v1(X)], . . . , I[vs0(X)]}
while Imax > k0 − 1 do

Draw w a vertex of index Imax

X ′ = X\{w}
Computation of β0(X ′), β1(X ′), . . . , βk0−1(X

′)
if βi(X ′) 6= βi(X) for any i = 0, . . . , k0 − 1 then
I[w] = −1

else
Computation of D1(X

′), . . . , Ds′k0
(X ′)

for i→ 1 : s′0 do
if I[vi(X ′)] ≥ 0 then

Computation of I[vi(X ′)]
end if

end for
Imax = max{I[v1(X ′)], . . . , I[vs′0(X

′)]}
X = X ′

end if
end while
return X

Definition 12 (Full domain hypothesis): Let us call the full
domain hypothesis when the critical vertices define the whole
input space: for the connectivity algorithm, that means that
the active vertices are a dominating set of the initial abstract
simplicial complex. For the coverage algorithm, that means
that all the vertices are in the convex hull defined by the
boundary vertices.

Lemma 3: Under the full domain hypothesis, the algorithm
can stop when all vertex indices are below or equal to k0
instead of k0 − 1.

Proof: Let us suppose the input data satisfies the full
domain hypothesis. Let v be a vertex of index k0, which means
that at least one of the k0-simplex it is vertex of is not a face
of any (k0+1)-simplex. The removal of this vertex would lead
to the removal of this particular k0-simplex. Since we need to
maintain the homology on the entire domain, this would lead
to a k0-dimensional hole, and an increment of βk0−1.

IV. PROPERTIES

Theorem 4 (Nash equilibrium): Our algorithm reaches a
Nash equilibrium as defined in [3]: every vertex in the final
abstract simplicial complex is needed to maintain its homol-
ogy.

Proof: In the final abstract simplicial complex, every
vertex is of index less than or equal to k0−1. By the definition
of a computed index, it is impossible for an index to be strictly
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less than k0 if nonzero or negative. We then differentiate two
types of vertices: vertices of index −1 and 0.

First, negative indices are given to vertices to flag them as
critical. Either a vertex is of negative index because it is an
active/boundary vertex, in which case it is required to stay in
the complex. Or a vertex is of negative index if its removal
leads to a change in the Betti numbers.

Then, a vertex of index 0 is an isolated vertex. If it isolated
up to the k0-th of degree, its removal will decrease the k0th
Betti number. For example, the removal of a first degree
isolated vertex, that is a disconnected one, would lead to the
decrement of β0. As well, the removal of a vertex inside a
hole will lead to the union of 2 or more holes.

In the case of lemma 3, its proof shows that the vertices of
indices k0 are needed to maintain the homology.

Theorem 5 (Upper and lower bounds): Let Ek be the set
of vertices that have indices k. The number of removed
vertices M is bounded by:

Imax∑
k=k0

1[Ek 6=∅] ≤M ≤
Imax∑
k=k0

|Ek|.

Proof: Let us begin with the upper bound, the algorithm
runs until all indices are less than or equal to k0 − 1. So the
maximum number of vertices the algorithm can remove is the
number of vertices that initially have their index strictly greater
than k0−1. This is an optimal upper bound since this number
of removed vertices is reached in the following case:

Let a k-simplex, with k > k0, be the initial abstract
simplicial complex, and nC of its vertices be the initial critical
vertices, necessarily nC ≤ k+1. The nC critical vertices have
negative indices, the k + 1− nC other vertices have an index
of k, and they are all removed.

v0
I[v0] = 4

v1
I[v1] = −1

v2
I[v2] = −1

v3
I[v3] = 4

Before

v0

v1
I[v1] = −1

v2
I[v2] = −1

v3

After

Fig. 6. Example of this case with k = 3 and nC = 2, the 2 nodes v0 and
v3 are removed by the algorithm.

For the lower bound, we have seen in Lemma 2 that the
removal of a vertex of index Imax can only decrease the index
of vertices of index Imax. In the worst case, it decreases all
indices Imax and the value of Imax changes, not necessarily
to Imax − 1 depending on the critical vertices. Thus we can
see, that at least one vertex per index value can be removed,
hence the result.

The lower bound is reached in the previous case if nC = k.

Theorem 6 (Complexity): The complexity of the algorithm
is upper bounded by:

(n− nC)sk0

(
n+

H∑
k=k0+1

sk

)
,

with nC being the number of initial critical vertices, sk the
number of k-simplices in the abstract simplicial complex, n =
s0 the total number of vertices, and H the highest simplex in
the complex.

Proof: For the computation of the degrees of every
k0-simplex, the algorithm traverses all the k-simplices for
k0 < k ≤ H to see if the k0-simplex is included in it. Since
there is sk k-simplices, the computation of the degrees is of
complexity sk0

∑H
k=k0+1 sk.

For the computation of the indices, the algorithm traverses,
for every one of the n vertices, the k0-simplices it is vertex
of, which is at most all the k0-simplices. The complexity of
the computation of all the indices is therefore sk0n.

These computations are done before every removal of
vertices, which is at most the total number of vertices minus
the number of initial critical vertices, hence the result.

Corollary 7: The complexity of the algorithm is upper
bounded by 2n when n goes to infinity.

Proof: This is a direct consequence of Theorem 6 since
the number of k-simplices sk can be upper bounded by

(
n
k+1

)
.

Corollary 8: If we apply our algorithm to a C̆ech complex
Cε(ω), defined with the maximum norm, based on a Poisson
point process of parameter λ on a torus of side a in dimension
d. The complexity of the algorithm is of the order of O((1 +
( 2εa )

d)n) on average when n goes to infinity.
Proof: According to [7], we have:

Eλ [sk−1 | s0 = n] =

(
n

k

)
kd
(
2ε

a

)d(k−1)
,

Covλ [sk−1, sl−1 | s0 = n] =

k∧l∑
i=1

(
n

k + l − i

)(
k + l − i

k

)(
k

i

)
(
k + l − i+ 2

(k − i)(l − i)
i+ 1

)d(
2ε

a

)d(k+l−i−1)
.

Plugging this into the complexity formula of Theorem 6 gives
the result.

We define the Erdös-Rényi complex based on the epony-
mous random graph:

Definition 13 (Erdös-Rényi complex): Given n an integer
and p a real number in [0, 1], the Erdös-Rényi complex of
parameters n and p, denoted G(n, p), is an abstract simplicial
complex with n vertices which are connected randomly. Each
edge is included in the complex with probability p independent
from every other edge. Then a k-simplex, for k ≥ 2, is
included in the complex if and only if all its faces already
are.
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Corollary 9: The complexity of the algorithm for the
Erdös-Rényi complex based on the graph G(n, p) is of the
order of O(n2(k0+2)) on average when n goes to infinity.

Proof: In the Erdös-Rényi complex, the expected values
of the number of k-simplices and of the product of numbers
of k-simplices are given in [2]:

Eλ [sk−1] =

(
n

k

)
p(

k
2),

Eλ [sk−1sl−1] =

k∧l∑
i=0

(
n

k

)(
k

i

)(
n− k
l − i

)
p(

k
2)+(

l
2)−(

i
2).

The results then comes from the complexity formula of
Theorem 6.

Theorem 10 (Highest order simplex): In the case of the al-
gorithm applied to a Vietoris-Rips complex or a C̆ech complex
in dimension d, the highest order simplex of the final complex
is at most a (2d− 1)-simplex, excluding critical vertices.

Proof: Let k be an integer strictly greater than 2d−1, and
let us suppose that the k + 1 non-critical vertices v0, . . . , vk
form a k-simplex.

Since we are in dimension d, we can consider the vertex the
furthest on each of the 2d directions. Note that two of these
vertices can be the same vertex. Let us reorder the vertices
such that v0, . . . , vi−1 with i ≤ 2d are the extremity vertices
defined above. Then vi, . . . , vk must fall in the covered area of
v0, . . . , vi−1. Such vertices can be removed without changing
the homology of the complex, therefore they can not be in the
final complex hence a contradiction.

Corollary 11: In the case of the algorithm applied to a
Vietoris-Rips complex or a C̆ech complex under the full do-
main hypothesis in 2 dimensions, to make the final simplicial
complex planar, it is necessary and sufficient to remove edges
that are second diagonals of a square.

Proof: This is a direct consequence of Theorem 10.
Theorem 12: For the algorithm applied to a Vietoris-Rips

complex or a C̆ech complex under the full domain hypoth-
esis, the set of remaining vertices in the final complex is a
dominating set of the set of vertices in the initial complex.

Proof: Let ε be the parameter of the Vietoris-Rips com-
plex. The area inside the coverage boundary is covered by the
final abstract simplicial complex: each point of this area is at
distance lower than ε from at least three vertices of the final
complex, znd is thus adjacent to them. This is true for every
vertex of the initial complex.

The proof is the same in the case of the C̆ech complex.

V. SIMULATION RESULTS

Our simulations aim to illustrate our algorithm. The results
are highly dependent on the chosen parameters: for the connec-
tivity algorithm the percentage of removed vertices is linked to
the probability that the active vertices are connected without
any intermediary in the complex; for the coverage algorithm,
it is linked to the ratio initial number of vertices on number of
vertices needed for the coverage. We simulated our algorithm
on two types of complexes: the connectivity algorithm on

the Erdös-Rényi complex, and the coverage algorithm on the
Vietoris-Rips complex.
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Fig. 7. A Erdös-Rényi complex before and after the connectivity algorithm.

We can see in Figure 7 one realization of the connectivity
algorithm on a Erdös-Rényi complex of parameter n = 15
and p = 0.3, with a random set of active vertices. A vertex
is active with probability pa = 0.5 independently from every
other vertices. We chose a small number of vertices for the
figure to be readable. Active vertices are circled, and non-
active vertices which are kept to maintain the connectivity
between active vertices are starred.

With the parameters n = 60 vertices, and p = 0.2, on
average on 1000 configurations without disconnectivity with
pa taking values between 0.1 and 0.5 (200 configurations
each), the algorithm removed 98% of the non-active vertices:

pa % of removed vertices
0.1 94.96%
0.2 97.14%
0.3 98.59%
0.4 99.43%
0.5 99.87%

The behaviour of the connectivity algorithm on a Vietoris-
Rips complex is analogous.
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For the coverage algorithm on a Vietoris-Rips complex, we
simulated the set of vertices using a Poisson point process:

Definition 14: A Poisson point process ω with intensity λ
on a Borel set X is defined by:

i) For any A ∈ B(X), the number of vertices in A, ω(A), is
a random variable following a Poisson law of parameter
λS(A),

P(ω(A) = k) = eλS(A) (λS(A))
k

k!
·

ii) For any disjoint A, A′ ∈ B(X), the random variables
ω(A) and ω(A′) are independent.
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Fig. 8. A Vietoris-Rips complex before and after the coverage algorithm.

We can see in Figure 8 one realization of the coverage
algorithm on a Vietoris-Rips complex of parameter ε = 1
based on a Poisson point process of intensity λ = 4.2 on a
square of side length a = 2, with a fixed boundary of vertices
on the square perimeter. The boundary vertices are circled.

With the parameters, chosen to ensure coverage, ε = 1,
λ = 5.1 and a = 2, on average on 1000 configurations, the
algorithm removed 69.35% of the non-boundary vertices.
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