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Abstract. We present a general method for analyzing and numerically
solving partial differential equations with self-similar solutions. The method
employs ideas from symmetry reduction in geometric mechanics, and
involves separating the dynamics on the shape space (which determines
the overall shape of the solution) from those on the group space
(which determines the size and scale of the solution). The method is
computationally tractable as well, allowing one to compute self-similar
solutions by evolving a dynamical system to a steady state, in a scaled
reference frame where the self similarity has been factored out. More
generally, bifurcation techniques can be used to find self-similar solutions,
and determine their behavior as parameters in the equations are varied.

The method is given for an arbitrary Lie group, providing equations for
the dynamics on the reduced space, for reconstructing the full dynamics,
and for determining the resulting scaling laws for self-similar solutions. We
illustrate the technique with a numerical example, computing self-similar
solutions of the Burgers equation.

1. Introduction

Self similarity occurs in a great variety of applications, in fields as varied as

fluid mechanics [2], biology [16], and optics [14, 23, 21]. Symmetry reduction

has long been recognized as a useful tool for finding and analyzing self-

similar solutions of partial differential equations [15, 17]. The usual approach
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involves assuming a particular form of the solution, and introducing a change

of variables that simplifies the governing equations. For instance, given a

partial differential equation for a quantity u(x, y, t), one might choose new

independent variables ξ(x, y, t) and η(x, y, t) (in an intelligent way, using the

underlying symmetry), and assume a solution of the form u(ξ, η). For instance,

for a traveling wave, one might define ξ = x−αt, and for a diffusing wave, one

might define ξ = x/tα. The number of independent variables has thus been

reduced from three to two.

The method of symmetry reduction discussed in this paper is quite

different from this standard approach. We treat the governing equations

explicitly as a dynamical system, and the goal is not to reduce the number

of independent variables, but rather to express the equations in a scaled

coordinate system in which the underlying symmetry has been factored out.

The central feature of the method is that the scaling of the coordinate system is

determined dynamically, not by any a priori assumption of the group invariance

of the solution. As a result, the method may be used not only to find self-

similar solutions, but also to describe how an arbitrary initial shape evolves

into a self-similar solution. Furthermore, tools for finding fixed points and

studying bifurcations of dynamical systems may be used to find self-similar

solutions and study their “bifurcations.” The method can be used (and has

been used in [21]) to investigate self-similar solutions of both the first and the

second kind [2], and is closely related to the renormalization scheme described

in [7].

Symmetry considerations are especially important for model reduction of

large finite- or infinite-dimensional systems, such as fluid flows. For instance,

techniques such as Proper Orthogonal Decomposition are often used to educe

coherent structures from data, and to obtain optimal basis functions on which

to project the governing equations. In the presence of certain symmetries, such

as translational invariance, the optimal basis functions are Fourier modes.

These say nothing about coherent structures in the data, and furthermore,

usually a large number of Fourier modes must be retained in order to capture

the dynamics. When symmetry reduction is used, the optimal modes are

no longer Fourier modes, so coherent structures may be extracted, and often

reduced-order models of much lower dimension may be obtained [18].

Even if reduced-order models are not desired, proper treatment of

symmetry is valuable in numerical methods. For instance, by dynamically

rescaling an adaptive mesh, one can ensure that the discrete system retains

the original symmetries of the continuous equations, and thus ensure that the
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discrete system retains the same conservation laws as the original system [3].

The method given in [3] is in fact quite similar in philosophy to the present

method, in that the time and spatial scales are rescaled dynamically, although

the methods for choosing these scales are quite different.

History and context. The foundations of the method are standard tools for

symmetry reduction in geometric mechanics [11, 12]. Motivated by low-

dimensional models of systems with traveling waves, these ideas were recently

applied to equivariant partial differential equations (PDEs) in [18]. That

paper introduced a method for removing translational invariance by shifting

the solution to line up with a pre-selected template function, as inspired by [8].

An important contribution was to generalize this template fitting method to

other symmetry groups in a natural way. Factoring out the group invariance

(through so-called pinning conditions) is also an important component of

many numerical methods for systems with symmetry. For instance, a similar

template-based phase condition is often used in the computation of periodic

solutions of autonomous ordinary differential equations [4], and a related

method was recently used in [19] for bifurcation analysis of systems where the

governing equations are not explicitly known, but only a numerical timestepper

is available.

These techniques were subsequently adapted to a class of self-similar

problems in [1]. Though the method is similar in spirit to that presented

in [18], it is not identical: the meaning of the template function in [1] is

different, and the method requires an additional pinning condition (needed to

pin down one of the scale factors in the self-similar anzatz—see [1], following

equation (11) and §3 below), which does not readily generalize to arbitrary

symmetry groups.

The goal of this paper is to unify these ideas, developing a systematic

framework for studying and numerically solving equations with self-similar

solutions. We describe the method of reduction and reconstruction in §2,

illustrate the method with a simple PDE example in §3, discuss the resulting

scaling laws and neutral directions in §4 and §5, and finally give two more

involved numerical examples in §6, using the Kuramoto-Sivishinsky equation

and the Burgers equation.
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2. Reduction and reconstruction

Consider a dynamical system on a manifold M whose evolution equation is

denoted

u̇ = X(u), (1)

where u(t) is a curve in M and X is a vector field on M . Let G be a Lie

group which acts on M by Φg : M → M and on TM by Ψg : TM → TM

(not necessarily the tangent action; this is discussed below). Suppose that

the vector field X is equivariant with respect to these actions: that is, for all

g ∈ G,

X ◦ Φg = Ψg ◦X, (2)

where we regard X as a map of M to TM .

In the usual context of equivariant dynamical systems, one usually

assumes that the action on TM is just the tangent of the action on M ; that is,

one usually takes Ψg = TΦg. In this case, the flow of X is also equivariant—

that is, if u(t) ∈ M satisfies (1), then Φg(u(t)) also satisfies (1), for any

fixed g ∈ G. This is the case treated in [18]. Here, we consider a slightly

more general case, where the actions Φg and Ψg have some independence. In

particular, self similar solutions will arise when these actions are related by

TΦg = m(g)Ψg (3)

where m is a homomorphism of Lie groups (G, ·) → (R+,×); that is, m

is multiplicative: m(g1g2) = m(g1)m(g2). Henceforth, we will assume the

actions are related by (3), and we will denote both the actions of Φ and TΦ

by concatenation:

g · x := Φg(x), x ∈ M (4)

g · v := TΦg(v), v ∈ TM, (5)

and equivariance of X implies

X(g · x) =
1

m(g)
g ·X(x).

2.1. Separation of dynamics

The main idea of symmetry reduction is to separate the dynamics in the group

direction from the dynamics in the remaining directions of phase space. Such

a separation is always possible for certain equivariant dynamical systems. In

particular, whenever the flow of a vector field on a manifold M is equivariant,
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one gets well-defined dynamics on the quotient space M/G, defined as the set

of equivalence classes: the equivalence relation is that elements of M related

by the group action are identified. Throughout, we assume that the action on

M is proper and free, which guarantees that the quotient space is a smooth

manifold. In symmetry reduction, one writes explicitly the dynamics induced

on this quotient space, and these dynamics are called the reduced dynamics.

Here, the situation is not as simple: because the actions on M and TM

are different, the flows are not equivariant (e.g., if u(t) is a solution, then

g ·u(t) is not a solution), and in general one does not have well-defined reduced

dynamics in the usual sense. However, one can obtain a version of reduced

dynamics if one rescales time as well. Two such methods are considered here:

in the method of slices, the dynamics evolve on a subspace of M that is locally

isomorphic to M/G; in the method of connections, we use the structure of a

principal connection to obtain the horizontal dynamics, which are evolution

equations for the horizontal lift of a path in M/G. We discuss the abstract

reduction further in section 2.5. The relation of these methods to “pinning

techniques” arising in the numerical analysis of periodic solutions is elaborated

in [10].

Let g(τ) be a curve in G, r(τ) a curve in M , and consider a solution of (1)

of the form

u(t) = g(τ) · r(τ) (6)

where τ is a function of t, as yet unspecified. Eventually, we will restrict r so

that it lies in (or is tangent to) a subspace of M locally isomorphic to M/G,

and its evolution will represent the reduced dynamics, but for now, we allow

arbitrary curves in M . Differentiating (6) with respect to t gives

ut = g · (rτ + ξM(r))
dτ

dt
, (7)

where ξ = g−1ġ, which is a curve in the Lie algebra g of G, and ξM denotes

the infinitesimal generator of the action Φ in the direction of ξ (thus, for each

ξ ∈ g, ξM is a vector field on M). See, e.g., Chapter 9 of [13] for a derivation

of formulas such as (7).

Inserting the expressions (6) and (7) into equation (1) and using

equivariance gives

(rτ + ξM(r))
dτ

dt
=

1

m(g)
X(r). (8)

If we now define τ(t) by

dt = m(g)dτ, (9)
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then (8) becomes

rτ = X(r)− ξM(r), (10)

which is independent of g (though of course it depends on ξ = g−1ġ).

Note that equation (10) is precisely equivalent to the original equation (1),

and is now underconstrained, as we have not placed any conditions on the

evolution of g and r. That is, g and r are not uniquely specified by (10). The

methods of slices and connections correspond to two different choices for ξ,

which will specify the dynamics of r and g uniquely.

2.2. Method of slices

Assume that M is an inner product space, with inner product denoted 〈〈·, ·〉〉,
and choose an element r0 ∈ M , called the template. The slice Sr0 passing

through r0 is defined by

Sr0 = {r ∈ M | 〈〈r − r0, ξM(r0)〉〉 = 0, for all ξ ∈ g}. (11)

The geometric interpretation of the slice is as follows: let G·r0 = {g·r0 | g ∈ G}
denote the group orbit through r0, and g · r0 = {ξM(r0) | ξ ∈ g} denote the

tangent space to this group orbit at the point r0. Then the slice Sr0 is the

affine space orthogonal to g · r0, through the point r0. If the action of G on

M is proper and free, then the slice Sr0 is locally isomorphic to the quotient

space M/G [5].

The physical interpretation of the slice reveals why r0 is called the

template: consider the set of functions r that are (locally) aligned with the

template r0. That is, if g(s) is a curve in G with g(0) = Id, r satisfies

d

ds

∣∣∣
s=0

‖r − g(s) · r0‖2 = 0.

That is, the “distance” between r and g · r0 is a (local) minimum when g = Id.

Letting ξ = ġ(0) ∈ g, this is equivalent to

−2 〈〈r − r0, ξM(r0)〉〉 = 0.

Thus, the set of functions locally aligned with the template is precisely the set

Sr0 .

Given an arbitrary function u ∈ M , one can find a scaled version g ·u that

lies in the slice by choosing g ∈ G to minimize ‖g · u − r0‖. This procedure

was used in [18] to preprocess data for computing POD modes. The resulting

POD modes form an optimal basis for the slice, and are useful in forming

reduced-order models.
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r1
r(τ) r0

g · r1 g · r0

X(r1)

Xr0(r1)

ξM(r1) PX(r1) = PξM(r1)

Sr0

Figure 1. Geometry of the method of slices.

Slice dynamics. We wish to determine dynamics for r by constraining r(τ)

to lie in the slice. Let P : M → M be the orthogonal projection onto g · r0

(see figure 1). Applying the projection to each side of (10), we have

PξM(r) = PX(r), (12)

since Prτ = 0 if r(τ) is constrained to lie in the slice. Equation (12) is an

algebraic equation which may be solved for ξ. The dynamics for r are then

given by

rτ = Xr0(r) := X(r)− (ξ(r))M(r) (13)

where ξ(r) denotes the solution of (12) for ξ, regarded as a function of r.

Figure 1 illustrates the corresponding geometry.

Equation (13) determines the slice dynamics, which may be viewed as

a locally embedded version of the reduced dynamics (since Sr0 is locally

isomorphic to M/G). A similar equation was obtained in [1], and has been

referred to as the MN-dynamics. However, note that though the equations are

similar in spirit, the MN dynamics in [1] are not literally a special case of (13).

The similarities and differences are illustrated by the example in §3.

Once the evolution of r(τ) has been obtained (by integrating (13)), we

may reconstruct the full solution u(t) from (6). To do this, we must first

determine g(τ). Since r(τ) is known, we have

g(τ)−1ġ(τ) = ξ(r(τ)), (14)

where again ξ(r) denotes the solution to (12). The equation above is called

the reconstruction equation, and may be integrated to find g(τ). Then (9) may

be integrated to give τ(t), and finally the solution u(t) is found from (6).
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Note that the only difference between this procedure and that given in [18]

is that time has been rescaled according to dt = m(g)dτ . In particular, if

m(g) = 1 for all g ∈ G, then t = τ and the procedure here is identical to that

in [18].

2.3. Method of connections

For this method, M does not need to be an inner product space, but we do

make use of some additional structure, namely that of a principal connection.

Recall that whenever the action of G on M is proper and free, the quotient

space M/G is a smooth manifold with a special structure, namely that of a

principal fiber bundle [5]. A connection on this bundle is a Lie algebra valued

one form A : TM → g with the following properties:

(i) A(ξM(u)) = ξ for all ξ ∈ g and u ∈ M ,

(ii) A is equivariant with respect to the action of G on M and the adjoint

representation of G in g; that is, for v ∈ TM ,

A(g · v) = Adg(A(v)), (15)

(iii) The horizontal space Horu = kerA|TuM is a complement to the vertical

space g · u.

As in the method of slices, we consider a solution of the form (6), but here

instead of constraining r to lie in the slice, we constrain rτ to be horizontal;

that is, A(rτ ) = 0. Applying the connection to (10), one obtains

ξ = A(X(r)), (16)

which defines ξ in terms of r. Substituting this expression into (10) then gives

the horizontal dynamics

rτ = X(r)−A(X(r))M(r). (17)

The geometry of the method is illustrated in Figure 2. To reconstruct the

solution u(t) once r(τ) has been found, one first solves the reconstruction

equation

g(τ)−1ġ(τ) = A(X(r(τ)))

and then finds τ(t) and u(t) as in the method of slices. Note that the horizontal

spaces in the method of connections play the same role as the slice in the

method of slices.
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r(τ)r1

r2

Horr1

Horr2

g · r1

g · r2

Figure 2. Geometry of the method of connections.

Mechanical connection. In certain commonly occurring cases, it is possible to

construct a particular connection called the mechanical connection [11]. The

construction holds whenever one has the additional structure of a Riemannian

metric 〈〈·, ·〉〉 on M , and under certain conditions on the group action (for

instance, when the action is by isometries).

First, for each u ∈ M , one defines the locked inertia tensor I(u) : g → g∗

by

〈I(u)ξ, η〉 = 〈〈ξM(u), ηM(u)〉〉 , (18)

where 〈·, ·〉 denotes the natural pairing. Next, one constructs the momentum

map J : TM → g∗ by

〈J(vu), η〉 = 〈〈vu, ηM(u)〉〉 , (19)

where vu ∈ TuM . Finally, the connection A : TQ → g is given by

A(vu) = I(u)−1 · J(vu). (20)

One easily verifies that this connection satisfies properties (i) and (iii) above,

and furthermore that the horizontal space Horu is the orthogonal complement

to g · u. For equivariance, however, one needs an additional condition on the

group action. It is straightforward to check that (ii) holds whenever the action

satisfies

〈〈g · vu, g · wu〉〉 = f(g) 〈〈vu, wu〉〉 (21)

where f : G → R+ is a homomorphism. Usually, one considers the case where

the action is by isometries, and so f(g) = 1, but for the actions that arise in

self-similarity, the more general condition (21) is appropriate.
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It is insightful to notice that using (20) with the method of connections is

precisely equivalent to the method of slices, where the template function r0 is

taken to be the time-varying function r(τ)—that is, using the most recent

copy of the solution itself as the template. The intuition is immediately

apparent on comparing figures 1 and 2. To see this precisely, take r0 = r(τ)

in equation (12), to obtain

〈〈ξM(r), ηM(r)〉〉 = 〈〈X(r), ηM(r)〉〉 ,
for all η ∈ g, which is equivalent to ξ = A(X(r)) with A given by (20).

2.4. Relation between slices and connections

The horizontal dynamics (17) are related to the slice dynamics (13), but the

geometric interpretation of the two is somewhat different. For r ∈ M , let

[r] = G·r ∈ M/G denote its equivalence class, and suppose we are given a curve

[r](t) ∈ M/G. A horizontal lift is a curve r(t) ∈ M such that [r(t)] = [r](t),

and such that ṙ(t) ∈ Horr(t), the horizontal space of the connection. If the

initial point r(0) is given, then the horizontal lift is uniquely specified, and

the dynamics for its evolution are those given by (17). The horizontal lift is a

useful construction for studying geometric phases [12].

By contrast, in the method of slices, the slice may be viewed as a local

coordinate representation for M/G, so equation (13) is actually a local version

of the reduced dynamics, written in this coordinate system. The distinction

is an important one: a solution which projects to a loop in M/G will be a

periodic solution of (13), but may not be a periodic solution of the horizontal

dynamics (17), as there may be a net phase change around the loop (this is

called the holonomy, or geometric phase of the path).

Despite these differences, we have the following important result:

Theorem 2.1. A point r ∈ M is a fixed point of the slice dynamics (13)

⇐⇒ r is a fixed point of the horizontal dynamics (17). Furthermore, for such

a fixed point, a solution of (12) is given by ξ(r) = A(X(r)). The fixed point r

is a relative equilibrium of (1), corresponding to a self-similar solution.

Proof. If r is a fixed point of (13), then X(r) = (ξ(r))M(r), so A(X(r)) = ξ(r),

and r is a fixed point of (17). Conversely, if r is a fixed point of (17), then

X(r) = A(X(r))M(r), so ξ = A(X(r)) is a solution of (12), and r is a fixed

point of (13).

If r is such a fixed point, then the solution u(t) of (1) is given by (6)

as u(t) = g(τ) · r, and hence is a relative equilibrium, or in other words, a

self-similar solution.
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2.5. Reduction in a space-time setting

As mentioned in section 2.1, in the more general setting of self similarity, where

the actions on M and TM are different, one does not get well defined reduced

dynamics in the usual sense. However, one may define reduced dynamics in a

space-time setting, in which one allows rescalings of time as well.

Let Ft : M → M denote the flow of the vector field X. Using equivariance

of X, one obtains

Φg ◦ Ft = Fm(g)t ◦ Φg.

If m(g) = 1, then the flow is equivariant, and one obtains reduced dynamics

in the usual way, by projecting Ft to the quotient space, and obtaining the

corresponding vector field on M/G. However, if m(g) 6= 1, then the flow is

not equivariant, and so does not induce a well-defined flow on M/G. In this

case, we allow rescalings of time as well. Define the space-time flow by

F : M × R → M × R : (u, t) 7→ (Ft(u), t),

and define the action on M × R by

Θg : (u, t) 7→ (Φg(u), m(g)t).

It is straightforward to check that Θg ◦ F = F ◦ Θg, and thus F induces a

space-time flow on the quotient (M × R)/G. Denoting this quotient flow by

F̃ , the following diagram commutes:

M × R F−−−→ M × RyπΘ

yπΘ

(M × R)/G
F̃−−−→ (M × R)/G

(22)

The flow on the reduced space is defined in this space-time sense, but in general

one does not get evolution equations on the quotient space M/G. However,

the integral curves in M/G are well defined objects: if u(t) is a curve in M

that satisfies the dynamics (1), then g ·u(t/m(g)) is another curve that satisfies

the dynamics. These two curves project to the same curve in M/G, but with

different parameterizations of time.

One may view the slice dynamics of section 2.2 as a way of choosing

a “reference clock” that defines which time parameterization to use. More

precisely, a slice S may be used to define a diffeomorphism between (M×R)/G

and (M/G) × R, which makes F̃ into a flow on M/G. Letting [u]Φ ∈ M/G

denote the equivalence class of u ∈ M , and [(u, t)]Θ denote the equivalence
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class in M×R, we define a diffeomorphism between (M×R)/G and (M/G)×R
by

[(u, t)]Θ 7→ ([u]Φ, m(g)t), where g is such that g · u ∈ S.

This map is well defined since

[(Φh(u), m(h)t)]Θ 7→ ([Φh(u)]Φ, m(g)m(h)t), g · (h · u) ∈ S

= ([u]Φ, m(gh)t), (gh) · u ∈ S.

Intuitively, this corresponds to choosing the time scale that corresponds to the

particular choice of u ∈ M that lies in the slice S at time t = 0. This map

then establishes a flow on the quotient space M/G, which can then be used to

define a vector field on M/G.

3. Example

We now illustrate the two methods of reduction using an example treated

in [1], a partial differential equation

ut = D(u)

where u(t) ∈ M , a function space, and D is a differential operator that satisfies

the scaling relation

Dx (Bf (x/A)) = AaBbDy(f(y)), where y = x/A. (23)

That is, the operator D is equivariant with respect to scalings in amplitude

(B) and spatial scale (A). Here, the subscript x or y denotes the variable

which the differential operator D acts with respect to. In the terminology

of the previous sections, (23) means that the operator D is equivariant with

respect to actions Φg and Ψg of the multiplication group G = R+ × R+. For

g = (A, B) ∈ G, the group actions are given by

Φg(u)(x) = Bu(x/A) (24)

Ψg(u)(x) = AaBbu(x/A). (25)

Since Φg is linear, TΦg = Φg, and so we have

TΦg = A−aB1−bΨg = m(g)Ψg,

where m(g) = A−aB1−b.

The Lie algebra of G is g = R2, and the infinitesimal generator ξM(u) is

found by differentiating the action g(t) · u at the identity g(0) = (1, 1). For

ξ = (ξ1, ξ2) ∈ g, we have

ξM(u)(x) = −ξ1xux(x) + ξ2u(x). (26)
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Writing u(x, t) = g(τ) · r(x, τ), equation (10) becomes

rτ = D(r) + ξ1xrx − ξ2r, (27)

where ξ(r) will be determined below, either by the method of slices or the

method of connections.

3.1. Reduction using slices

Choosing a template function r̄ ∈ M , the slice Sr̄ is given by (11), which

(using (26)) consists of all functions r satisfying∫
(r − r̄)xr̄x dx = 0 and

∫
(r − r̄)r̄ dx = 0 (28)

(in section 2.2, the template r̄ was denoted r0). We now project (27) onto the

group orbit directions by multiplying by xr̄x and r̄ respectively, integrating,

and using (28), to get

− ξ1

∫
x2rxr̄x dx + ξ2

∫
xrr̄x dx =

∫
D(r)xr̄x dx (29)

−ξ1

∫
xrxr̄ dx + ξ2

∫
rr̄ dx =

∫
D(r)r̄ dx. (30)

These equations correspond to (12), and have the form

Ir̄(r)

(
ξ1

ξ2

)
= Jr̄(D(r)),

where

Ir̄(r) =

(∫
x2rxr̄x dx −

∫
xrr̄x dx

−
∫

xrxr̄ dx
∫

rr̄ dx

)

Jr̄(v) =

(
−
∫

vxr̄x dx∫
vr̄ dx

)
.

Solving for ξ = (ξ1, ξ2), we obtain

ξ(r) = Ir̄(r)
−1Jr̄(D(r)), (31)

which defines ξ1 and ξ2 in equation (27), to give the slice dynamics.

Note that equations (27) and (31) are analogous to equation (13) in [1],

which is referred to as the “MN-dynamics.” The procedure used in [1] to derive

the MN-dynamics is similar in spirit to the procedure used here, but is not

identical. In particular, the values of ξ1 and ξ2 are different, as two different

pinning conditions were used in place of the single template used here.
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3.2. Reduction using connections

We begin by constucting the mechanical connection A for the example, as

described in §2.3. Using (26), with ξ = (ξ1, ξ2), the locked inertia tensor

defined by (18) becomes

I(u)ξ = (ξ1 ξ2)

(
〈〈xux, xux〉〉 − 〈〈u, xux〉〉
− 〈〈xux, u〉〉 〈〈u, u〉〉

)
.

The momentum map defined by (19) is then

J(vu) = (−〈〈vu, xux〉〉 〈〈vu, u〉〉),

and the connection A : TQ → g is given by

A(vu) = I(u)−1 · J(vu)

=

(
〈〈xux, xux〉〉 − 〈〈u, xux〉〉
− 〈〈xux, u〉〉 〈〈u, u〉〉

)−1(
−〈〈vu, xux〉〉
〈〈vu, u〉〉

)
.

The horizontal dynamics for the example are then given by (27), where

(ξ1, ξ2) = ξ(r) = A(D(r)).

Note the similarity between the above, and the corresponding definition

for slices, equation (31). As mentioned in §2.3, if 〈〈·, ·〉〉 is the L2 inner product,

then the two definitions are in fact identical, if the template function r̄ is taken

to be the (time-varying) function r(τ).

4. Scaling laws and exponents

As summarized in Theorem 2.1, fixed points of either the slice dynamics or the

horizontal dynamics are self-similar solutions of the original equation. Given

a fixed point of these dynamics, one would like to find the scaling laws that

describe how the full (reconstructed) solution changes with time. Typically,

these scaling laws will be power laws, and we wish to compute the values of

the exponents from knowledge of the fixed point.

4.1. Example

First, we illustrate with the example from the previous section. Suppose that

r is a fixed point of the slice dynamics, and let (ξ1, ξ2) = ξ(r). Then the scaling

laws for the self-similar solution are given by the reconstruction equations

1

A

dA

dτ
= ξ1,

1

B

dB

dτ
= ξ2, (32)
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obtained from (14), with g−1ġ = (Ȧ/A, Ḃ/B). These are easily solved to give

A(τ) = exp(ξ1τ), B(τ) = exp(ξ2τ). (33)

We wish to rewrite this solution in terms of the physical time t, where

dt = A−aB1−bdτ . We have

dt

dτ
= A−aB1−b

= exp(ξ1τ)−a exp(ξ2τ)1−b

= exp((−aξ1 + (1− b)ξ2)τ)

= exp(µτ),

where

µ = −aξ1 + (1− b)ξ2 (34)

is a constant. The above equation is easily integrated to give

1 + µt = exp(µτ). (35)

Writing (33) in terms of t, we obtain

A(t) = exp(ξ1/µ log(1 + µt)) = (1 + µt)ξ1/µ (36)

B(t) = exp(ξ2/µ log(1 + µt)) = (1 + µt)ξ2/µ. (37)

Thus, the scaling exponents are given by ξ1/µ and ξ2/µ. Furthermore, from

the definition of µ, we see that the exponents satisfy

−a
ξ1

µ
+ (1− b)

ξ2

µ
= 1,

a well known scaling condition (see equation (6) of [1]). In the next subsection,

we show that one can generalize this procedure to an arbitrary Lie group.

4.2. Abstract setting

Let dt = m(g)dτ , where m : (G, ·) → (R+,×) is the homomorphism from

§2. Also, let µ = T1m : g → R, the tangent map of m at the identity. An

elementary result from the theory of Lie groups [5] is that if Φ : G → H is a

homomorphism of Lie groups, then Φ(expG ξ) = expH(T1Φ(ξ)), for all ξ ∈ g.

That is, the following diagram commutes:

g
expG−−−→ Gyµ

ym

R exp−−−→ R+

(38)
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The function µ will play an important role in determining the scaling laws,

and also determining whether solutions have finite-time singularities.

Suppose r ∈ M is a fixed point of the slice dynamics, and let ξ = ξ(r) ∈ g.

Then the reconstruction equation (14) gives

g(τ) = expG(ξτ). (39)

We wish to obtain g(t), where dt = m(g)dτ . We have

dt = m(expG(ξτ))dτ = exp(µ(ξ)τ) dτ. (40)

Since ξ is independent of time, let µ = µ(ξ) ∈ R. If µ 6= 0, then the solution

of (40) is

1 + µt = exp(µτ),

and hence

g(t) = expG(ξ/µ log(1 + µt))

= (1 + µt)ξ/µ (41)

where for t ∈ R+, ξ ∈ g, we define

tξ := expG(ξ log(t)).

To summarize: given a fixed point r of the reduced dynamics, the

exponents of the power laws are given by ξ/µ, where ξ = ξ(r) ∈ g, and

µ = µ(ξ(r)) ∈ R.

Furthermore, notice from (41) that a singularity exists when 1 + µt = 0.

If µ < 0, this corresponds to an explosion or implosion at time t = −1/µ > 0.

If µ > 0, the singularity corresponds to the “virtual origin” of the self-similar

solution, at time t = −1/µ < 0, and the solution exists for all positive time

(see Figure 3). The virtual origin corresponds to a finite-time singularity in

reverse time, as in a diffusion problem where a Gaussian initial condition will

approach a Dirac measure in reverse time.

5. Neutral directions

Since self-similar solutions are now fixed points of the slice dynamics (or

horizontal dynamics), one can now numerically search for self-similar solutions,

and discuss their stability, using conventional techniques. Some numerical

methods for finding fixed points (e.g., Newton iteration) have difficulties

whenever one has a manifold of fixed points rather than an isolated fixed

point. In that case, “neutral directions” exist—i.e., the linearized equations

have one or more zero eigenvalues at the fixed point. Those numerical methods
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t

τ

−1/µ

−1/µ

µ > 0

µ < 0

µ = 0

torigin

texplosion

Figure 3. Qualitative behavior of scaling laws. For µ > 0, the self-similar
solution exists for all positive time, and t = −1/µ is the “virtual origin.”
For µ < 0 there is a finite-time singularity (either explosion or implosion)
at t = −1/µ > 0. In the scaled time τ , self-similar solutions exist for all
time, regardless of the value of µ.

require that the neutral directions be identified, and the iteration constrained

accordingly.

For an equivariant dynamical system, if u0 is a fixed point, then g · u0

is also a fixed point, for any g ∈ G, so equilibria always come in orbit-fulls.

Accordingly, directions of the group action are obviously neutral directions for

the original dynamical system. Note that though self-similar solutions are not

equilibria of the original dynamics, they are equilibria of the slice dynamics,

and may be viewed as relative equilibria of the original dynamics, as stated in

Theorem 2.1. These relative equilibria also occur in orbit-fulls, but time must

be rescaled, as in Theorem 5.3 below. The main result of this section is the

theorem below, which shows that fixed points of the horizontal dynamics also

occur in orbit-fulls.

Theorem 5.1. If r is a fixed point of the horizontal dynamics (17), then g · r
is also a fixed point, for any fixed g ∈ G.

Proof. Let ξ = A(X(r)), and note that since r is a fixed point of (17), we have

X(r)− ξM(r) = 0.
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Letting

η = A(X(g · r)) = A(m(g)−1g ·X(r)) = m(g)−1 Adg ξ,

we have

X(g · r)− ηM(g · r) = m(g)−1g ·X(r)− g · (Adg−1 η)M(r)

= m(g)−1g · [X(r)− ξM(r)] = 0,

and so g · r is also a fixed point.

Corollary 5.2. If r is a fixed point of the slice dynamics (13), then g · r is

also a fixed point, for any fixed g ∈ G.

Proof. Combine Theorems 2.1 and 5.1.

Since the group orbit G · r is a smooth manifold of fixed points whenever

r is a fixed point, the neutral directions lie in the tangent space to the group

orbit, and are therefore the group directions ξM(r). In other words, if the slice

dynamics (or horizontal dynamics) are linearized about the fixed point r, then

the linearized equations will have a zero eigenvalue (with multiplicity), with

eigenspace g·r, the tangent space to the group orbit through r. Note, however,

that for the method of slices, these are not neutral directions if the domain is

restricted to the slice (i.e., those functions aligned with the template), as the

group does not act on this space.

For connections, we also have a stronger result, that holds for arbitrary

trajectories r(t).

Theorem 5.3. If r(t) satisfies the horizontal dynamics (17), then g ·r(t/m(g))

satisfies (17), for any fixed g ∈ G.

Proof. As before, for any g ∈ G, r ∈ M , we have

X(g · r)−A(X(g · r))M(g · r) =
1

m(g)
g · [X(r)−A(X(r))M(r)].

Noticing that

d

dt
g · r(t/m(g)) =

1

m(g)
g · ṙ(m(g)t)

establishes the result.
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6. Numerical examples

We present two examples: first, we illustrate the difference between the

methods of slices and connections for a traveling solution of the Kuramoto-

Sivashinsky equation, as considered in [8, 18]. Next, we use the method to

find a self-similar solution of the Burgers equation.

6.1. Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation is simplified model of phenomena in flame

dynamics and turbulence, and may be written

ut + uux + uxx + νuxxxx = 0, x ∈ [0, 2π],

with periodic boundary conditions. This system admits a wide variety of

solutions, for different values of ν, and here we consider a particular value

ν = 4/87, as considered in [8, 18]. For this value, the equation admits solutions

that are traveling, beating waves. The equation is invariant to translations,

so we consider the additive group G = R, with group action defined by

g · u(x) = u(x − g). The infinitesimal generator is then ξM(u) = −ξux, and

ξ = ġ represents the propagation speed. Writing the equation as ut = X(u),

with

X(u) = −uux − uxx − νuxxxx,

equivariance becomes X(g · u) = g · X(u), so the function m : G → R+ from

section 2.1 is just m(g) = 1, and time does not need to be rescaled. The

modified dynamics are then

ut = X(u) + ξux, (42)

where if ξ is determined by slices (equation (12)), we call this the reduced

dynamics, and if ξ is determined by connections (equation (16)) this is the

horizontally lifted dynamics. Choosing a template function ū(x), (12) becomes

ξ(u) = −〈X(u), ūx〉
〈ux, ūx〉

, (43)

and using the mechanical connection, (16) becomes

ξ(u) = A(X(u)) = −〈X(u), ux〉
〈ux, ux〉

. (44)

We solve (42) using a spectral collocation method, with 32 modes in x,

using a Crank-Nicolson scheme to advance the linear terms in time, and 2nd-

order Adams-Bashforth for the nonlinear term, with a timestep of ∆t = 10−4.
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Figure 4. Contour plot of solutions of the Kuramoto-Sivashinsky equation,
with ν = 4/87. Left : original dynamics (ξ = 0); Middle: slice dynamics (ξ
determined by (43)); Right : horizontal dynamics (ξ determined by (44))

A typical solution is shown in Figure 4, for an initial condition with spatial

mean equal to 1. The left figure shows the solution of the original equation,

and has the form of a traveling, beating wave. The middle figure shows

the solution of the slice dynamics, with the template function taken to be

the initial condition. Note that the traveling component has been removed.

The right figure shows the horizontal dynamics, and note that some traveling

remains: this is the geometric phase of the solution. It is interesting to

note that for the nearby parameter value ν = 4/84, the geometric phase

apparently disappears, and the method of connections removes all of the

traveling component, although the shape of the solution looks qualitatively

very similar. This is consistent with behavior others have observed for these

parameter values [8].

6.2. Burgers equation

Consider the Burgers equation

ut + uux = νuxx, x ∈ R (45)

and now let X(u) = −uux + νuxx, so that this equation may be written ut =

X(u). First, we investigate the equivariance of X. Consider transformations

of u of the form

u(x) 7→ bu
(x− c

a

)
.

We wish to express this transformation as a group action. The relevant

group is not completely obvious, but has an interesting structure. Let

(a, b, c) ∈ G = R+ × R+ × R, with group composition defined by

(a1, b1, c1)(a2, b2, c2) = (a1a2, b1b2, c1 + a1c2).
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The inverse is given by (a, b, c)−1 = (1/a, 1/b,−c/a), and the tangent to left

translation by (a, b, c)(ȧ, ḃ, ċ) = (aȧ, bḃ, aċ). Abstractly, G has the structure

of a semidirect product, and may be denoted R+ × (R+ s R). With the (left)

group action defined by

(g · u)(x) = bu
(x− c

a

)
then letting y = (x− c)/a, we have

(g ·X(u))(x) = −buuy + bνuyy

and

X(g · u)(x) = −b2

a
uuy + ν

b

a2
uyy.

For self-similarity, we require

m(g)X(g · u) = g ·X(u)

and so we require

b = m(g)b2/a, b = m(g)b/a2

which together imply b = 1/a, m(g) = a2. Since b is now superfluous,

henceforth we shall denote elements of G by (a, c) ∈ R+ s R.

Reduced dynamics. The infinitesimal generator of the action is found as

follows. Consider a curve g(t) ∈ G with g(0) = (1, 0), the identity element.

Then

d

dt

∣∣∣
t=0

g(t) · u =
d

dt

[
1

a
u
(x− c

a

)]
a=1,c=0

= −ȧ(u + xux)− ċux.

Thus, the infinitesimal generator is given by

ξM(u) = −ξ1(u + xux)− ξ2ux

where (ξ1, ξ2) ∈ g, the Lie algebra of G. Notice the linear combination of the

convective term ux (as for a traveling wave) with the self-similar scaling terms

u and xux.

The slice dynamics are then

rτ = X(r)− ξM(r)

= −rrx + νrxx + ξ1(r + xrx) + ξ2rx (46)

where (ξ1, ξ2) are given by the reconstruction equation below: if r̄(x) is a

template function, then ξ(r) is defined implicitly by

〈ξM(r), ηM(r̄)〉 = 〈X(r), ηM(r̄)〉 , ∀η ∈ g.
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This becomes(∫
(r + xrx)(r̄ + xr̄x) dx

∫
rx(r̄ + xr̄x) dx∫

(r + xrx)r̄x dx
∫

rxr̄x dx

)(
ξ1

ξ2

)
=

(
−
∫

X(r)(r̄ + xr̄x) dx

−
∫

X(r)r̄x dx

)
.(47)

Equation (47) determines the scaling rate ξ1 and propagation speed ξ2 from

the wave shape r.

Scaling laws To find the scaling laws, first we find the exponential map

expG : g → G. To find expG, we solve the differential equation g−1ġ = ξ

for g, with g(0) = 1G, the identity, and then expG(ξt) = g(t). (One must be

careful here, because of the semidirect product structure of G.) In particular,

we have

g−1ġ =

(
1

a
,− c

a

)
(ȧ, ċ) =

(
ȧ

a
,
ċ

a

)
.

Note that here, concatenation represents the tangent to left translation. Next,

writing g−1ġ = (ξ1, ξ2), we have

ȧ = ξ1a, ċ = ξ2a

and solving, we obtain

a(τ) = exp(ξ1τ), c(τ) =
ξ2

ξ1

(exp(ξ1τ)− 1).

To determine scaling laws, we require the function µ : g → R from § 4. Since

m(g) = a2, we have µ = T1m, so

µ(ξ) = 2ξ1.

Finally, the scaling laws are then

g(t) = (1 + µt)ξ/µ

= expG(ξ1/µ log(1 + µt), ξ2/µ log(1 + µt))

= ((1 + µt)ξ1/µ, ξ2/ξ1((1 + µt)ξ1/µ − 1))

Defining α = ξ1/µ, β = ξ2/µ, we have α = 1/2, and so

a(t) =
√

1 + µt, c(t) = 2β(
√

1 + µt− 1).

For typical solutions of the Burgers equation, the amplitude decreases, so

ȧ > 0 =⇒ µ > 0, and there is no finite-time singularity.
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Figure 5. Solution of the Burgers equation (left), and the Burgers equation
with symmetry reduction (right), for ν = 0.025, at t = 0, 1, 2, 3, 4, 5, for the
initial condition u(x, 0) = exp(−x2).

Simulation results The results of a simulation are shown in Figure 5. A

very simple numerical scheme was used, with second-order finite differences in

space, and explicit Euler for the time march. The figure on the left shows the

solution of the Burgers equation (45) with a Gaussian initial condition, with

ν = 0.025. For this simulation, 501 gridpoints were used for −5 ≤ x ≤ 5, with

a timestep of ∆t = 10−3. Solutions are plotted for t = 0, 1, 2, 3, 4, 5, and one

sees the initial data steepen into a sharp front (a viscous shock), propagate to

the right, and spread out as it decreases in amplitude.

The right figure shows the evolution of the horizontal dynamics, that is,

equations (46) and (47), with the template function r̄ chosen to be the current

solution r(t). The parameters are identical to those of the earlier simulation.

Here, the initial data also steepens into a sharp front, but the front does

not propagate, or grow in amplitude or spatial scale. Instead, the solution

approaches a steady state after about time t = 3 which corresponds, of course,

to a self-similar solution.

For this steady state, we compute the values ξ1, ξ2 from (47), and then

compute µ = 2ξ1, α = ξ1/µ, β = ξ2/µ, to obtain α = 0.5, β = 0.993,

µ = 0.422. Thus, for this self-similar solution, the “virtual origin” occurs at

time t = −1/µ = −2.37, and the amplitude and position evolve as

a(t) =
√

1 + 0.422t, c(t) = 1.98(
√

1 + 0.422t− 1).

The propagation speed is therefore ċ = 0.42/
√

1 + 0.422t, or about 0.42/a.

Note, however, that this speed ċ does not correspond to the speed of the front,

since the spatial scale a(t) also contributes to the motion of the front.
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An exact self-similar solution of the Burgers equation is well known [22],

and is given by

u(x, t) =

√
ν

πt

(eA/(2ν) − 1) exp(−x2/(4νt))

1 + (eA/(2ν) − 1)/2 · erfc(x/
√

4νt)
,

where A is the initial amplitude of the initial condition, a Dirac measure.

This analytic solution agrees almost exactly with the steady state shown in

Figure 5, with A =
√

π (the area under the curve u(x), a conserved quantity),

and with x shifted by the amount x0 = β/α = 1.98, and time shifted by the

amount t0 = 1/µ = 2.37.

This exact solution is easily found by more conventional methods, such as

reduction to ODEs. However, the present method has several advantages: one

may computationally study the stability of self-similar solutions; continuation

methods may be used to find nearby self-similar solutions (or bifurcations)

as parameters are varied; and furthermore, the present method can be useful

in the study of modulated self-similar solutions, analogous to the modulated

traveling solutions shown in Figure 4.

7. Conclusions

We have presented a method for analyzing and numerically solving equations

with self-similar solutions. The method unifies ideas for traveling waves, given

in [18], with those for self-similar solutions given in [1], and is presented for

an arbitrary continuous symmetry group. The only difference between the

method presented here and that in [18] is that for the self-similar equations

considered here, time must be rescaled appropriately.

Scaling laws are obtained, and are typically power laws, as is well known

for self-similar problems. A function µ : g → R was introduced in § 4, and

plays an important role in determining the exponents of the power laws, and

determining the existence of finite-time singularities.

The method also has some desirable characteristics from the numerical

point of view. First, the reduced dynamics are identical to the original

dynamics, with the addition of some extra terms (and the number of additional

terms is the same as the number of group variables). Thus, it is relatively

simple to convert an exisiting code for solving a self-similar PDE into a code

to solve the symmetry-reduced PDE: one need only add the extra terms to

the routine that computes the right-hand-side of the PDE. Because the scales

and position of the solution are fixed, there is less need for time-adaptive

meshes than in the original equation. Second, since the neutral directions
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of the symmetry-reduced equations are known (up to some discretization

error), it is possible to modify the Recursive Projection Method [20] or the

Newton-Picard method [9] to compute steady-states or periodic solutions of

these equations. If it is impossible to adapt an existing code to integrate

the symmetry-reduced equations, it should still be possible to compute and

analyse the unknown symmetry-reduced system using the approach of [19],

which does not explicitly need the symmetry-reduced equations but relies only

on a black-box time integrator, combined with symmetry transformations of

the state. Combining this discrete-time approach with the coarse integration

and bifurcation techniques we have been recently developing [6] may help

with computer-assisted analysis of PDE-level, “coarse” self-similar solutions

for problems for which only microscopic or stochastic descriptions are available.
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