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1. Introduction

It is well known that the knowledge of a Lie algebra of symmetries for a system of ordinary dif-
ferential equations (ODEs) can be used to reduce its order at least locally. This procedure is par-
ticularly effective when also the reconstruction problem can be solved, i.e., when we are able to
get the solution to a given system of ODEs starting from the knowledge of the solution to the
reduced system and integrating by quadratures a set of closed one-forms. This is actually what
happens when we find a solvable k–dimensional symmetry algebra for a scalar kth order equa-
tion. Indeed, in this case the equation can be completely integrated by quadratures [4, 13, 17, 20].
However, in general, it is not possible to compute the complete symmetry algebra of a system of
equations. On the other hand, equations solvable by quadratures but with a lack of local symmetries
are quite common (see e.g. [5–7, 19]). This fact lead to various generalizations of the notion of
reduction by symmetry such as reduction by λ–symmetries, σ–symmetries and solvable structures
(see e.g. [2, 3, 5–11, 14–16, 19, 21, 22]).

The aim of this paper is to show that all this different kind of reductions can be seen as particular
cases of the original idea of Frobenius integrability for a distribution of vector fields. The main
advantage of this general approach is that it provides a useful starting point for dealing with the
reconstruction problem. In the first part of the paper we consider a system E of first order ODEs on
a manifold M, which can be naturally associated with a vector field Z on M such that the integral
lines of Z are the solutions to E . In this framework we recast Frobenius reduction theorem showing
that the existence of an integrable distribution D0 transversal to Z and such that the distribution
obtained by adding Z to the generators of D0 is still integrable, ensures that it is possible to perform
a dimensional reduction for E . In fact, under suitable regularity hypotheses, we get a new system E
of ODEs in a quotient space M such that solutions to the original system E project onto solutions to
E . Of course, in general, we cannot ensure that the reduced system is easier to solve than the original
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one. Moreover, even if the general solution to the reduced system is known, we may not be able to
use it to reconstruct the general solution to E . In fact, the reconstruction problem is in general a
nontrivial task, depending on the nature of the distribution D0 we used in the reduction process. In
this paper we show that, if the distribution D0 is a partial solvable structure for the vector field Z
corresponding to E , it is possible to reconstruct the solution to E starting from the knowledge of
the solution to E and integrating a given system of closed one-forms.

In the second part of the paper this general reduction method is applied to (systems of) higher
order ODEs. In this framework the invariance by differentiation property plays an essential role to
achieve order reduction, instead of general dimensional reduction. In particular, in the scalar case,
Frobenius reduction method naturally leads to definition of λ–symmetries (reducing to standard
symmetries for λ = 0) as the natural vector fields to be used to reduce the order of a single kth order
ODE.

On the other hand, when we deal with higher order systems of ODEs, σ–symmetries arise as
a natural tool to obtain suitable dimensional reductions corresponding to order reductions: if we
consider a system of n ODEs of order k admitting an n–dimensional distribution of σ–symmetries,
the invariance by differentiation property ensures that the proposed reduction procedure provide us
with a reduced system of n ODEs of order (k−1).

Finally we address the reconstruction problem for a system of n ODEs of order k and we define a
new class of σ–symmetries, which we call triangular σ–symmetries, characterized by the property
that the distribution generated by the σ–prolonged vector fields is a partial solvable structure for the
vector field associated with the system E . Once again, under these hypotheses, the solution to E can
be obtained starting from the knowledge of the solution to the reduced system E and integrating by
quadrature a given system of closed one–forms.

The plan of the paper is the following: in Section 2 we collect some basic definitions about
the geometry of differential equations and distributions of vector fields. In Section 3 we describe
the dimensional reduction for a vector field and we address the reconstruction problem in terms of
partial solvable structures. Finally, in Section 4 we apply previous results to higher order ODEs.

2. Preliminaries

2.1. ODEs as submanifolds of jets spaces

Let (R×Q,π,R) be a fiber manifold, with Q is an n–dimensional smooth manifold. We assume that
the local coordinates on R×Q are (t,xa), where xa denote the dependent variables and a = 1, . . . ,n.
Let us consider the kth order jet bundle Jk(π) with local coordinates (t,xa,xa

i ), where xa
i denote the

derivatives of xa with respect to t up to a fixed order i. It is well known that the kth order jet space
Jk(π) is naturally equipped with the contact distribution C k that, in local coordinates, is spanned
by

ω
a
i = dxa

i − xa
i+1dt, 0≤ i≤ k−1 1≤ a≤ n.

Given a system of n ODEs ∆b(t,xa,xa
i ) = 0 of order k which can be put in the normal form

xa
k = Fa(t,xb,xb

1, . . . ,x
b
k−1) (a,b = 1, . . . ,n), (2.1)

it is possible to identify (2.1) with a submanifold E of the jet space Jk(π). In this framework a solu-
tion to (2.1) is a section of π whose kth order prolongation is an integral manifold of the restriction
C k |E of the contact distribution to E .
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Let Z be the vector field on E obtained by restricting the total derivative operator Dt := ∂t +

xa
1∂xa + . . .+ xa

k∂xa
k−1

to E . In local coordinates we have

Z =
∂

∂ t
+ xa

1
∂

∂xa + . . .+Fa ∂

∂xa
k−1

, (2.2)

and the integral lines of Z are the solutions to the following system of first order ODEs
ẋa = xa

1
ẋa

1 = xa
2

...
ẋa

k−1 = Fa

(2.3)

where xa,xa
1, . . . ,x

a
k−1 are considered as new dependent variables.

A vector field on R×Q of the form

X = ξ (t,xb)
∂

∂ t
+φ

a(t,xb)
∂

∂xa

is a point symmetry of (2.1) if its kth order prolongation

X (k) = ξ
∂

∂ t
+φ

a ∂

∂xa +Φ
a
(s)

∂

∂xa
s

s = 1, . . . ,k

satisfies

X (k)
∆

b(t,xa,xa
i ) = 0 whenever ∆

b(t,xa,xa
i ) = 0.

Here the coefficients Φa
(s) are given by the standard prolongation formula

Φ
a
(s) = DtΦ

a
(s−1)− xa

s Dtξ , Φ
a
0 = φ

a, s = 1, . . . ,k. (2.4)

In terms of the vector field Z defined by (2.2) a vector field X on R×Q is a symmetry of (2.1) if
[X (k),Z] = hZ where h is a suitable smooth function on E .

2.2. Distributions of vector fields

Let M be a n–dimensional smooth manifold: we denote by X (M) the Lie algebra of smooth vector
fields on M, by Λ(M) the graded algebra of differential forms on M and by Λk(M) the set of k–forms
on M.

Given a set of vector fields {Y1, . . . ,Yr} on M, we denote by D := 〈Y1, . . . ,Yr〉 the distribution
generated by Yi (i = 1, . . . ,r). If the vector fields Yi are pointwise linearly independent in an open
domain U of M, we say that D is a distribution of maximal constant rank r on U . A distribution
D is said to be integrable (in Frobenious sense) if [X ,Y ] ∈ D , ∀X ,Y ∈ D . It is well known that an
integrable distribution D of constant rank r in U generates an r–dimensional foliation of U whose
leaves are described by some level manifolds of n− r functions Ii = ci, where i = 1, . . . ,n− r and ci

are constants. Under this hypothesis, we can define a projection map

q : U →U /D := U (2.5)

as q(x) = Sx, where Sx denotes the connected maximal integral manifold of D through x. Here and
throughout the paper we suppose that the projection map q is a smooth submersion.
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Given a distribution D , a vector field X is a symmetry of D if [X ,Y ] ∈ D , ∀Y ∈ D . Let D and F
be two distributions on M. We say that D and F are transversal, at p ∈M, iff they do not vanish
at p and D(p)∩F (p) = {0}. Analogously, D and F are transversal iff they are transversal at any
point.

3. Reduction and reconstruction problem

In this section we present a reduction method for a vector field Z on a manifold M, based on the
knowledge of a suitable integrable distribution D0 transversal to Z. In particular, we are interested
in a dimensional reduction of Z as explained by the following

Definition 3.1. Given a vector field Z on a n–dimensional manifold M, we call reduction map for
Z a smooth submersion q : M→M such that

• dim(M)< dim(M)

• there exists a vector field Z on M such that the integral lines of Z project onto the integral
lines of Z.

We recall that Definition 3.1 said that the vector field Z is projectable with respect to q (see [18]),
and the following Theorem can be seen as a recasting of Frobenious Theorem leading to orbital
reduction for Z.

Theorem 3.1. Let Z be a vector field on a smooth n–dimensional manifold M and D0 = 〈Y1, . . . ,Yr〉
be an integrable distribution of maximal constant rank r in an open domain U ⊆ M such that
the projection map q defined by (2.5) is a smooth submersion. If D0 is transversal to Z and D =

〈Z,Y1, . . . ,Yr〉 is an integrable distribution, then it is possible to define a reduction map q : U →U
for Z, where U = U /D0.

Proof. Given x ∈ U , let Sx denote the connected maximal integral manifold of D0 through x. We
define the quotient map

q : U →U /D0 = U

so that q(x) = Sx. Let I be the submodule of Λ1(U ) defined by

I = {β ∈ Λ
1(U )| Zyβ = 0,Yiyβ = 0, i = 1, . . .r}.

As D0 and D are both integrable distributions, ∀Y ∈D0 we have

LY (I )⊆I

and, following [1, 12], we can consider the submodule of Λ1(U ) given by

I = {β ∈ Λ
1(U )| q∗(β ) ∈I }.

The annihilator of I is a one–dimensional distribution in U generated by a vector field Z such that
the integral lines of Z project onto integral lines of Z. Therefore the projection

q : U →U /D0 = U

turns out to be a reduction map for Z.
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Remark 3.1. Given a vector field Z, the knowledge of an r–dimensional algebra G of non trivial
symmetries for Z allows us to perform above reduction. In fact, under this hypotheses, D0 = G =

〈Y1, . . . ,Yr〉 is an integrable distribution and the symmetry conditions [Yi,Z] = hiZ ensure that the
distribution D = 〈Z,Y1, . . . ,Yr〉 is integrable as well. Hence, standard symmetry reduction turns out
to be a particular case of this general reduction procedure recasting classical Frobenious theorem in
the language of Lie symmetries.

The general reduction procedure described in Theorem 3.1 allows us to address the reconstruc-
tion problem in terms of the distribution D0. In particular, in the following we discuss when and
how it is possible to reconstruct the general solutions to the system E (associated with the original
vector field Z) starting from the knowledge of the general solutions to the reduced system associ-
ated with Z. For the convenience of the reader we start by recalling some basic definitions and facts
about solvable structures for a given vector field (see [2,3,7,8,16] for a more general discussion on
solvable structures).

Definition 3.2. Given a vector field Z on a n–dimensional manifold M, a set of vector fields
{Y1,Y2, . . . ,Yn−1} is a solvable structure for Z on an open domain U ⊆ M if and only if, denot-
ing by

Dr = 〈Z,Y1, . . . ,Yr〉 (r ≤ n−1)

the following conditions are satisfied:

(1) 〈Y1,Y2, . . . ,Yr〉 is an r–dimensional distribution transversal to Z on U , for any r ≤ n−1;
(2) Dr is an (r+1)–dimensional distribution on U ;
(3) LY1(Z) = hZ and LYrDr−1 ⊆Dr−1, ∀r ∈ {1, . . . ,n−1}.

The next Theorem, proved in [2,3,16], shows how the knowledge of a solvable structure for a given
vector field Z allows us to obtain the integral lines of Z by quadratures.

Theorem 3.2. Let Z be a vector field on an orientable n–dimensional manifold M and {Y1, ...,Yn−1}
be a solvable structure for Z on an open domain U ⊆ M. Then, ∀x ∈ U , the integral lines of Z
passing through x can be found by quadratures.

Proof. Denoting by Ω a volume form on M, the one–dimensional distribution generated by Z can
be described as the annihilator of the submodule of Λ1(U ) generated by the one–forms

Ωk =
1
∆
(Y1y...yŶky...yYn−1yZyΩ), (k = 1, . . . ,n−1)

where the hat denotes omission of the corresponding vector field and ∆ is the function on U defined
by ∆ = Y1yY2y...yYn−1yZyΩ. Moreover the one–forms Ωi satisfy

dΩn−1 = 0,
dΩk = 0 mod{Ωk+1, ...,Ωn−1}

for any k ∈ {1, ...,n−2} (see [2, 3, 16]) for a detailed proof of this fact). Thus the integral lines of
Z can be described in implicit form as level manifolds Γc = {I1 = c1, I2 = c2, . . . , In−1 = cn−1},
where each Ik is defined as an integral of the one–form Ωk restricted to level manifolds {In−1 =

cn−1, . . . , Ik+1 = ck+1}.
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It is clear by the Definition 3.2 that, in principle, a maximal solvable structure for Z always
exists, in a neighborhood of a non-singular point for Z. Nevertheless, for a given vector field Z, it
may be difficult to find such a structure explicitly. For this reason we introduce the following weaker
definition, that turns out to be useful when we deal with the reconstruction problem (see Theorem
3.3).

Definition 3.3. Given a vector field Z on a n–dimensional orientable manifold M, a set of vector
fields {Y1,Y2, . . . ,Yh} (with h< n−1) is a partial solvable structure for Z on an open domain U ⊆M
if and only if, denoting by

Dr = 〈Z,Y1, . . . ,Yr〉 (r ≤ h),

the following conditions are satisfied:

(1) 〈Y1,Y2, . . . ,Yr〉 is an r–dimensional distribution transversal to Z on U , for any r ≤ h;
(2) Dr is an (r+1)–dimensional distribution on U ;
(3) LY1(Z) = hZ and LYrDr−1 ⊂Dr−1, ∀r ∈ {1, . . . ,h}.

Theorem 3.3. Let {Y1,Y2, . . . ,Yr} be a partial solvable structure for the vector field Z on an open
domain U ⊆ M such that the distribution D0 = 〈Y1,Y2, . . . ,Yr〉 is integrable. If we consider the
reduction map associated with D0 and the corresponding reduced vector field Z, then the integral
lines of Z can be obtained by quadratures starting from the knowledge of the integral lines of Z.

Proof. The knowledge of integral lines for the reduced vector field Z implies the knowledge of a
set of generators for I given by exact forms dFi, (i = 1, . . . ,n− r−1). If we consider the pullback
of these forms along the projection q : U →U we get (n− r−1) exact one–forms on U

q∗(dFi) = d(q∗(Fi)) = dGi

such that Z(Gi) = 0 and Yk(Gi) = 0. Hence we can restrict Z and Yk to the (r + 1)–dimensional
manifold

Σc : {Gi = ci}

and previous hypotheses ensure that the restriction of D0 = 〈Y1,Y2, . . . ,Yr〉 to Σc is a solvable struc-
ture for the restriction of Z to Σc. Therefore the reconstruction problem can be solved by quadratures
by using Theorem 3.2.

The following simple explicit example illustrates how theorem 3.3 works in practise.

Example 3.1. Let M be R5 with local coordinate (t,x,y,z,w) and let U be the open subset of R5

given by U = {(t,x,y,z,w) ∈ R5 | yzw 6= 0}. Given the vector field

Z =
∂

∂ t
+ yz

∂

∂x
+

1
yz

e
1
2 y2 ∂

∂y
+ ey2+ 1

w
∂

∂ z
+

w2

ze
1
w

∂

∂w
, (3.1)

it is easy to check that the vector fields

Y1 =
∂

∂x
, Y2 =

1
y

∂

∂y
+ z

∂

∂ z
+w2 ∂

∂w
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provide a partial solvable structure for Z, being

[Y1,Z] = 0, [Y2,Y1] = 0, [Y2,Z] =
z
y
(1+ y2)Y1.

If we consider the reduction map q : U →U associated with the distribution D0 = 〈Y1,Y2〉, we can
take as natural coordinate on U the joint invariants of the distribution D0

ξ = t, η1 =
1
z

e
1
2 y2

, η2 = ze
1
w .

Then, following Theorem 3.1, we get a reduced vector field on U given by

Z =
∂

∂ξ
+η

2
1 (1−η1η2)

∂

∂η1
+(η2

1 η
2
2 −1)

∂

∂η2
. (3.2)

In order to show how the reconstruction procedure works, let us denote by ηi = ϕi(ξ ) (i = 1,2) the
general solution to the system associated with the vector field Z given by (3.2). If we rewrite this
solution in the implicit form Fi(ξ ,η1,η2) = ci with (i = 1,2), we can consider the submanifold Σc

of U defined by

Σc := {Gi = ci}, (3.3)

where Gi := q∗(Fi) denotes the pullback of Fi along the projection q. Choosing coordinate (t,x,y)
on Σc and Ω = dt ∧ dx∧ dy as a volume form over there, we can use the partial solvable structure
{Y1,Y2} to compute the 1–forms

Ω2 =
1
∆
(Y1yZyΩ) = ydy− 1

z e
1
2 y2

dt
Ω1 =

1
∆
(Y2yZyΩ) = dx− yzdt.

It is easy to check that the one–form Ω2 is closed, being

Ω2 = ydy−η1dt = ydy−ϕ1(t)dt = d
[

1
2

y2−
∫ t

t0
ϕ1(t)dt

]
= dI2.

Therefore we can find the explicit solution y = ψ(t) by solving I2 = k2. Moreover, the restriction
Ω1 of Ω1 to the submanifold Σc∩{I2 = k2} is a closed form, being

Ω1 = dx−ψ(t)
e

1
2 ψ2(t)

ϕ1(t)
dt

and the integration of this closed one–form provides the general solution for the integral lines of the
vector field Z given by (3.1).

4. Higher order ODEs

When we consider a (system of) higher order ODEs it is quite natural to look at previous results from
a slightly different perspective. In this case, in fact, we are in general more interested in reducing the
order of the ODEs than in obtaining a general dimensional reduction. In the following we show that
this order reduction arises as a particular case of previous dimensional reduction when we choose a
distribution D0 suitably adapted to the jet bundle structure.
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4.1. Reduction of order

Let E be a system of n ODEs of order k in the normal form (2.1) and Z be the vector field on
E defined by (2.2). If we apply the reduction procedure proposed in Section 3 by using a general
completely integrable distribution D0 of rank r on E , we get a reduced vector field Z on U /D0 (with
U ⊆ E ) encoding a system of nk−r first order equations which may not be equivalent to a system of
higher order ODEs. On the other hand, if we are interested in order reduction instead of dimensional
reduction, we have to preserve the jet bundle structure choosing a distribution D0 suitably adapted
to Jk(π). Let π : R×Q→ R be a fibred manifold, with Q an n–dimensional manifold, and let
B = 〈X1, . . . ,Xn〉 be a completely integrable distribution of constant rank n on R×Q. If Br denotes
the distribution on Jr(π) generated by the rth order prolongations of the vector fields Xi and Br has
constant rank n on U ⊆ Jr(π), then the following diagram commutes:

Jk(π)
σk//

πk

��

Jk(π)/Bk ' Jk−1(π0)

πk−1

��
J1(π)

σ1
//

π1

��

J1(π)/B1

π0

��
R×Q

σ0
// (R×Q)/B

(4.1)

In fact, the prolongation formula (2.4) ensures that [X (r)
i ,X (r)

k ] = [Xi,Xk]
(r) and the distribution Br

is an integrable distribution of constant rank n on U ⊆ Jr(π). Moreover, a natural coordinates
system in the reduced space U = U /Br is given by the invariants of the distribution Br. We
recall that, due to the prolongation formula (2.4), given two invariants η and ζ for Br, the quotient
η1 := Dt(η)/Dt(ζ ) provides a new invariant for Br. This property is often called “invariance by
differentiation property” (IBDP) and ensures that it is possible to obtain higher order invariants for
Br starting from the knowledge of lower order ones. In particular, the knowledge of a zero order
invariant ζ and of a complete set of first order invariants ηa (a = 1, . . . ,n) for Br allows us to
find a natural coordinate system in U = U /Br given by ηa

i := Di
t(η

a)/Di
t(ζ ), (a = 1, . . . ,n, i =

1, . . .r−1). Therefore we can consider the contact forms ω
a
i

ω
a
i = dη

a
i −η

a
i+1dζ .

on Jk(π)/Bk providing an isomorphism between Jk(π)/Bk and the (k − 1) order jet bundle
Jk−1(π0).

This result obviously applies to the reduction of a system of n ODEs of order k admitting an
n–dimensional algebra G of Lie point symmetries, but can be extended to vector fields more gen-
eral than prolonged ones, providing a geometrical interpretation of reduction by λ–symmetries for
scalar kth order ODEs and of reduction by σ–symmetries for systems of kth order ODEs. For the
convenience of the reader we recall here some definitions and facts about λ and σ–symmetries. The
interested reader is referred to [6, 9, 10, 14, 19] for more details on these topics.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

54



P. Morando / Reduction by λ–symmetries and σ–symmetries: a Frobenius approach

Definition 4.1. Given a vector field

X = ξ (t,x)∂t +φ(x, t)∂x

on a fibred manifold π : R×Q→R, where Q is a one–dimensional manifold, we say that the vector
field

Y = ξ (t,x)∂t +φ(x, t)∂x +Ψ1∂x1 + . . .+Ψk∂xk

on Jk(π) is the λ–prolongation of X if and only if

Ψi = (Dt +λ )Ψi−1− xi(Dt +λ )ξ Ψ0 = φ ,

where Dt denotes the total derivative operator.

It is easy to prove that a λ–prolonged vector field Y can be characterized by the condition
[Dt ,Y ] = hDt +λY where h is a suitable smooth function on Jk(π).

Given a kth order ODE E written in normal form

xk = F(t,x,x1, . . . ,xk−1)

we can consider the vector field

Z = ∂t + x1∂x + . . .+F∂xk−1 (4.2)

whose integral lines correspond to the solutions to E .

Definition 4.2. A vector field Y is a λ–symmetry for E if Y is a λ–prolonged vector field satisfying

[Y,Z] = hZ +λY (4.3)

where Z is given by (4.2) and h is a suitable smooth function on E .

The following Theorem recasts in our framework the result of [19], showing that λ–symmetries
are as effective as standard ones in order to achieve reduction for a given ODE.

Theorem 4.1. Let E be a kth order ODE and let Y be a λ–symmetry for the vector field Z given
by (4.2). Then it is possible to obtain a (k−1)th order equation E such that the the solutions to E
project onto the solution to E .

We remark that, if we deal with non-trivial λ–symmetries, the reconstruction problem cannot
be solved by quadrature. In fact, the only possibility for the vector field Y to provide a solvable
structure for Z is that Y is a standard Lie point symmetry for Z.

In order to generalize λ–symmetry reduction to systems of n ODEs of order k we have to
face up to the fact that, in general, λ–symmetries form neither a Lie algebra nor an integrable
distribution, preventing us to use more than one λ–symmetry in the reduction process. For this
reason, when we deal with systems of ODEs, the following generalization of Definition 4.2 is quite
natural (see [9–11]).
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Definition 4.3. Let B = 〈X1, . . . ,Xr〉 be an integrable distribution on a fibred manifold R×Q→
R, where Q is a n–dimensional manifold and n > 1. If the vector fields Xi are written in local
coordinates as

Xi = ξi(t,x)∂t +φ
a
i (x, t)∂xa ,

we say that the vector fields

Yi = ξi(t,x)∂t +φ
a
i (x, t)∂xa +Ψ

a
i1∂xa

1
+ . . .+Ψ

a
ik∂xa

k

on Jk(π) are σ–prolongation of Xi if and only if they satisfy the following conditions:

[Dt ,Yi] = hiDt +σi jYj . (4.4)

It is easy to prove that if D0 = 〈Y1, . . . ,Yr〉 is the σ–prolongation of a distribution B on Q×R, the
IBDP property for D0 holds. In particular, if r = n, given a set of joint invariants ζ ,ηa for D0 of order
zero and one respectively, the higher order joint invariants of D0 are given by ηa

i := Di
t(η

a)/Di
t(ζ ).

This ensure that, if we consider σ–prolongations instead of standard prolongations, diagram (4.1)
still commutes. In order to use this σ–prolonged vector fields to reduce a system of ODEs, we give
the following

Definition 4.4. Given a system of ODEs E of the form (2.1), an integrable distribution B =

〈X1, . . . ,Xr〉 is a σ–symmetry of E if the distribution D0 =< Y1, . . . ,Yr > generated by the σ–
prolonged vector fields Yi is integrable and the following condition holds

[Yi,Z] = hiZ +σi jYj

where Z is given by (2.2) and hi are suitable smooth functions on E .

The following Theorem recasts the result of [9–11] in order to show that the reductions derived
by σ–symmetries fit in the scheme of dimensional reduction given by Theorem 3.1.

Theorem 4.2. Let E be a system of n ODEs of order k of the form (2.1) and let Z be the vector
field (2.2). The knowledge of a σ–symmetry B = 〈X1, . . . ,Xn〉 of (2.1) such that D0 is of constant
rank on an open domain U ⊆ Jk(π) allows us to define a reduction map q : U → U = U /D0.
Moreover, the reduced vector field corresponds to a system E of n equations of order (k− 1) such
that the solutions to E project onto the solution to E .

4.2. Reconstruction problem

As we have already pointed out in Section 3, the reconstruction problem depends on the nature of
the distribution D0 involved in the reduction procedure. In this section we define a particular class
of σ–symmetries (that we call triangular σ–symmetries) allowing us to solve the reconstruction
problem, i.e. to obtain the solution to the initial system of ODEs by quadratures starting from the
knowledge of the solution to the reduced one. We recall that one of the limitations of σ–symmetries
reduction method is the difficulty of actually determining σ–symmetries of a given system, due to
the number of unknown coefficients involved in the determining equations ( [9–11]). An advantage
of the following definition is that the number of non zero coefficients to be found is reduced, so that
triangular σ–symmetries for a given system might be easier to find than general ones.
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Definition 4.5. Given a system of ODEs E of the form (2.1) and the corresponding vector field
Z (2.2), an integrable distribution B = 〈X1, . . . ,Xr〉 is a triangular σ–symmetry of E if B is a σ -
symmetry and the σ–prolonged vector fields {Y1, . . . ,Yr} provide a partial solvable structure for
Z.

Theorem 4.3. Let B = 〈X1, . . . ,Xn〉 be a triangular σ–symmetry for a given a system of n ODEs
E of order k. The integrable distribution D0 = 〈Y1,Y2, . . . ,Yn〉 generated by the σ–prolongations of
B allows us to define a reduction map q : U →U /D0 such that the general solution to E can be
obtained from the general solution to the reduced system E integrating by quadratures a system of
closed one–forms.

Proof. It is just a particular case of Theorem 3.3.

4.3. Example

In this section we provide a simple explicit example in order to show how previous reduction and
reconstruction procedure can be performed in practise.
Given the second order system {

ẍ = y+ ẋ
ÿ = ẋ− ẏ

(4.5)

corresponding tho the vector field

Z =
∂

∂ t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+(y+ ẋ)

∂

∂ ẋ
+(ẋ− ẏ)

∂

∂ ẏ
,

the integrable distribution B generated by X1 = ∂x and X2 = y∂y is a σ–symmetry for (4.5) with

σ =

(
0 0
ẋ 0

)
. (4.6)

In particular, the σ–prolongation of B = 〈X1,X2〉 is generated by the vector fields

Y1 =
∂

∂x
, Y2 = y

∂

∂y
+ ẋ

∂

∂ ẋ
+ ẏ

∂

∂ ẏ

satisfying

[Y1,Y2] = 0 [Y1,Z] = 0, [Y2,Z] = ẋY1 ,

so that the distribution D0 = 〈Y1,Y2〉 is integrable and defines a solvable structure for Z. Hence, we
can reduce system (4.5) considering the joint invariants of D0

ξ = t, η1 =
ẋ
y
, η2 =

ẏ
y

and choosing a section s of the projection map q defined, for example, by

t = ξ ,x = 1,y = 1, ẋ = η1, ẏ = η2.

The submodule of the one forms annihilated by Z,Y1 and Y2 is generated by the two one–forms

β1 = ydẋ− ẋdy+(ẋẏ− y2− yẋ)dt
β2 = ydẏ− ẏdy+(ẏ2− yẋ+ yẏ)dt

(4.7)
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whose pullback along the section s are

s∗(β1) = dη1 +(η1η2−1−η1)dξ

s∗(β2) = dη2 +(η2
2 −η1 +η2)dξ ,

(4.8)

corresponding to the reduced system {
η̇1 = 1+η1−η1η2

η̇2 = η1−η2−η2
2 .

(4.9)

In this case, the triangular structure of the σ–symmetry B allows us to solve the reconstruction
problem. In fact, denoting by ηi = ϕi(ξ ) (i = 1,2) the general solution to the reduced system (4.9)
and rewriting this solution in the implicit form Fi(ξ ,η1,η2) = ci with (i = 1,2), we can consider
the submanifold Σc of U defined by

Σc := {Gi = ci}, (4.10)

where Gi := q∗(Fi) denotes the pullback of Fi along the projection q. Then, choosing (t,x,y) as coor-
dinates on Σ and Ω= dt∧dx∧dy as a volume form over there, we can compute ∆= ZyX2yX1yΩ= y
and Theorem 3.2 ensures that the one–form Ω2 = (1/∆)(ZyY1yΩ) is closed on Σ. In fact, by explicit
computation we find

Ω2 =−
1
y

dy+
ẏ
y

dt

and the knowledge of the general solution ηi = ϕi(ξ ) (i = 1,2) to the reduced system (4.9) ensures
that η2 =

ẏ
y = ϕ2(t). Hence

Ω2 =−
1
y

dy+ϕ2(t)dt =−d (logy−ρ2(t)) = dI2 ,

where ρ2(t) satisfies ρ ′2(t) = ϕ2(t). Therefore, the one–form Ω2 is (locally) exact and we can explic-
itly compute the solution y(t) = K1eρ2(t), with K1 ∈ R. The next step of the reconstruction process
consists in considering the one–form

Ω1 := (1/∆)(ZyY2yΩ) = dx− ẋdt

which, as expected, is not closed on Σ. Nevertheless Ω1 turns out to be closed when we restrict to
Σc∩{I2 = k2}. In fact

ẋ = yη1 = K1eρ2(t)ϕ1(t)

and we can find the general solution{
x(t) =

∫ t
t0 K1eρ2(t)ϕ1(t)dt

y(t) = K1eρ2(t).
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