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In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2

transmission by restricting population movement through social distancing interventions,

thus reducing the number of contacts. Mobility data represent an important proxy measure of

social distancing, and here, we characterise the relationship between transmission and

mobility for 52 countries around the world. Transmission significantly decreased with the

initial reduction in mobility in 73% of the countries analysed, but we found evidence of

decoupling of transmission and mobility following the relaxation of strict control measures for

80% of countries. For the majority of countries, mobility explained a substantial proportion of

the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR -

across countries [27–77%]). Where a change in the relationship occurred, predictive ability

decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across

countries [49–91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across

countries [12–48%]) post-relaxation. In countries with a clear relationship between mobility

and transmission both before and after strict control measures were relaxed, mobility was

associated with lower transmission rates after control measures were relaxed indicating that

the beneficial effects of ongoing social distancing behaviours were substantial.
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S
ince the declaration of COVID-19 as a Public Health
Emergency of International Concern in late January 20201,
many countries have struggled to prevent the importation2,3

and subsequent local transmission of SARS-CoV-24, the virus
that causes COVID-195. While sustained transmission has con-
tinued globally, some countries are now entering their 2nd or 3rd

wave of the epidemic6.
Social-distancing, case isolation, and shielding have been

widely used to limit community-level transmission of SARS-CoV-
2 and protect vulnerable groups7,8. These interventions aim to
reduce mobility and contacts within the population and thus to
reduce the transmission of SARS-CoV-2, as measured by the
effective reproduction number (R, the average number of sec-
ondary cases caused by a primary case). Early in the epidemic,
human mobility reductions as recorded in a variety of digital data
sources were shown to correlate well with decreases in COVID-19
incidence9–11 and social contacts12.

In the face of the threats posed by COVID-19, most countries
rapidly implemented strict social distancing policies to suppress
transmission (bringing R below 1) and thus avoid overwhelming
healthcare capacity13. While a convincing reduction in case
incidence was observed, at least temporarily, in many coun-
tries14–18, and in some cases a reduction in transmission has been
explicitly linked to the reduction in mobility19,20, many countries
are still experiencing continued or resurgence of widespread
transmission of SARS-CoV-221,22.

Understanding how well mobility data reflects population
contact rates and whether that relationship is changing in
countries that are transitioning, exiting or re-entering lockdown
measures is important for tracking the trajectory of national
epidemics and assessing the effectiveness of ongoing control
measures. Here, we develop a framework to infer the relationship
between mobility and the key measure of population-level
transmission, the effective reproduction number. The frame-
work is applied to 52 countries with sustained SARS-CoV-2
transmission based on two distinct country-specific automated
measures of human mobility, Apple and Google mobility data.

Results
Temporal variation in mobility. Smoothed daily estimates
representing a measure of mobility relative to the highest
country-specific estimate in the pre-pandemic range were
obtained (see Methods section). We found a consistent pattern of
a sharp reduction followed by a gradual recovery in mobility
across countries and in multiple mobility data sources (Figs. 1
and 2a, for a schematic and the UK and SI for other countries).

Our analysis is based on 52 countries for which both
epidemiological and mobility data were available, and which met
our active transmission thresholds (see Methods section). This
included 36 countries for which we had both Google and Apple
mobility data and 16 countries for which we had only Google
mobility data (see Supplementary Fig. 2). Apple mobility data
included three data-streams: “driving”, “transit” and “walking”
mobility; while Google mobility data included six data-streams:
“grocery and pharmacy”, “parks”, “residential”, “retail and recrea-
tion”, “transit stations” and “workplaces”. In addition, we combined
all Apple data-streams to obtain an Apple mobility measure.
Similarly, we obtained a Google mobility data-stream by combining
all Google specific data-streams (excluding “parks” and “residential”
for Google, see Methods section and Supplementary Figs. 2–3).
Finally, a combined Apple-Google mobility was also defined as a
combination of both the Apple and Google mobility (see Methods
section). While all analyses were performed independently for each
data-stream, unless otherwise stated we present results using the
combined Apple-Google mobility measure.

The median mobility across the 52 countries reached its
minimum on the 11th of March 2020, with a reduction of 63%
from baseline. Mobility then recovered, with an estimated median
reduction in mobility on the 25th of October 2020 reaching 14%
from baseline. We observed substantial variations in mobility
patterns across countries (see SI) with the interquartile range
(IQR) of the reduction in mobility on the 11th of March and 25th
of October 2020 reaching [51; 67]% and [7; 22]% respectively
(Supplementary Figs. 1–2).

The 10 countries with the smallest changes saw mobility
reduction within a range of 37 to 51% from baseline (smallest to
largest changes observed in Moldova, Afghanistan, Switzerland,
Ecuador, Paraguay, Sweden, Ukraine, Panama, Dominican
Republic and Denmark). The 10 countries with the largest
changes saw mobility reduction within a range of 72 to 83% from
baseline (smallest to largest changes observed in Honduras,
Poland, Costa Rica, Italy, Guatemala, Peru, Philippines, Argen-
tina, France, Bolivia).

Correlation between mobility and transmissibility. We eval-
uated the correlation between mobility and transmissibility by
fitting two models to the country-specific time-series of COVID-
19 deaths. Both models were derived from the renewal
equation23,24, where daily reported deaths are linked to deaths in
the past and the level of transmissibility characterised by a time-
varying reproduction number (see Methods section).

The main model assumes that the time-varying effective
reproduction number is a function of the basic reproduction
number, R0,i, and mobility following:

logðRt;iÞ ¼ logðR0;iÞ � βið1�mt;iÞ ð1Þ

where mt,i represents the mobility in one of the 52 countries, βi
characterise how transmission is linked to mobility. As we fit the
models to reported deaths, we then related the effective
reproduction number at time of infection, Rt,i, to the delayed
effective reproduction number at time of deaths, RD

t;i, via the delay

between infection and deaths (see Figs. 1–2 and Methods section).
The alternative model assumed that the relationship between

transmission and mobility changed over time, with two successive
values of R0,i’s and of βi’s estimated alongside the time of the
change in relationship. The best model was chosen based on a
difference in DIC (Deviance Information Criterion)25 greater
than 10, reflecting a substantial improvement in fit.

To evaluate the model fit, relying on the time-series of deaths
only, we also estimated an ‘EpiEstim’ time-varying effective

reproduction number: R
D;EpiEstim
t;i using the ‘EpiEstim’ framework

from23 (see Methods section). Both RD
t;i and R

D;EpiEstim
t;i are

comparable as they reflect a delayed transmission level, i.e.,
transmission level at time of death rather than at time of
infection. While the delayed RD

t;i (and Rt;i reflecting transmission

level at infection) can be viewed as parametric estimates as they

rely explicitly on mobility, the delayed R
D;EpiEstim
t;i can be viewed as

non-parametric estimates as they rely solely on the observed

pattern of deaths. As such, estimating R
D;EpiEstim
t;i (i) imply

inferring more parameters (i.e., one per week), (ii) is likely to
better track changes in transmission, but (iii) does not give an
explicit understanding of the drivers of transmission. Therefore,
by comparing the parametric and non-parametric estimates (RD

t;i

and R
D;EpiEstim
t;i respectively), we can quantify how much of

variations in transmission can be explained by variations in
mobility (see Fig. 1, for a schematic of the methods).
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All models assumed a negative binomial distribution of deaths
to account for over-dispersion in the data (see Methods section

and SI).
For the UK (as well as other countries, see SI.2-5), a sharp

decline in mobility (Fig. 2a) was correlated with a sharp decline in

the estimated effective reproduction number for infections Rt;i

(Fig. 2b, red), which, after accounting for the infection-to-death
delay, is later reflected in a sharp decline in the estimated
reproduction number for deaths RD

t;i (Fig. 2b, blue). The temporal

trends in RD
t;i are well correlated to those in the ‘observed’ effective

Fig. 1 Schematic of the methodology. A parametric relationship between transmission and mobility is assumed and allows to link the effective

reproduction number at time of infection (Rt,i) to mobility (mt,i).We obtain the delayed effective reproduction number at time of death (RDt;i) as a weighted

average of Rt,i’s, relying on the delay between infection and death (see Methods section). Inference relies on the likelihood of observed vs predicted deaths,

with predicted deaths being a function the RDt;i (see Methods section). To estimates how much variations in transmission can be explained by variations in

mobility, we estimate a non-parametric and delayed reproduction number relying on EpiEstim framework23 (R
D;EpiEstim
t;i ) and compare it to RDt;i.

Fig. 2 Relationship between human mobility and transmission. a Smoothed combined Apple-Google mobility. b Estimated daily effective reproduction

number for infections (red, Rt,i) and delayed effective reproduction at time of deaths (blue, RDt;i) estimated using the best-fitting model and mobility data.

Effective reproduction number (R
D;EpiEstim
t;i ) estimated from deaths data alone using a daily 7-day non-overlapping window (black). In each case shading

represents the 95% credible interval. Horizontal orange dot and line show the median and 95% CrI for the timing of the change in the relationship between

mobility and transmission. c Estimates of the reproduction number against changes in mobility using our best model (5 estimated parameters): green/red

lines show the median predictions pre/post change in relationship, with shading indicating the 95% CrI. The ‘EpiEstim’ effective reproduction number using

‘EpiEstim’-like method are shown as error bars in green /orange for approximate pre-post change in relationship with 95% CrI (bands). Results based on

the Apple-Google mobility data-stream – equivalent figure using the Apple transit mobility data-stream can be found in the SI (Supplementary Fig. 5); the

Apple-related figure shows a qualitatively similar fit but with a marginally better DIC (DIC reduction of 32). Equivalent figures for other countries can be

found in the SI (Supplementary Figs. 4–5).
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reproduction number for deaths, R
D;EpiEstim
t;i , as estimated by the

‘EpiEstim’-like method (Fig. 2b, grey).
From around the second half of May 2020; we see a substantial

change in the relationship between mobility and transmissibility,
with a gradual decoupling or dampening of the relationship. As
mobility gradually increased, the transmissibility still increased
but more slowly than expected from the previously inferred
relationship.

Similarly to the UK, the majority of countries saw a substantial
change in the mobility-transmissibility relationship (42 out of 52
countries, see Fig. 3 and Supplementary Fig. 4). For each country
and period (where relevant, two periods were considered), we
determined whether a decrease in mobility was significantly
associated with decreased transmissibility (95% CrI of the
parameter βi not including 0). Overall, for 57% of country-
periods, the relationship was as expected and qualitatively similar
to the relationship observed in the UK. This increased to 90% of
countries when considering only the 1st period prior to the
change in the relationship. Overall, for the remaining 43% of
country-periods, the relationship was either non-significant
(32%) or reversed (11%).

By linking mobility to transmissibility, we were able to capture
both the temporal trends in transmissibility and its relationship
with mobility across multiple countries (Figs. 2b, 2c and
Supplementary Fig. 4). In the UK, the relationship between
mobility and transmissibility (Fig. 2c) is well captured by our

model with 98% and 69% the variation in R
D;EpiEstim
t;i explained

by the model pre and post the change in the relationship,

respectively (adjusted R-squared of R
D;EpiEstim
t;i against RD

t;i). Such

predictive ability varied substantially across country-periods
(Table SI.1), with an estimated median adjusted R-squared of
48% across country-periods (IQR across country-periods
[27–77]%). The predictive ability increased when a change in
the relationship was inferred, with median adjusted R-squared
reaching 74% (95 percentile [49–91]%) and 30% (95 percentile
[12–48]%) pre- and post-change in the relationship. Finally, a
further increase was observed when restricting to the first period
and having experienced a large epidemic (more than 5000
cumulative deaths), adjusted R-squared: 81% (95 percentile
[68–92]%).

Mobility thresholds. Where possible, we estimated mobility
thresholds defined as the reduction in mobility necessary to bring
the reproduction number below the critical threshold of 1 (Fig. 4).

We estimated that in the UK, initially a reduction of 43% (95%
CrI: 41–46%) of Apple-Google mobility would be necessary to
reduce the reproduction number below 1. After the ‘dampening’
of the relationship due to other social distancing behaviours, a
lower reduction of 18% (95% CrI: 14–21%) would be sufficient to
reduce the reproduction number below 1.

Given these thresholds, and based on an estimated mobility
reduction in the UK of 15% as of October 25th, 2020, we predict
that the epidemic in the UK was not under control as of October
25th, 2020 (Fig. 2b, Rt,i in red above 1) although this is uncertain
given that 15% is within the 95% credible interval of our
estimated threshold post change.

On October 25th in the UK, we estimate that the reproduction
number for new infections, Rt,i, was 1.07 (95% CrI: 0.99–1.17).
Furthermore, the reproduction numbers estimated from deaths,
RD
t;i, was estimated at 1.21 (95% CrI: 1.10–1.33) reflecting higher

past mobility which had recently started to decrease (Fig. 2a).
We found substantial heterogeneity between countries in

estimating this mobility threshold (Fig. 4). The median mobility
reduction threshold across the countries considered (estimated as
the median of country-specific medians, where estimated)
decreased from 51% to 16% after the change in the mobility-
transmissibility relationship corresponding to the relaxation of
strict control measures. This reflected the dampening of the
relationship between mobility and transmissibility, therefore
suggesting that recently, less drastic reductions in mobility were
necessary to achieve control.

As of October 25th, a mobility threshold could be clearly
defined for 16 countries (95%CrI of the most recent parameter βi
not including 0). Among those, the observed reduction in
mobility was greater than the estimated upper 95% CrI thresholds
in one country (Canada), indicating an epidemic under control
(Fig. 3 and Supplementary Fig. 4, and Supplementary Table 1). In
three countries (Germany, Hungary and Turkey), the reductions
in mobility were lower than the estimated lower 95% CrI
thresholds, indicating ongoing epidemics. For the remaining 12
countries (Belgium, Chile, Denmark, France, Ireland, Israel, Italy,
Netherlands, Spain, Switzerland, UK, USA), the latest mobility
estimates overlapped with the latest mobility thresholds esti-
mated, indicating uncertainty in the level of transmission control.

The mobility threshold estimates were robust to assumptions
about the serial interval distribution (Supplementary Table 1). In
addition (Supplementary Figs. 6–7), across countries, the
estimated mobility thresholds were not correlated with the
estimated basic reproduction numbers and estimated parameters
were robust to excluding the very early dynamic from the
likelihood (i.e., excluding the period before 100 cumulative deaths
were reported).

Data-streams used to parameterise the mobility-
transmissibility relationship. The results presented above relate
to the combined Apple-Google data-stream. However, our model
was also fitted independently for each of the 11 other data-
streams defined (i.e., 3 Apple data-streams, the combined Apple
data-stream, 6 Google data-streams, and the combined Google
data-stream).

Generally, the Apple-Google data-stream performed better
than the other mobility data-streams (Fig. 5). Out of the 52
countries considered, in 8 countries, one or more individual
data-streams performed better (DIC differences above 10). In six
instances the “Transit” data-stream from Apple performed best
(Brazil, France, Mexico, Philippines, UK and USA), while in the

Fig. 3 Summary of relationship between mobility and transmissibility.

Frequency of countries for which we found a significantly decreasing,

increasing, or no clear relationship between mobility and transmissibility

(green, red and grey bars respectively). For each WHO region, we further

divided countries for which no change in relationship was inferred (labelled

“No”), and for those where a change in relationship was significant, we plot

separately the nature of the relationship during the first and second time

periods (labelled “1st” and “2nd” respectively). Some WHO regions were

aggregated, with AF-EMRO corresponding to the African and Eastern

Mediterranean Regions, EURO corresponding to the European Region,

PAHO corresponding to the Pan-American Region, and SEA-WPRO

corresponding to the South-East Asia and the Western Pacific Regions.
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other two instances, the ‘Walking’ and ‘Driving’ data-streams
from Apple performed best (Italy and Spain respectively). For
those 8 countries, while the fit was quantitatively improved (i.e.,
substantial decrease in DIC), qualitatively, it did not dramati-
cally change the relationship observed with the combined
Apple-Google data-stream (see Supplementary Fig. 5). However,
using the ‘Transit’ data-stream in Mexico made a change in the
mobility-transmissibility relationship becoming identifiable,
with the expected dampening of the relationship becoming
apparent.

Discussion
We found consistent evidence that automated measures of
mobility correlate well with transmission intensity of SARS-CoV-
2 over time in several countries. The relationship holds for 12
mobility data-streams based on Apple and Google mobility data
and was robust to assumptions about the likelihood and serial

interval distribution. We found strong evidence that the rela-
tionship between mobility and transmissibility changed over time,
typically, a dampening indicating that smaller reductions in
mobility can result in epidemic control likely due to other social
distancing behaviours. As mobility data increasingly become
available in real-time (currently updated across countries with 2-
to-4 and 7-to-10-days delay for Apple and Google mobility data,
respectively), future epidemiological analysis may increasingly
rely on this type of data.

We conclude that for 52 countries having experienced, or still
experiencing, substantial active SARS-CoV-2 transmission, there
was a strong link between mobility measures and transmissibility,
supporting the implementation of population-wide social dis-
tancing interventions to control the epidemic. Encouragingly, in
the majority of countries, we found clear evidence of a
recent dampening of the relationship between transmission and
mobility, suggesting alternative control strategies have been

Fig. 4 Country-specific mobility thresholds to interrupt transmission. Interruption of transmission occurs when R < 1, thresholds presented are based on

the Apple-Google mobility data-stream. Thresholds are only defined when transmissibility significantly decreases with a reduction in mobility. Countries

with no threshold are still shown. Points indicate the median and horizontal bars the 95% CrI. Upper 95%CrI limits of the mobility going above 1 indicate

that the upper limits remain unidentifiable. Turquoise and orange thresholds correspond to the pre- and post-change in the mobility-transmissibility

relationship respectively. The y-axis shows specific countries and, next to their names, the predictive abilities of the model in that country (i.e., adjusted R-

squared of R
D;obs
t;i against RDt;i ; two R-squared values indicate a change in relationship was inferred).
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successfully implemented and significantly decreased transmis-
sion. This, however, was insufficient to prevent a second wave of
infection in many countries as mobility, and thus contact rates,
gradually increased.

Mobility measures seem to reflect the level of contact and
therefore level of transmission well. As such measures could be
made available in real-time, mobility data could become an
important aspect of forecasting efforts. An earlier version (May
2020) of this analysis explored such aspects26, but the change in
relationship demonstrated here means that more needs to be
understood about additional drivers of transmission before reli-
able forecasting based on mobility can be achieved.

Our framework allows us to estimate country-specific mobility
thresholds to control transmission: if the reduction in mobility
reaches a certain level, we predict that SARS-CoV-2 infection
incidence will decline, if all other factors that impact on trans-
missibility stay unchanged. Although individual and combined
Apple and Google mobility measures differ, and therefore so do
the mobility threshold estimates, the link between transmissibility
and each mobility measure was clear.

The heterogeneity in estimated mobility thresholds between
countries likely reflects socio-cultural differences and/or the dif-
ferences in the interventions each country has implemented.
While we were able to characterise between-country hetero-
geneity, within-country heterogeneity is likely to also exist but
were not considered here, for country-specific analyses of trans-
mission see: for Brazil21, Italy20, and the USA19.

Previous studies, prior to the pandemic, have shown how the
proximity and interpersonal distances maintained between people
while interacting vary substantially between countries, likely due
to cultural differences27, and this could influence baseline
national levels of SARS-CoV-2 transmission. Similarly, it is likely
that awareness of SARS-CoV-2 transmission will affect those
interpersonal distances differently between countries, leading to
heterogeneities in the relative reductions in mobility required to
achieve COVID-19 control.

In addition, the COVID-19 public health responses are highly
variable between countries. In particular, the levels of contact-
tracing and testing vary considerably. South Korea, having pre-
viously experienced a large MERS coronavirus outbreak28,
implemented an aggressive strategy of tracing (and testing) early
on29, allowing rapid control of the epidemic. South Korea was not

included in this analysis as reported deaths remained relatively
low, falling short of our threshold for inclusion.

It follows that country-specific mobility thresholds are likely
not constant but can vary over space and time. As a country
intensifies its contact-tracing efforts, the mobility threshold would
likely decrease (i.e., a smaller reduction would be required). Our
initial analysis indicated that in the few countries where
population-wide social distancing and case isolation had been
successfully implemented, the margin to lift mobility restrictions
was very small if everything else remains the same26. However, as
social distancing behaviours remained and alternative strategies
such as more complete contact-tracing30 were implemented, we
demonstrated a dampening of the mobility-transmissibility rela-
tionship, which meant the relaxation of mobility restrictions
could be more substantial without risking the success achieved.

As many countries are re-imposing social-distancing policies,
our analysis illustrates that sustainable relaxation of population-
wide social-distancing measures should be undertaken very
carefully and replaced with equally effective control measures,
such as thorough contact-tracing30,31. If further waves of infec-
tion are to be avoided, more stringent control measures should be
rapidly implemented. While the encouraging early vaccine trial
results offers a glimpse of hope, with vaccines likely to play a
significant role in controlling SARS-CoV-2; the global scale of the
pandemic means that alternative control strategies should remain
a priority until large-scale vaccine production and delivery is
feasible.

Methods
Data. Data on deaths due to COVID-19 by country were sourced from the WHO
COVID dashboard6 and the European Centres for Disease Control (ECDC)4,
including daily death counts reported by each country’s official surveillance system
up to October 25th, 2020. Our analysis is based on countries for which at least 70
deaths were observed weekly for at least 4 consecutive weeks. This criterion was
chosen to ensure that the countries included showed evidence of substantial active
transmission.

Mobility data were sourced from Apple32 and Google33. These data reflect the
movement of people with an Apple or Android device using mapping apps. For the
Apple data, the measure of mobility is reported for three data-streams: “driving”,
“transit” and “walking” mobility. For the Google data, the measure of mobility is
reported for six data-streams: “grocery and pharmacy”, “parks”, “residential”,
“retail and recreation”, “transit stations” and “workplaces”. All measures estimate
relative daily mobility for each country and are quantified relative to the maximum
mobility measured prior to the pandemic WHO declaration. Apple and Google
mobility data were available from January 13th and February 15th, 2020,
respectively, up to the last day that deaths were analysed (October 25th).

Our analysis is based on 52 countries for which we had epidemiological data
(meeting our active transmission thresholds) and some mobility data. This
included 36 countries for which we had both Google and Apple mobility data; and
16 countries for which we had only Google mobility data (see Table S1).

Processing mobility data. The various mobility data-streams (i.e., driving, walking
and transit movement for Apple and the six data-streams for Google) showed both
short- and long-term variability in movement levels. For each data-stream, we
smoothed weekly patterns by using the 7-days rolling averaged mobility. When
mobility measures were missing, linear interpolation of the 7-days rolling averaged
mobility were used (see Supplementary Fig. 2). Each processed data-stream was
used independently in the analysis. In addition, we defined 3 additional data-
streams: the “Apple” data-stream as the mean across all three Apple data-streams;
the “Google” data-stream as the mean across “grocery and pharmacy”, “retail and
recreation”, “transit stations” and “workplaces” (excluding “parks” and “residen-
tial” on the basis of inconsistent trends, see Supplementary Fig. 2); the “Apple-
Google” data-stream as the mean across the newly defined “Apple” and “Google”
data-streams defined above. We therefore obtain a single daily measure of relative
mobility by country mt,i for up to 12 data-streams (Fig. 1a).

Estimating transmissibility, R, using mobility data. We define the effective
reproduction number on day t, Rt,i, which reflects the level of transmissibility in
country i on that day. We assume Rt,i is linked to relative mobility on that day via
Eq. (1) (see above), where R0,i is the basic reproduction number in country i and
mt,i is the relative mobility in country i on day t. When mobility is at its peak
(100%), transmissibility is characterised by the basic reproduction number.

Fig. 5 Comparison of fit between the individual data-streams and the

Apple-Google data-stream used in the main results. Fit is assessed as the

difference in DIC, a positive value (above the red horizontal line) indicates

the individual data-stream could be favoured over the Apple-Google data-

stream. The boxplot shows medians, interquartile ranges, ranges and

outliers. Above the threshold of 10 highlighted with the dashed grey line,

the individual data-stream would have substantially improved the fit of the

model. The y-axis is on a “signed” square root scale.
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Reduced mobility leads to reductions in the effective reproduction number (when
βi is positive). As the smoothed mobility is relative to the maximum observed
during the pre-pandemic period, the estimates of the basic reproduction numbers
can be thought of as pre-pandemic, similarly to defining the reproduction number
of a vector-borne disease as transmissibility during a period with a given vectorial
transmission.

In this framework, due to the delay between infection and deaths, the effective
reproduction number experienced by those dying on day t in country i, RD

t;i , is a

weighted average of the effective reproduction number on day t, Rt,i:

RD
t;i ¼

X

t

s¼0

Rs;ih t � sð Þ ð2Þ

assuming that the infection-to-death interval follows a gamma distribution, h, with
mean 18.8 days and standard deviation of 8.46 days16 (see SI for details).

We relate the observed reported deaths on day t in country i to the basic
reproduction number (R0,i) and the parameter (βi) linking transmissibility to
mobility (mt,i) using the renewal equation23,24:

Dt;i � NB RD
t;i

X

t

s¼0

Ds;iwt�s

h i

; δ

 !

ð3Þ

where Dt,i is the reported deaths on day t in country i, and w is the serial interval
(i.e., a serial interval for deaths defined as the time between deaths of the infector
and infectee) assumed to be gamma distributed with mean of 6.48 days and
standard deviation 3.83 days13. Here we assume that the number of reported deaths
follow a negative binomial distribution (such that the variance in the observed
numbers of deaths is greater than or equal to the expected number of deaths) with
over-dispersion δ.

As the framework outlined above is an extension of the framework developed
in23, estimates of transmissibility obtained are robust to under-reporting of deaths
but are affected by variation in levels of reporting. This justifies our choice of
estimating transmissibility based on reported deaths (more likely to be reported at
a consistent rate) rather than reported cases (which vary dramatically with testing
capacity). This choice makes the analysis more challenging as we must account for
variations in mobility that instantaneously affect transmissibility, which is reflected
later when deaths are observed.

Once the relationship between mobility and Rt,i is estimated, we can evaluate
the distribution of Rt,i for any level of mobility. Using a fine grid of mobility, we
obtained estimates of corresponding Rt,i, and this allowed us to estimate the
distribution of the reduction of mobility when Rt,i= 1. This mobility threshold can
be interpreted as the reduction in measured mobility that would be necessary in
order to achieve control (R < 1), given the other behaviours of the population over
the period under study (e.g., country-specific ways that people are interacting with
each other and any country-specific additional control measures such as testing
and contact tracing).

Change in the relationship between mobility and transmission. As countries
continue to seek a way to ease social distancing measures, alternative public health
control strategies are being considered and implemented, such as increased testing
and contact tracing. Furthermore, while restrictions on travel are being relaxed,
often recommendations for social distancing remain in force. We would therefore
expect some decoupling of transmission and mobility, leading to a weakening of
the correlation between mobility and underlying contact rates (and therefore
transmission). The effect of ongoing effective controls which are decoupled
from mobility would translate into a reduction of R0,i, resulting in a reinterpre-
tation of R0,i, (and possibly a change in βi), i.e., if the virus had been originally
introduced while those measures were in place, baseline transmission would
have been lower.

We therefore evaluate an alternative model where a change in relationship
occurred after a country-specific estimated time point (Tc,i):

logðRt;iÞ ¼
logðR0;i;1Þ � βi;1ð1�mt;iÞ t ≤ Tc;i

logðR0;i;2Þ � βi;2ð1�mt;iÞ t > Tc;i

(

ð4Þ

The framework to link Rt,i to R
D
t;i and ultimately to the observed deaths Dt;i remains

as above. With this alternative model, we can estimate two mobility thresholds that
can be interpreted as the reduction in measured mobility that would be necessary
in order to achieve control pre and post- changes in the mobility-transmission
relationship.

Implementation and caveats. We estimated the joint posterior distribution of
R0,i’s and βi’s using a Markov Chain Monte Carlo procedure with a Metropolis-
Hasting algorithm34. Posterior distributions for Rt,i and RD

t;i can be directly

obtained from the above. To ensure our parameter estimates were data-driven, we
used uninformative prior distributions for R0,i’s (uniform in the range [0; 5]) and,
βi’s (uniform in the range [−100; 100]).

As there are likely to be large heterogeneities in first the transmissibility between
individuals and second the reporting of deaths, we assume a negative binomial
likelihood by default, which allows us to estimate an over-dispersion parameter, δ.

We used an exponential prior distribution for δ with a mean of 1 (equivalent to a
geometric distribution). The model was also fitted using an alternative serial
interval of deaths with mean 4.8 and standard deviation 2.7 days35. Temporal
changes in epidemiological situation and in particular implementation of control
strategies, can impact the serial interval by for instance shortening the ‘effective’
infectious period36. Assuming a time varying serial interval could affect the
transmission estimates in non-trivial ways, however, in the absence of global data
on serial intervals over time, an analysis which would account for time varying
serial interval could not be performed.

We evaluated the correlation between estimated mobility thresholds and basic
reproduction number across countries to ensure the variation in the estimated
thresholds was not driven by the variation in estimated basic reproduction
number (SI). Finally, as the reporting of deaths might have changed during the
country-specific early phase of the epidemic, we re-estimated the mobility-
transmission relationship discarding from the likelihood all days previous to the
two consecutive weeks reporting each at least 10 deaths (the criteria for sustained
epidemic, see SI).

For each country, the best model (with or without change in the mobility-
transmission relationship) was chosen using the Deviance Information Criterion
(DIC)25. Each mobility data-stream was used independently to estimate the
parameters’ joint posterior distribution, and its fit evaluated again on the basis of
its DIC.

Evaluating model fit. We assessed whether the simple model outlined above (two
or five parameters per country, R0,i’s and βi’s, and the time of the change in
relationship if it occurs) captured the trends in the effective reproduction number.
Independent of the mobility data, we estimated the effective reproduction number
based on well-established methodology24 and the associated R package ‘EpiEs-
tim’23. Using a Bayesian framework, the method estimates the effective repro-
duction number based on daily death counts:

Dt;i � P R
D;EpiEstim
t;i

X

t

s¼0

Ds;i wt�s

h i

 !

ð5Þ

with R
D;EpiEstim
t;i the delayed effective reproduction number (i.e., reflecting trans-

mission level at time of deaths). Weekly estimates of R
D;EpiEstim
t;i were obtained

assuming constant transmissibility for 7 days. The estimated R
D;EpiEstim
t;i ’s from

EpiEstim23 assume a Poisson distribution of reported deaths. We implemented a
negative binomial model, which is equivalent to EpiEstim in the limit when there is
no over-dispersion. This is critical as allowing for over-dispersion is likely to

change the R
D;EpiEstim
t;i estimate, especially when reported deaths are low.

For each country, we could then compare RD
t;i and R

D;EpiEstim
t;i . While RD

t;i relies on

estimating 2 or 5 parameters (R0,i’s, and βi’s and a potential change in the

relationship with mobility), R
D;EpiEstim
t;i relies on estimating as many parameters as

there are number of weeks in the time-series of deaths.
As well as comparing the estimated effective reproduction numbers over time,

we compared the relationship between RD
t;i and R

D;EpiEstim
t;i and mobility.

To do so, we linked death-related reproduction numbers to the earlier mobility
patterns, mt,i, when those dying were infected. We defined an effective mobility,

m
eff
i;t , at time t that characterises the mobility at the time of infection of those who

died at time t:

RD
t;i ¼ R0;i e

�βi 1�m
eff

i;tð Þ ð6Þ

Thus,

RD
t;i ¼

X

t

s¼0

Rs;i ht�s ¼
X

t

s¼0

R0;i e
�βi 1�mi;sð Þ h t � sð Þ ð7Þ

(where h(t − s) is the infection-to-death interval distribution). Therefore, the
effective mobility is:

m
eff
i;t ¼ 1þ

1

βi
log

X

t

s¼0

e�βi 1�mi;sð Þ h t � sð Þ

 !

ð8Þ

We can now plot RD
t;i and R

D;EpiEstim
t;i against the effective mobility at the time of

infection.
Interestingly, estimating the effective mobility experienced by those dying on

day t relies on assumptions about the functional relationship between mobility and
Rt. Intuitively, assuming that the effective mobility is equal to the past mobility
weighted by the infection-to-death interval is equivalent to assuming a linear
relationship between mobility and the reproduction number. Assuming
Rt;i ¼ R0;i � βi ð1�mt;iÞ, then, following the same logic as above, we have:

m
eff
i;t ¼ 1� ð

Pt
s¼0 ð1�mi;sÞhðt � sÞÞ.

Once the relationship between mobility and Rt,i is characterised, we can evaluate
the posterior distribution for Rt,i for any mobility including when Rt,i = 1.
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Data ethics. All data used consist of nationally aggregated and anonymized
records already available publicly. Terms of use for mobility data has been granted
to use such data in the context of the COVID-19 pandemic (https://www.google.
com/covid19/mobility, https://covid19.apple.com/mobility). No ethical approval
was required for the work presented.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets on deaths from WHO and ECDC dashboard consists of aggregated
COVID-19-confirmed case and death counts publicly released (https://covid19.who.int,
https://opendata.ecdc.europa.eu/covid19). For the mobility data, Apple’s and Google’s
mobility data consists of aggregated, anonymized sets of data from users who have
chosen to turn on the location history setting.

Code availability
All analyses were performed using the statistical software R (version 3.5.1) and all the
code used is available on GitHub (https://github.com/pnouvellet/Mobility.2.0).
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