
REDUCTION IN THE CASE OF IMPERFECT RESIDUE FIELDS

DINO LORENZINI

Let K be a complete field with a discrete valuation v, ring of integers OK , and
maximal ideal (πK). Let k := OK/(πK) be the residue field, assumed to be separably
closed of characteristic p ≥ 0. Let X/K be a smooth proper geometrically irreducible
curve of genus g ≥ 1. Let X /OK denote a regular model of X/K. Let Xk =
∑v

i=1 riCi be its special fiber, where Ci/k is an irreducible component of Xk of
multiplicity ri. Let e(Ci) denote the geometric multiplicity of Ci (see [BLR], 9.1/3).
In particular, e(Ci) = 1 if and only if Ci/k is geometrically reduced. Any reduced
curve C/k is geometrically reduced when k is perfect. Associate to X /OK the field
extension kX/k generated by the following three types of subfields: by the fields
H0(C,OC), where C is any irreducible component of Xk; by the fields of rationality
of all points P such that P is the intersection point of two components of X red

k ;
and by the fields of rationality of all points Q that belong to geometrically reduced
components and such that Q is not smooth.

We will mostly be interested in this article in the properties of the minimal reg-
ular model Xmin and the minimal regular model with normal crossings X nc (see,
e.g., [Liu], 10.1.8). The combinatorics of the special fiber of these models when k
is imperfect is studied in section 1. Theorem 1.1 and Proposition 1.8 show that
for these two models, if kX 6= k or if there exists a component of Xk that is not
geometrically reduced, then k is imperfect and p ≤ 2g + 1.

Let A/K be any abelian variety of dimension g. Let L/K denote the extension of
K minimal with the property that AL/L has semi-stable reduction ([Gro], IX.4.1,
page 355). It is known that [L : K] is bounded by a constant depending on g
only, and that if q is a prime dividing [L : K], then q ≤ 2g + 1. We let kL denote
the residue field of OL. It follows that if kL 6= k, then p ≤ 2g + 1. When k is
imperfect and A is the jacobian of X, it is natural to wonder whether there are
any relationships between kL/k and the extension kX/k introduced above. In this
regard, we show in 2.12 that if kX 6= k or if there exists a component of Xk that
is not geometrically reduced, then p | [L : K]. We show in 2.4 that this statement
cannot be strengthened as follows: if kX 6= k or if there exists a component of Xk

that is not geometrically reduced, then it is not necessarily the case that kL 6= k
(when X is either X nc or Xmin). The converse to this latter statement, that is, if
kX = k and all components of Xk are geometrically reduced, then kL = k, is not
true in general when X = Xmin (2.13), but we provide some evidence that it could
be true when X = X nc.

Let A/OK denote the Néron model of an abelian variety A/K, with special fiber
Ak/k and group of components ΦA,K . Let A′/K denote the dual abelian variety,
with Néron model A′/OK and group of components ΦA′,K . Grothendieck’s pairing

〈 , 〉K : ΦA,K × ΦA′,K −→ Q/Z
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is introduced in [Gro], IX, 1.2. Grothendieck conjectured in [Gro], IX, 1.3, that this
pairing is always perfect, but this conjecture was shown in [B-B] to be incorrect in
general when the residue field is imperfect (see also [B-L]). It is also shown in [B-B],
3.1, that if p - [L : K], then 〈 , 〉K is perfect. When k is imperfect, it is natural
to wonder whether there are any relationships between the properties of L/K and
the fact that 〈 , 〉K is perfect. We show in this regard in 2.4 that, even for elliptic
curves, the triviality of the extension kL/k does not in general imply that 〈 , 〉K is
perfect.

We produce in section 3 new and easy examples of pairings that are not perfect,
including in the case of elliptic curves (2.6, 3.5, 3.9), using a formula of Grothendieck
pertaining to the behaviour of the pairing under base change. This formula is recalled
at the beginning of section 3 and, among other applications, is also used to give a
quick new proof of a variation on a theorem of McCallum. We give an example in
3.6 of two K-isogenous abelian varieties A/K and B/K such that Grothendieck’s
pairing for A is perfect while Grothendieck’s pairing for B is not.

The author warmly thanks A. Bertapelle, S. Bosch and Q. Liu for their insigh-
ful comments. Special thanks are due to M. Raynaud for many long and fruitful
conversations. This article owes much to his contributions.

1. A bound on the geometric multiplicity

Let X/K be a proper smooth geometrically irreducible cuve of genus g ≥ 1. Let
X /OK be a regular model of X/K, with special fiber Xk =

∑v
i=1 riCi. We let

M denote the intersection matrix ((Ci · Cj)). Fix a component C of Xk. We let
hi := hi(C) denote the dimension over k of H i(C,OC). We also let e := e(C) denote
the geometric multiplicity of C, and r := r(C) denote its multiplicity. It is shown in
[BLR], 9.1/8, that e divides the intersection number (C ·D) for any divisor D on Xk.
It is clear that h0 divides e. The integers h0 and h1 are related by the adjunction
formula

C · C + C · K = 2h1 − 2h0,

where K denotes the relative canonical divisor. In particular, h0(C) divides h1(C).
The same formula applied to Xk instead of C reads:

2g − 2 =
v

∑

i=1

ri(|Ci · Ci| − 2h0(Ci) + 2h1(Ci)).(1)

Recall that any component C such that h0(C) = |C · C| and h1(C) = 0 can be
blown down so that the resulting model is again regular (see, e.g., [Chi], 3.1, [Liu],
9.3/8). A regular model is called minimal if no component is such that h0(C) =
|C · C| and h1(C) = 0. Recall also that on a minimal regular model, the quantity
|C · C| − 2h0(C) + 2h1(C), that is, C · K, is always non-negative (see, e.g., [Liu],
9.3/10).

Theorem 1.1. Let X/K be a proper smooth geometrically irreducible cuve of genus
g ≥ 2. Let X /OK be its regular minimal model, with special fiber Xk =

∑v
i=1 riCi.

Then

(i) If e(Ci) > 1 for some i, then p ≤ 2g + 1.
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(ii) Assume that p ≥ 5. Then e(Ci) ≤ 5(g − 1) for all i = 1, . . . , v.

Proof: Fix a component C of Xk with p | e. Then (C · C) < 0, unless Xk = rC, in
which case (C ·C) = 0. When (C ·C) = 0, we find that 2g− 2 = r(C · K) and, thus,
re ≤ 2g − 2 since e divides (C · K) and (C · K) 6= 0 because g > 1. Let us assume
from now on that (C · C) < 0. We start with three easy lemmata.

Lemma 1.2. Let p be any prime. The quantity |C ·C| − 2h0(C) is strictly negative
only when h0(C) = e = |C ·C|, and in this case re ≤ 2g−2. In particular, p ≤ 2g−2.

Proof: We know that h0(C) | e. Assume that h0(C) ≤ e/p. Then

|C · C| − 2h0(C) ≥ e− 2h0(C) ≥ e− 2e/p ≥ 0.

When h0(C) = e, we find that |C ·C|−2h0(C) < 0 only when C ·C = −e. It follows
from the adjunction formula for Xk that when h0(C) = e = |C · C|,

2g − 2 ≥ r|C · C| − 2rh0(C) + 2rh1(C) ≥ re.

Lemma 1.3. (a) Let p be any prime. Assume that |C ·C| ≥ 3e, or that |C ·C| = 2e
and e > h0(C). Then re ≤ 2g − 2. In particular, p ≤ 2g − 2.

(b) Let p ≥ 5 be prime. If |C · C| = e and e > h0(C), then re ≤ 10(g − 1)/3. If,
in addition, e = p, then e ≤ 2g. In all cases, p ≤ 2g + 1.

Proof: If |C · C| ≥ 3e, then

2g − 2 ≥ r|C · C| − 2rh0(C) ≥ 3re− 2re ≥ re.

If |C · C| = 2e and e > h0(C), then

2g − 2 ≥ r|C · C| − 2rh0(C) ≥ 2re− 2re/p,

so re ≤ p(g − 1)/(p− 1) ≤ 2g − 2.
If |C · C| = e and e > h0(C), then

2g − 2 ≥ r|C · C| − 2rh0(C) ≥ re− 2re/p,

so re ≤ p(2g − 2)/(p− 2).

Lemma 1.4. Let p ≥ 5 be a prime. If a component C of geometric multiplicity
e intersects a component C1 with multiplicity r1 ≤ 3r/2 and h0(C1) < e, then
er ≤ 5(g − 1). When e = p, e ≤ 2g + 1. In all cases, p ≤ 2g + 1.

Proof: Note first that

|C1 · C1|r1 ≥ (C · C1)r ≥ er.

Then

2g − 2 ≥ r1(|C1 · C1| − 2h0(C1)) ≥ er − 2r1e/p ≥ e(r − 3r/p).

Since we assume that p ≥ 5, we find that er ≤ 5(g − 1). When e = p, we further
find that e ≤ 2g + 1. When p2 | e, it follows from e ≤ 5(g − 1) that p ≤ g − 1.

Let us proceed with the proof of Theorem 1.1. Consider a component C such
that e := e(C) is maximum among the geometric multiplicities of the components
of Xk. In view of 1.2 and 1.3, we can assume that all components C ′ of Xk which
have maximal geometric multiplicity satisfy 2h0(C ′) = 2e = |C ′ · C ′|, otherwise 1.1
holds.
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Consider the following graph G: its components are the irreducible components
of Xk, and two components Ci and Cj are linked in G by one edge if and only if
(Ci · Cj) > 0. Let G′ denote the subgraph of G consisting of all the components
of maximal geometric multiplicity e (and self-intersection 2h0). Let G(C) denote
the connected component of G′ that contains C. Suppose that G(C) contains w
components. Consider now the w×w principal minor M(C) of M defined as follows:
M(C) = ((Ci·Cj)), where Ci, Cj belong to G(C). Since g > 1, we cannot have w = v,
so the minor M(C) defines a negative definite quadratic form. By hypothesis, each
entry in M(C) is divisible by e. Thus, M(C)/e is an integer matrix whose coefficients
on the main diagonal are all equal to −2, and which is definite negative. Such
matrices are well-known, and are listed for instance in [Des], 4.6. They correspond
to the Dynkin diagrams An, Dn, E6, E7, and E8. In particular, G(C) is a tree with
at most one node. We may, without loss of generality, assume that C is a component
of G(C) such that r(C) is minimal among the multiplicities of all components of
G(C).

The only case where 1.1 is not yet proven is the case where C intersects no
components C1 of Xk with r1 ≤ 3r/2 and h0(C1) < e. We may thus assume that if
a component C1 intersects C, then either 3r/2 < r1, or h0(C1) = e. If C meets a
component C1 with h0(C1) = e, we may assume that |C1 · C1| = 2e, otherwise 1.1
holds. Then, C1 belongs to G(C) and by minimality of r, r ≤ r1. It follows that
we may assume that any component C1 that meets C is such that r1 ≥ r. Since
|C · C| = 2e, we find from the relation

|C · C|r =
∑

Cj 6=C

(C · Cj)rj

that C can only be of three types: either

(a) C intersects in Xk only a single component C1, and (C · C1) = e and r1 = 2r,
or

(b) C intersects in Xk only a single component C1, and (C · C1) = 2e, r = r1, and
h0(C1) = e = e(C1), or

(c) C intersects in Xk exactly two components C1 and C2, and (C · C1) = e =
(C · C2), r = r1 = r2, and h0(C1) = e = h0(C2).

In case (c), we note that we may also assume that 2e = |Ci · Ci| for i = 1, 2,
otherwise 1.1 is proved. If all components of Xk of maximal geometric multiplicity
are of type (c), then the special fiber consists only of such components, and it
follows that g = 1, contradicting our hypothesis. Thus, we may assume that there
is a component C as in (a) or (b).

Consider first the case (b) where the component C1 is such that (C · C1) = 2e,
r = r1, and h0(C1) = e. Since e is maximum, e = e(C1). We may also assume that
(C1 · C1) = 2e, otherwise 1.1 is proved. Then C and C1 are the only components of
Xk, and the genus is 1, contradicting our hypothesis.

Consider now the case (a) where the component C1 is such that (C ·C1) = e and
r1 = 2r. If C1 only meets C, then the intersection matrix of Xk (with vector of
multiplicities) should be

(

−2e e
e −e/2

) (

r
2r

)

,
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which cannot occur because |C1 ·C1| = e/2 must be an integer, and we assume that
p ≥ 3. Thus, C1 meets at least one other component C2. Hence, we find that

r1|C1 · C1| ≥ r(C · C1) + r2(C1 · C2) ≥ er + fh0(C1),

for some integer f ≥ 1. Suppose first that h0(C1) < e. Then

2g − 2 ≥ r1(|C1 · C1| − 2h0(C1))
≥ (er + h0(C1))− 4rh0(C1)
≥ er − (4r − 1)e/p

= e(r − 4r − 1

p
)

≥ e(
r + 1

5
).

The last inequality is true only if p ≥ 5, which we assume. This allows us to conclude
that e ≤ 5(g−1). When e = p, we find that e ≤ 2g +1. Thus, in all cases, we found
that p ≤ 2g + 1.

Suppose now that h0(C1) = e. Again, we may assume that (C1 · C1) = 2e, since
otherwise 1.1 is proved. We now return to the tree G(C). We just showed that we
may assume in this case that it has at least two vertices. To conclude the proof
of 1.1, we now proceed to a case by case analysis for each type of tree G(C). The
component C is a terminal vertex of G(C). We define a subtree G′(C) of G(C) as
follows: G′(C) contains C, which is at distance 0 from C in G(C). A component
Cn of G(C) that is at distance n from C in G(C) belongs to G′(C) if the unique
component Cn−1 of G(C) at distance n − 1 from C that meets Cn is such that all
components of Xk that meet Cn−1 are in G(C). By construction, any vertex D of
G′(C) that meets a component of Xk that is not in G(C), say D1, is a terminal
vertex of G′(C). When G′(C) has a node, we will be able to show that there exist
such components D and D1 with r(D) ≥ r(D1). We will conclude the proof of 1.1
in this case by applying Lemma 1.4.

The first case that we will consider, though, is the case where G′(C) is a chain
{C, C1, . . . , Cs} of length s + 1, (s ≥ 1). By construction, there exists a component
D1 not in G(C) that meets Cs. We obtain the following intersection matrix (and
vector of multiplicities):





















−2e e
e −2e e

e
. . .

. . .
. . . −2e e

e −d f

f
. . .







































r
2r
...

(s + 1)r
(s + 2)r

...



















,

where d = |D1 ·D1|, f may be 0, and such that either |D1 ·D1| 6= 2e, or h0(D1) < e.
If |D1 · D1| 6= 2e and h0(D1) = e, then 1.2 and 1.3 show that 1.1 holds. When
h0(D1) < e, we find that

2g − 2 ≥ r(D1)(|D1 ·D1| − 2h0(D1))
≥ r(Cs)(Cs ·D1)− 2(s + 2)rh0(D1)
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≥ e((s + 1)r − 2(s + 2)r

p
)

≥ 3er(
s + 2

5
).

Again, we also find that when e = p, then e ≤ 2g +1. Thus, in all cases, p ≤ 2g +1.
It remains to discuss the following possibilities where the graph G′(C) has a node.

Case 1
2 rr r n

x

y y rm1

2D 2r

1DC
1

(where n ≥ 2). Represented above are the vertices of G′(C) and their multiplicities,
as well as the vertices D1 and D2 where G′(C) meets the rest of the special fiber
that is not in G(C). We have the relations

2nr = (n− 1)r + x + y1

2x ≥ nr + r2

2y1 ≥ nr + y2,

where we let y2 := r1 if m = 1. (The last two lines above are inequalities only,
because we do not specify with what multiplicities D1 and D2 meet G′(C), or if
other components meet the components of multiplicities x and ym.) Thus

(x− r2) + (y1 − y2) ≥ (n− 1)r > 0.

Therefore, either (x − r2) > 0 or (y1 − y2) > 0. If y1 − y2 > 0, we find that
y1 > y2 > · · · > ym > r1. If h0(D1) = e, then |D1 · D1| 6= 2e by construction since
D1 /∈ G(C). Thus we can apply 1.2 and 1.3 to conclude. If h0(D1) < e, then we
conclude using 1.4 since ym > r1. When x − r2 > 0, we argue similarly using D2

instead of D1.

Case 2
2 rr r n

x

y y rm1

1DC
1

(where n ≥ 2). This case and Case 3 are similar to Case 1, except that now G′(C)
meets the fiber minus the components in G(C) in only one component. We have
the relations

2nr = (n− 1)r + x + y1

2x = nr
2y1 ≥ nr + y2,

where we let y2 := r1 if m = 1. Thus, y1 − y2 ≥ nr − y1 = (n − 2)r/2 ≥ 0. Since
y1 ≥ y2, we find that y1 ≥ y2 ≥ · · · ≥ ym ≥ r1 and we conclude as in Case 1.

Case 3

2 rr r n

x

y ym1

2D 2r

C
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We have the relations

2nr = (n− 1)r + x + y1

2x ≥ nr + r2.

Thus x− r2 ≥ nr − x = y1 − r. By minimality of r, y1 − r ≥ 0. We conclude as in
Case 1 using the fact that x ≥ r2.

Case 4

rr y y rm1x x

D

1 2

1
r

21

C
D

n

2

We have the relation 4r = x1 + y1 + r. Thus, either x1 < 2r or y1 < 2r. Assume
without loss of generality that x1 < 2r. Then

2r > x1 > x2 > · · · > xn > r1.

We conclude as in Case 1 using xn > r1.

Case 5

rr y ym1x x

D

1

1
r

21

C

n

From the relations ym−1 = 2ym, . . . , 2y2 = y1 + y3, we find that y1 = mym. From
4r = x1 + r + y1, we find that y1 ≤ 2r, since x1 ≥ r by minimality of r. Hence,
ym ≤ 2r/m. Thus, the minimality of r forces m ≤ 2. The case m = 1 is such that
y1 | 2r, so y1 = r. This case is treated in Case 2 above with n = 2. The case m = 2
gives y1 = 2y2, 2y1 = 2r + y2, so 3y2 = 2r. But y2 < r contradicts the minimality of
r and this case does not happen. This concludes the proof of Theorem 1.1.

Example 1.5 It is natural to wonder what is the best possible bound in 1.1 (ii).
We present below examples with e(C) = 2g + 2. Consider the curve X/K given by
the equation

y2 = f(x) = π(xe + π(ae−1x
e−1 + · · ·+ a1x)− b)

with ai ∈ OK , b ∈ O∗
K , xe − b irreducible in k[x], and e = pr for some r ≥ 1. This

curve is such that e = 2g +1 if p is odd, and e = 2g +2 if p = 2. When p is odd, the
reduction consists of three irreducible components C1, C2, and C3, of multiplicity 1,
2, and 1, respectively. The first two components are smooth rational curves over k,

and the component C3 is a smooth rational curve over k(
e
√

b), so that h0(C3) = e.
The associated intersection matrix is:





−2 1 0
1 −(e + 1)/2 e
0 e −2e



 .

Using the results of Raynaud [BLR], 9.6, we find that ΦJac(X),K = (0).
When p = 2, the reduction consists of two irreducible components C1 and C2,

of multiplicity 2 and 1, respectively. The first component is a smooth rational
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curve over k, and the second component is a smooth rational curve over k(
e
√

b), so
h0(C2) = e. The associated intersection matrix is:

(

−e/2 e
e −2e

)

.

The results of Raynaud [BLR], 9.6, cannot be applied to compute ΦJac(X),K .
To prove the above claims, start with the model X0 obtained by glueing

Spec OK [x, y]/(y2 − f(x))

with

Spec OK [u, v]/(v2 + π − π2(ae−1u + · · ·+ a1u
e−1)− πbue) when p = 2,

and with

Spec OK [u, v]/(v2 + πu− π2(ae−1u
2 + · · ·+ a1u

e)− πbue+1) when p ≥ 3.

The special fiber ofX0 is an irreducible component of multiplicity 2, with one singular
point if p = 2, namely the point corresponding to the ideal (π, y, xe− b). When p is
odd, it has two singular points, namely (π, y, xe − b) and the reduction of the point
at infinity of X/K, (π, u, v). Blowing up the singular points resolve the singularities
and produces the desired model.

Example 1.6 Consider the following ‘potential’ special fiber, consisting in three
components C1, C2, C3 satisfying the following properties (we do not know if this
data can arise as the special fiber of some curve X/K). Let e = ps, p ≥ 5 and s ≥ 2.
The intersection matrix and vector of multiplicities are





−2e e 0
e −e(p + 1)/2p e/p
0 e/p −2e/p



 and





1
2
1



 .

We assume moreover that h0(C1) = e, and h0(C2) = h0(C3) = e/p. We set h1(Ci) =
0 for i = 1, 2, 3. Then the adjunction formula shows that g − 1 = p−3

2p
e. Hence, we

find that e = 2g−2+ 6
p−3

(g−1). Thus, if such a data can correspond to the special

fiber of a curve, then Theorem 1.1 is sharp when p = 5.

Remark 1.7 The geometric multiplicity e(C) of a component C of the regular
minimal model of a curve of genus 1 is not bounded by an absolute constant. For
further information on the reduction of curves of genus 1, see [LLR].

As a complement to Theorem 1.1, we show:

Proposition 1.8. Let X/K be a proper smooth geometrically irreducible curve of
genus g ≥ 1. Let X /OK be its regular minimal model.

(i) Let C/k be a geometrically reduced component of Xk. Let P ∈ C be a point
that is not smooth. If k(P ) 6= k, then p ≤ 2g + 1.

(ii) Let C and D be two distinct geometrically reduced components of Xk. Then
(C · D) ≤ g + 1. In particular, if C and D meet in a point P such that
k(P ) 6= k, then p ≤ g + 1.
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Proof: Assume that C is geometrically reduced, but not smooth. Let C̃/k denote

the normalization of C/k. Then h1(C) ≥ h1(C̃) and h1(C̃) ≥ (p− 1)/2 ([Tat], Cor.
1). Since 2g − 2 ≥ |C · C| − 2h0(C) + 2h1(C) ≥ 2h1(C)− 2, (i) follows.

Let us now prove (ii). Let r and r′ denote the multiplicities of C and D, re-
spectively. It follows from Xk · C = Xk · D = 0 that r|C · C| ≥ r′(C · D) and
r′|D ·D| ≥ r(C ·D). Hence,

2g − 2 ≥ r(|C · C| − 2h0(C)) + r′(|D ·D| − 2h0(D))
≥ (r + r′)[(C ·D)− 2],

so that (C · D) ≤ g + 1. If C and D meet in a point P such that k(P ) 6= k, then
[k(P ) : k] | (C ·D), and (ii) follows.

Corollary 1.9. Let X/K be a proper smooth geometrically irreducible curve of
genus g ≥ 1. Then

(i) kXmin ⊆ kXnc.
(ii) If kXmin 6= k, then p ≤ 2g + 1.
(iii) If kXmin = k and kXnc 6= k, then p(p− 1) ≤ 2g.
(iv) If p > 2g +1, then kXmin = kXnc = k, and all components of Xmin and X nc are

geometrically reduced.
(v) If p(p − 1) > 2g and kXmin = k, then kXmin = kXnc, and all components

of Xmin
k are geometrically reduced if and only if all components of Xmin

k are
geometrically reduced.

Proof: Consider the natural contraction map X nc → Xmin, obtained by a sequence
of blow-ups of points. A blow-up of a regular point P has the following properties:
the exceptional divisor E is a smooth rational curve over k(P ), and h0(E) = [k(P ) :
k] = E ·E. Part (i) follows immediately from these facts. Part (ii) when kXmin 6= k
is an immediate consequence of 1.1 and 1.8. Let us now prove Part (iii). Consider
any intermediate blow-up Y → Z of a point P in Z, with

X nc → Y → Z → Xmin.

If P is a k-rational point, intersection of two or more components that are smooth at
P , then the exceptional divisor E is a smooth rational line over k, which intersects
all components of Y at k-rational points. In particular, kY = kZ . Thus, when
kXmin = k, in order for kXnc 6= k, we find that there always exists a blow-up Y → Z
of a k-rational point P such that one of the components C passing through P is not
smooth, and the exceptional divisor E intersects a component D of Yk in a point Q
that is not rational. Then E ·D, which equals the multiplicity µ of P in the image
C of D (see, e.g., [Liu], exer. 9.2/9, (d)), is divisible by [k(Q) : k]. Hence,

p(p− 1) ≤ 2h1(D) + µ(µ− 1) = 2h1(C) ≤ 2g.

(See [Liu], exer. 9.2/12 (b), for the equality above.)
To prove (iv), we note that it follows from (ii) and (iii) that kXmin = kXnc = k.

It follows from 1.1 that all components of Xmin are geometrically reduced. An
exceptional component of X nc → Xmin that is not geometrically reduced is obtained
as a blow-up of a point that is not k-rational. If such a point existed in one of the
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intermediate blow-ups of the contraction X nc → Xmin, then (iii) would show that
p(p− 1) ≤ 2g, which is a contradiction. Part (v) is left to the reader.

Remark 1.10 In the theory of reduction of curves in the case of perfect residue
fields, one finds two finiteness statements:

(i) Given g ≥ 2 and m ≥ 0, there exists only finitely many reduction types of
curves of genus g with chains of length at most m (see for instance [Des],
Théorème 4.5).

(ii) Let X/K be a curve whose jacobian A/K has toric rank tK equal to zero. Let
uK denote the unipotent rank of A/K. Then |ΦA,K | ≤ 22uK . More precisely,

∑

q prime

ordq(|ΦA,K |)(q − 1) ≤ 2uK

(see [Lo1], 2.4, and also [BLR], 9.6/9, for a weaker statement).

It is likely that statements analogue to (i) and (ii) are also true in the case where
the residue field is imperfect.

2. Relations between the fields kL/k and kX/k

Theorem 2.1. Let X/K be a proper smooth geometrically irreducible curve of genus
g ≥ 1. Let X denote either Xmin or X nc. If kX 6= k or if there exists a component
of Xk that is not geometrically reduced, then p | [L : K].

Proof: Let us assume that p - [L : K], which implies that L/K is a cyclic Galois
extension with Galois group Gal(L/K) = < σ >. Under this hypothesis, we can
describe a regular model with normal crossings X of X/K over OK using the quo-
tient/desingularization construction. The model X is such that all components are
smooth, and all intersection points are k-rational. Since X nc and Xmin are obtained
from X be a series of contractions, the statement of the theorem follows.

Let us briefly recall now the quotient/desingularization construction. Let Y/OL

be the minimal regular model of XL/L. The map σ induces a canonical morphism
XL → XL over the map σ : Spec(L) → Spec(L). Since XL is the generic fiber
of Y , the map σ induces a birational proper map Y → Y ×Spec(OL) Spec(OL) over
Spec(OL). By the universal property of a minimal model, this map extends to a
morphism from Y to Y ×Spec(OL) Spec(OL) over Spec(OL). Since Y is reduced and
separated, this extension is unique. Hence, there exists then a unique automorphism
τ : Y → Y over the automorphism σ : Spec(OL)→ Spec(OL).

Let G := < τ >, with τ : Y → Y lifting σ : Spec(OL) → Spec(OL). The
following fact is standard: Since Y/OL is projective, the quotient Z := Y/G can
be constructed in the usual way by glueing together the rings of invariants of G-
invariant affine open sets of Y . The scheme Z/OK is normal and, hence, its singular
points are closed points of its special fiber. We let f : Y −→ Z denote the quotient
map.

The normal scheme Z has quotient singularities. A desingularization ν : X →
Z leads to a regular model X /OK of X/K. When L/K is tame and Y is the
minimal semi-stable regular model of XL, the quotient singularities of Z are well-
understood, due to the fact that the action of an automorphism at a fixed point can
be linearized (see, e.g., [J-M], 2.4). We recall the properties of the resolutions of
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cyclic quotient singularities below, closely following Viehweg’s article [Vie]. We refer
the reader to his work for more details (see also e.g., [Lip], 206-212, or [Pin], 12-
15, or [CES], section 2). Unfortunately, none of the references above discuss cyclic
quotient singularities in the generality needed in this article, namely for discrete
valuation rings OK with possibly imperfect residue fields and possibly of mixed
characteristic. We recall below the statements on cyclic quotient singularities needed
in this article. The results quoted below are mostly proven in the literature only in
equicharacteristic p ≥ 0 and with algebraically closed residue fields. We believe that
when L/K is tame, these results can be proved in the general case using arguments
similar to the ones found in the literature to prove these statements under more
restrictive hypotheses.

Since Y/OL is a semi-stable model of XL/L, Yk =
⋃

Yi is reduced and is a divisor
with normal crossings. Each irreducible component Yi has at worst ordinary double
points as singularities. All singular points of Yk are defined over k (see, for instance,
10.3/7 in [Liu]). The ramification locus of a tamely ramified morphism of smooth
curves Yi → Zj is always defined over k (see, for instance, [L-L], 3.3).

2.2 ([Vie, section 6] Let y ∈ Y be a closed point. Let Iy := {τ ∈ G | σ(y) = y}.
We shall call a point y ∈ Y with Iy 6= {id} a ramification point, and the image
of this point in Z will be called a branch point. Let {z1, . . . , zd} denote the set of
closed branch points of the morphism Yk → Zk. The map Y → Z is etale outside
the preimage Y ′ of Z \ Zsing since any closed point in Y ′ has trivial inertia ([Gro2],
Exp. V, 2.2). A ramification point y is either a singular point of Yk, and in this
case it is k-rational, or it is a smooth point of a component Yi and a ramification
point of the restriction of the map Y → Z to Yi. As we mentioned above, such
a point is also k-rational. It follows that the completion of the local ring of Y at
y is of the form OL[[u]] or OL[[u, v]]/(uv − πL) (see, e.g., [Liu] 10.3/22 (b)), as in
the classical case. The action of σ can then be linearized, and the singularity of
the ring of invariants can be described explicitly. It follows that {z1, . . . , zd} is the
set Zsing of singular points of Z, and there exists a regular scheme X /OK and a
proper birational morphism ν : X → Z such that ν induces an isomorphism between
X−{ν−1(Zsing)} and Z−{Zsing}. Moreover, for any z ∈ Zsing, ν−1(z) is a connected
chain of rational curves, where we call chain of rational curves on X a divisor D
such that:

1. D =
⋃q

i=1 Ei, Ei smooth and rational curve over k, for i = 1, . . . , q.
2. (Ei · Ei+1) = 1 for all i = 1, . . . , q − 1 and (Ei · Ej) = 0 for all j 6= i + 1.

Moreover, (Ei · Ei) ≤ −2 for all i. Let us call E1 and Eq the end-components
of the chain.

If the preimage of a singular point z in the normalization of Yk consists of a
single point, then z belongs to a single component E of the chain ν−1(z), and this
component is an end-component. Moreover, if z belongs to the component Zi of Zk,
then Zi meets E with normal crossings.

If the preimage of a singular point z in the normalization of Yk consists of two
distinct points, then z belongs to two components Zi and Zj of Zk. The chain ν−1(z)
meets Zi with normal crossings at one of its end-component, and it meets Zj with
normal crossings at the other end-component. (Viehweg states in 8.1.d) on page 306
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of [Vie] that the model X , obtained by taking the quotient of Y and then resolving
the singularities, has normal crossings.)

Let Zj be an irreducible component of Z, and let Yi be a component of Y , preimage
of Zj under the map Y → Z. We claim that Zj is geometrically reduced. Indeed,
let Vj ⊂ Zj be an affine open set whose affine preimage Ui under Yi → Zj is smooth
and allows us to consider Vj as the quotient of Ui by a finite group H . We only need

to show that Vj is smooth or, equivalently, that Vj ×k k is normal. This latter fact
follows from the fact that taking quotients commutes with flat base change, and the
fact that the quotient of a normal affine scheme is normal. Hence, the component
Zj/k are geometrically reduced. All singular points of Zred

k are k-rational since these
singularities are images of k-rational points in Yk. Hence, all singular points of Z
have k as their residue field. Since the resolution of the singularities of Z does not
introduce exceptional components that are not geometrically reduced, and since all
intersection points on exceptional components are k-rational, we find that kX = k,
and all components of the model X are geometrically reduced.

The proof of Theorem 2.1 is now easy. The contraction X → X ′ of a smooth
rational curve over k of self-intersection −1 produces a regular scheme such that all
components are geometrically reduced, and all singular points of X ′

k are k-rational.
Hence, kXmin = kXnc = k, and all components of Xmin

k and X nc
k are geometrically

reduced.

We show below in 2.4 that 2.1 cannot be strengthened to state: If kX 6= k or if
there exists a component of Xk that is not geometrically reduced, then kL 6= k (when
X is either X nc or Xmin). We consider the converse of this statement in 2.9 and
2.13.

2.3 Let us recall here for the convenience of the reader the types of reduction of
elliptic curves that are not classical Kodaira types. Assume first that p = 2. In the
notation of [Sz], the special fiber of the types X1, Y1, and K1, are irreducible. Each
has a singular point, defined over a quadratic extension of k for X1 and Y1, and over
k for K1. The type K1 is the only one that does not have normal crossings (see
2.13).

In the diagrams below, the type X2 in [Sz] is described as T0. A segment repre-
sents a smooth projective line defined over k, a dotted segment represents a smooth
projective line defined over an inseparable extension of k of degree p (the same ex-
tension for all such components in a given diagram), and a segment adorned with the
symbols h0(C) = 1 represents a component of multiplicity 1 that is not geometrically
reduced, but has h0(C) = 1.

The case Y2:
h0(C =1)

1

1

In this above picture, the intersection point is rational over k.

The case Y3: 131 2 2

The case K2n: 1 1 1 11 1
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The reduction K2 consists of two smooth rational curves over k meeting in a point
P defined over a quadratic extension of k.

The cases K ′
2n and K2n+1 (n ≥ 1): h0 C) = 1(1 1 1

1 1
1

In the case K2n+1, the last component (with h0(C) = 1) has a k-rational point. In
case K ′

2n, the last component does not have a rational point. All intersection points
are defined over the same quadratic extension of k. Note that the reduction K3 has
the same picture as the reduction Y2, but in the case K3, the intersection point is
not rational over k.

The case Tn (n ≥ 0, with n+4 components): 12
2

221 2
1B

A

We report in the following table the degree of kXmin/k for each type of reduction.

T X1 Y1 Y2 Y3 K1 K2n K2n+1 K ′
2n Tn

[kXmin : k] 2 2 1 2 1 2 2 2 2
.

The case where p = 3 is considerably easier, as there are only two types of
reduction that are not classical Kodaira types. The reduction Z1 has a unique
irreducible component, with a singular point defined over a cubic extension of k.

The case Z2: 1 2 1

Both cases have [kXmin : k] = 3 and |Φ| = 1.

Example 2.4 We exhibit below an example of an elliptic curve X/K such that:
1) Xmin = X nc, 2) Xmin

k has a component that is not geometrically reduced, 3)
Grothendieck’s pairing for X is not perfect, and 4) kL = k.

Thus, this example shows that it may happen that kL = k even though Xmin
k has

a component that is not geometrically reduced and Grothendieck’s pairing for X is
not perfect.

Lemma 2.5. Assume that π = 2, and b ∈ O∗
K , b 6∈ (k∗)2. Let X/K be the elliptic

curve given by y2 = x3 + πx2 + bπ9. Then

(i) X/K has reduction over K given by

12
2

2
2

2
2

1
1

2

The last component on the right is isomorphic to P1/k(
√

b). All other compo-
nents are smooth rational curves over k. All intersection numbers are equal to
1, except for the last two components, where the intersection number is 2. We
find that ΦK = Z/2Z and 〈 , 〉K is trivial.

(ii) X/K has good reduction over L = K(
√

π), so kL = k.

Proof: To determine the reduction over K, we may use [Sz] 3.8 (the reduction has
type T6 in the notation of [Sz]). Alternatively, we may follow Tate’s Algorithm as
given in [Sil] up to Step 7 on page 374, and make the necessary adjustments to find
the desired reduction. Since the minimal regular model of X/K has only two smooth
components of multiplicity 1, and since the Néron model of X/K is obtained as the
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smooth locus of X /OK , we find that ΦK = Z/2Z. The pairing 〈 , 〉K is computed
below:

Lemma 2.6. Let X/K be an elliptic curve with reduction of type Tn. Then ΦX,K =
Z/2Z, and Grothendieck’s pairing 〈 , 〉K is trivial.

Proof: Label the components of the special fiber by A, B, . . . , as on the picture of
the type Tn in 2.3. Let M denote the intersection matrix associated with Tn and this
ordering. Let R denote the vector of multiplicities, transpose of (1, 1, 2, . . . , 2, 1).
The group ΦX,K can be identified with a subgroup of the group Ker(tR)/Im(M)
(see, e.g., [B-L], 2.2). Let τ denote the image of the vector (1,−1, 0, . . . , 0) in
Ker(tR)/Im(M). Using 3.7 in [Lo3], we find that τ corresponds to a generator of
ΦX,K . The value 〈τ, τ〉K = 0 is computed using [B-L], 4.6 and 5.1.

Over the field L = K(
√

π), the equation

y2 = x3 + πx2 + bπ9

is not minimal. We can divide it by π3, make the appropriate change of variables,
and get a new equation

y2 = x3 + x2 + bπ6.

Changing variables again, we obtain the equation

y2 + πxy = x3 + bπ6

which is not minimal. We can divide by π6 and make a last change of variables to
obtain the equation

y2 + xy = x3 + b.

Since b 6= 0, the equation y2 + xy = x3 + b defines an elliptic curve over k.

Example 2.4 shows that in general kXnc is not contained in kL. More precisely,
2.4 shows that:

(i) It is not true in general that if X nc
k has a component C with e(C) > 0, then

kL 6= k, and
(ii) It is not true in general that if a component C of X nc

k is such that the field
H0(C,OC) is not equal to k, then kL contains a subfield isomorphic to H0(C,OC).

We now present an example to show that, in general, kL is not contained in kXnc .

Example 2.7 Suppose that there exists a field K of equicharacteristic 2 and an
elliptic curve E/K with good reduction over OK having a group of automorphisms
over K of order divisible by 8. Suppose also that there exists a Galois extension
L/K of degree 8 with Galois group isomorphic to the quarternion group Q2 and
such that [kL : k] = 8. (We will show below that such a data exists.) Assuming the
existence of such a data, choose an injective homomorphism

Gal(L/K) −→ Aut(E/K).

This injection defines an element in the set H1(GK/K , Aut(E)), which we use to

twist E/K to obtain a new elliptic curve E ′/K. The curve E ′/K has potentially
good reduction, being isomorphic to EL/L over L, but does not have good reduction
over K since it is the twist of an elliptic curve that has good reduction over K. A
similar argument over any subfield K ⊆ F ⊆ L shows that L/K is the extension
of K minimal with the property that E ′

L/L has good reduction. By construction,
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[kL : k] = 8. The reader may now check, using the list of possible reductions of
elliptic curves when p = 2 given in [Sz] (see 2.3), that the field kXnc associated with
any of these reductions has degree at most 2 over k. Hence, kL is not contained in
kXnc . We now turn to show the existence of the necessary data.

Suppose that OF is a discrete valuation ring with maximal ideal (π). Let F ′/F
be any Galois extension with Galois group G, given by an Eisenstein equation

f(w) = wpn

+ apn−1w
pn−1 + · · ·+ a1w + π.

Let u be an undeterminate, and set K := F (u) and OK := OF [u, π
upn ](u). The

automorphisms of F [w]/(f) over F (i.e., the elements of G) clearly extend to auto-
morphisms of F (u)[w]/(f) over F (u). Let A denote the integral closure of OK in
F (u)[w]/(f). Then A contains w

u
, since

f(w)/upn

= (
w

u
)pn

+ · · ·+ π

upn ∈ OK [
w

u
]

is an integral equation for w
u

over OK . The residue field k of OK is (OF /π)( π
upn ).

Thus, the residue field kA of A at the maximal ideal containing ((w
u
)pn − π

upn , u) is
inseparable of degree pn over k. By construction, the field of fractions of A is Galois
over F (u) with Galois group G.

Returning to the data needed for Example 2.7, we note that it is well known that
there exist discrete valuation ringsOF and Galois extensions F ′/F with Galois group
the quaternions Q2. We may thus apply the above construction to obtain such an
extension L/K with [kL : k] = [L : K]. Let now K ′/K be any finite Galois extension
with trivial residue extension. Then L′ := K ′L is such that Gal(L′/K ′) = Gal(L/K)
and [kL′ : k] = [kL : k]. Consider now the curve E/K with y2 + y = x3. There exists
a finite Galois extension K ′/K with trivial residue extension such that the group of
automorphism of EK ′/K ′ over K ′ has order divisible by 8. (To prove this claim, use
for instance explicit equations for the automorphisms.) Hence, passing from L/K
to L′/K ′ if necessary, we find that the data needed for Example 2.7 exists.

Consider the statement:

2.8 If kX = k and all components of Xk are geometrically reduced, then kL = k.

We provide below some evidence that this statement is true for X nc. It is false for
Xmin (2.13).

Proposition 2.9. Let X/K be a proper smooth geometrically irreducible curve of
genus g ≥ 1. Let X = X nc be its minimal regular model with normal crossings.
Assume that kX = k and that all components of Xk are geometrically reduced. Let
F/K be any finite extension such that [kF : k] = [F : K]. Then XF/F has semistable
reduction over OF if and only if X/K has semistable reduction over OK .

Remark 2.10 Suppose that K 6= L. Under the hypotheses of 2.8, we find that 2.9
implies that [kL : k] < [L : K]. The conclusion of 2.8 is that [kL : k] = 1. This
conclusion holds true when [L : K] is a prime number, a fact that we shall exploit
in 2.12 to prove that 2.8 is true in some cases.

Proof of 2.9: Let us first note the following reduction step. The extension kF /k is
obtained by adjoining to k a finite number of elements ζi that are purely inseparable
over k. Thus the extension F/K contains a sequence of subextensions K ⊂ K(z1) ⊂
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· · · ⊂ K(z1, . . . , zs) = F , where zi ∈ OF for all i, and its minimal polynomial over
K(zi−1) reduces modulo π to an irreducible expression of the form zp

i − t, for some
t in kK(zi−1). We are thus reduced to proving the statement of 2.9 for extensions of
the form F = K(z), where z is integral over OK and whose image generates kF/k.
Let f(x) ∈ OK [x] denote its minimal polynomial over OK . Note that OF = OK [z],
since the maximal ideal of OK [z] is principal (it equals (π)).

Lemma 2.11. The model X ′ := X ×OK
OF is regular.

Proof: Consider any closed point P ∈ Xk with residue field k. Then the preimage
of P under X ′ → X consists of a unique point P ′ which is regular with residue field
kF . Indeed, let (u, v) denote the maximal ideal of OX ,P . Then the ring OX ,P ⊗OK

OK [x]/(f(x)) is a local ring with maximal ideal generated by u and v.
Since kX = k, every component of Xk is smooth, because a regular point with

residue field k is smooth (see, e.g., [BLR], 2.2/15). Since k is separably closed,
every component of Xk has a k-rational point (see, e.g., [BLR], 2.2/13). Thus, every
component of X ′

kF
has a regular point, and we find that X ′ has at most finitely many

singular (closed) points. In particular, X ′ is normal. Consider a minimal resolution
Z → X ′ of the singularities of X ′. Write Xk =

∑

riCi, and let Di := Ci ×k kF ,
so that X ′

kF
=

∑

riDi. Denote by D∗
i ⊂ ZkF

the strict transform of Di ⊂ XkF
in

Z. Note that if P ∈ D∗
i ∩ D∗

j , then the intersection number of D∗
i and D∗

j at P
is equal to the intersection number of Ci and Cj at the image of P . The equality
(ZkF

·D∗
i ) = 0 = (Xk ·Ci) shows that |D∗

i ·D∗
i | ≥ |Ci ·Ci|. Let KZ and K denote the

canonical divisors of Z and X . It follows from the adjunction formula for Ci and for
D∗

i that 0 ≤ Ci · K ≤ D∗
i · KZ . If X ′ is not regular, write ZkF

=
∑

riD
∗
i +

∑

siEi.
Using the formula

2g − 2 = ZkF
· KZ = Xk · K

and the last inequality above, we find that |D∗
i ·D∗

i | = |Ci · Ci| and si = 0 for all i.
Hence, X ′ is regular.

It follows from this lemma that X ′ is semistable if and only if X is semistable.
Proposition 2.9 follows. Slighlty more can be said for elliptic curves.

Proposition 2.12. Let X/K be an elliptic curve. Then 2.8 is true for Xmin when
p = 3 (and, hence, also for X nc), and is true for X nc when p = 2 and j(X) ∈ O∗

K .

Proof: We first note that every elliptic curve X/K when p = 3 has a minimal
Weierstrass model of the form y2 = x3 +a2x

2 +a4x+a6 (see [Sz], 3.9). It is also well
known that 3 | [L : K] if and only if the splitting field F/K of the extension given
by the polynomial f(x) = x3 + a2x

2 + a4x + a6 has degree divisible by 3, since the
points of order 2 are defined over an extension of L of degree a power of 2 ([Gro],
IX, 4.7). Assume that kL 6= k. Then f(x) is irreducible and no points of order
2 are defined over K. Thus the reduction cannot be of types III, III∗, I0, and
I∗
n. Consider the remaining cases listed in the algorithm. In each case, the Newton

polygon is a straight segment. When v(a6) = 1, 2, 4, or 5, we have reductions II,
IV , IV ∗, and II∗, respectively. In these cases, since 3 - v(a6) and this polygon is
a single segment (no intermediate vertices allowed), then the associated extension
is Eisenstein and kL = k. The remaining two cases are when v(a6) = 0 or 3 and
a6π

−v(a6) is not a cube in k. These cases give the reductions Z1 and Z2, respectively,
and in these two cases, [kXmin : k] = 3.
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When p = 2 and j(X) ∈ O∗
K , then XL/L has good reduction, and the reduction

of XL is an elliptic curve with non-zero j-invariant. Hence, the automorphism group
of the reduction is cyclic of order 2 and, thus, [L : K] = 2. That 2.8 is true for X nc

in this case follows immediately from 2.9 and 2.10.

Example 2.13 We exhibit below an example of an elliptic curve X/K with Xmin
k

irreducible, geometrically reduced, and kXmin = k, but such that kL 6= k. Thus this
example shows that 2.8 is false in general for X = Xmin.

Assume that π = 2, and a ∈ O∗
K , a 6∈ (k∗)2. Let X/K be the elliptic curve given

by y2 = x3 + ax2 + π. Then this equation defines Xmin, with a reduction of type
K1. The special fiber Xmin

k has a singularity at the maximal ideal (π, x, y), which is
k-rational. So kXmin = k.

Let F/K be any finite extension. It follows from the algorithm in [Sz2], 5.3, that
any elliptic curve of the form y2 = x3 + ax2 + bπs

F , with a, b ∈ O∗
F , a 6∈ (k∗

F )2, and
s ≥ 1, has reduction of type Kn or K ′

n. Consider now the curve X/K. It follows
that XF /F does not have semistable reduction over any extension F/K such that
kF = k, since when kF = k, then πK = bπs

F for some unit b in OF , s ≥ 1, and
a 6∈ (k∗

F )2. Thus, kL 6= k.
Note that the morphism X nc → Xmin consists of a single blow-up, and X nc

k is the
union of two smooth rational lines over k meeting in a point P with [k(P ) : k] = 2.
Hence, we find that kXnc 6= k, so this example cannot be used to show that 2.8 is
false when X = X nc.

Remark 2.14 We discussed in this section possible relationships between the fields
kXmin and kL associated with X/K. Recall that the extension L/K is related to the
fields of definition of the points of order ` 6= p in Jac(X)/K. It is natural to wonder
whether the components of X nc

k that are not geometrically reduced are linked to the
extension kF/k, where F/K is minimal with the property that all torsion points in
Jac(X)/K of order p are defined over F . As the following example shows, there
seems to be no obvious relationship between these objects.

Let p = 2 and let us return to the example introduced in 2.5. Assume that π = 2,
and let r ≥ 8, b ∈ O∗

K , b 6∈ (k∗)2. Then the curve y2 = x3 + πx2 + bπr has reduction
similar to the curve introduced in 2.5, but with r − 2 components of multiplicity 2,
instead of 7 as in 2.5 (i). (To see this fact, use [Sz], 3.8.) In particular, the minimal
model has a component that is not geometrically reduced. Moreover, ΦK has order
2 and Grothendieck’s pairing is trivial (2.6). Consider now the extension F , given in
our case as the splitting field of x3+πx2+bπr. The discriminant of such a polynomial
is given by the formula δ := −4π3(bπr)− 27(bπr)2 = −πr+5b(1 + 27bπr−5). We have

kF = k if and only if the extension K(
√

δ)/K has a trivial residue field extension.
The expression 1 + 27bπr−5 is always a square in K if r ≥ 8. Thus, kF = k if and
only if r is even. In particular, when r ≥ 8 is even, X nc contains a component that
is not geometrically reduced, but kF = k.

3. Grothendieck’s pairing under base change

The pairing 〈 , 〉K behaves very nicely under extensions of the ground field.
Let F/K be any finite extension. Denote by ΦA,F the group of components of
the Néron model of AF /F . Let eF/K denote the ramification index of F/K, with
eF/K [kF : k] = [F : K]. Let γ : ΦA,K → ΦA,F and γ′ : ΦA′,K → ΦA′,F denote the
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natural maps induced by the base change map from A×OK
OF to the Néron model

of AF /F , and from A′ ×OK
OF to the Néron model of A′

F /F , respectively. The
following key formula can be infered from [Gro], VIII, (7.3.5.2) and (7.3.1.2). Let
x ∈ ΦA,K and y ∈ ΦA′,K . Then

〈γ(x), γ′(y)〉F = eF/K〈x, y〉K.(2)

Our next theorem, as well as several new examples given below where Grothendieck’s
pairing is not perfect, are immediate consequences of this formula.

Grothendieck’s pairing is known to be perfect when the residue field is perfect
and K is of mixed characteristic [Beg], when the residue field is finite [McC], or
when the residue field is perfect and A has potentially purely toric reduction [Bos].
The case of jacobians is discussed in [B-L]. Grothendieck gave some indications on
how to prove the perfectness of the pairing in certain cases, namely on the `-part
of ΦA,K × ΦA′,K with ` prime to p, as well as in the semi-stable reduction case, see
[Gro], IX, 11.3 and 11.4, and [Ber], [Wer], for full proofs. Grothendieck’s pairing is
likely to be always perfect when the residue field is perfect.

Theorem 3.1. Let A/K be an abelian variety. Assume that Grothendieck’s pairing
〈 , 〉K is perfect. Then, for any finite extension F/K, the kernel ΨK,F of the map
γ : ΦA,K → ΦA,F is killed by eF/K.

Proof: Let x ∈ ΨK,F and y ∈ ΦA′,K . Then

〈eF/Kx, y〉K = eF/K〈x, y〉K = 〈γ(x), γ′(y)〉F = 0.

Since 〈 , 〉K is perfect, eF/Kx = 0.

McCallum’s Theorem states that ΨK,F is killed by [F : K], even when 〈 , 〉K is
not perfect (see [ELL]). We show in 3.5 that the conclusion of Theorem 3.1 does
not hold when 〈 , 〉K is not assumed to be perfect. It would be interesting to know
whether the converse of 3.1 holds in general.

Another application of Formula (2) above is the following proposition. Let A/K
be an abelian variety of dimension g. Let aK , tK , uK , denote respectively the abelian,
toric, and unipotent ranks of the connected component of zero of the special fiber
A0

k/k of the Néron model of A/K. Let F/K denote a totally ramified extension of
degree `. Let aF , tF and uF be the corresponding integers for the Néron model of
AF /F . Recall that if ` is a prime, ` 6= p, and tK = 0, then ord`(ΦA,K)(`− 1) ≤ 2uK

([Lo2], 2.15). Let H` denote the `-part of any finite abelian group H .

Proposition 3.2. Let ` 6= p be prime and k be algebraically closed. Assume that
A/K has a polarization of degree prime to `, and has potentially good reduction.
Assume also that ΦA,K,` is isomorphic to (Z/`Z)s with (s + 1)(`− 1) > 2uK. Then
2aF ≥ 2aK + s(`− 1), and if a prime q divides [L : K], then q ≤ `.

In particular, if s(`− 1) = 2uK, then L = F and, thus, L/K is tame and ΦA,K =
(Z/`Z)s.

Proof: Since ` 6= p, we know that the `-part of Grothendieck’s pairing on groups of
components is perfect. We have ΦA,K/ΨK,F ↪→ ΦA,F by definition. Using (2), we find
that 〈 , 〉F is trivial when restricted to the image of (ΦA,K/ΨK,F )` × (ΦA,K/ΨK,F )`.
We are going to show that ΦA,K,` = ΨK,F,`. Assume that (ΦA,K/ΨK,F )` 6= (0). Then,
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since 〈 , 〉F is perfect, we find that the `-part of ΦA,F is not equal to (ΦA,K/ΨK,F )`.
Then, since tF = 0,

2g − 2aF = 2uF

≥ ord`(ΦA,F )(`− 1)
≥ (`− 1) + [ord`(ΦA,K)− ord`(ΨK,F )](`− 1),

where the first inequality follows from [Lo2], 2.15. The hypothesis that A/K has a
polarization of degree prime to ` is needed to be able to apply [Lo2], 3.1, (5) and
(10), to obtain the bound:

(`− 1)ord`(ΨK,F ) ≤ 2aF − 2aK .

This bound is likely to hold without this hypothesis. It follows that

2uK = 2g − 2aF + 2aF − 2aK

≥ 2g − 2aF + (`− 1)ord`(ΨK,F )
≥ (s + 1)(`− 1),

contradicting our hypothesis. Thus, ΦA,K,` = ΨK,F,`. Then

s(`− 1) = ord`(ΨK,F )(`− 1) ≤ 2aF − 2aK ,

as desired. The claim on the degree of L/K follow immediately from [Lo1], 3.1.
When s(` − 1) = 2uK , we find that g = aF , so A/K achieves good reduction over
F . Since [L : K] kills ΦA,K [ELL], we find that ΦA,K = (Z/`Z)s. .

Remark 3.3 When ` = 2, 3.2 applies when ΦA,K,2 = (Z/2Z)2uK , in which case all
points of order 2 on A are defined over K. Then the fact that [L : K] = 2 is true
without the assumption of potential good reduction ([S-Z], 7.2).

When ` = 3, 3.2 applies when ΦA,K,3 = (Z/3Z)uK , and the fact that [L : K] = 3
follows under a different hypothesis from [S-Z], 7.5 with 7.1.

Example 3.4 McCallum asked whether the group ΨK,F is killed by the exponent
of Gal(F/K). The reader will find in [ELL] a long example showing that the answer
to this question is negative. This example is such that Gal(F/K) is an elementary
abelian p-group. In the examples provided below, the p-part of Gal(F/K) can be
arbitrarily specified. These examples seem to indicate that there is no obvious
relationship between the exponent of ΨK,F and the exponent of Gal(F/K).

Assume that k is algebraically closed. Let F/K be any Galois extension. Let
Gm/K denote the multiplicative group. Let RF/KGm,F denote the Weil restriction
of Gm/F . The universal property of the Weil restriction implies the existence of
a canonical closed immersion Gm,K → RF/KGm,F . Let S/K be the quotient torus
RF/KGm,F /Gm,K . Corollary 4.3 in [L-L] states that the group of components ΦS,K

of the Néron model of S/K is cyclic of order [F : K]. Let Λ/K be a lattice in S/K,
in the sense of [B-X], 1.1. Then S/Λ is an abelian variety A/K, with rigid analytic
uniformization Λ → S → A ([B-X], 1.2). To show the existence of a desired lattice
Λ in S, we may proceed as follows. We first pick a lattice Λ0 in Gm/K so that
the quotient Gm/Λ0 is an elliptic curve. Then we may consider the Weil restriction
RF/KΛ0 in RF/KGm,F . Finally, we choose as Λ the natural quotient RF/KΛ0/Λ0.

Proposition 5.3 in [B-X] shows that the natural map ΦS,K → ΦA,K is injective.
The proof of 1.7 in [L-L] shows that the image of ΦS,K is a subgroup of the group
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ΨK,F . Thus, when the p-part of the Galois group of F/K is not cyclic, we find that
the exponent of Gal(F/K) does not kill ΨK,F .

Example 3.5 The example below will show that when 〈 , 〉K is not perfect, the
conclusion of Theorem 3.1 does not hold in general. This example is also a new
example of an abelian variety with 〈 , 〉K not perfect.

Let p = 2. Consider an abelian variety A/K of dimension g which has good
ordinary reduction over OK (i.e., Ak is an ordinary abelian variety). Assume in
addition that every point of order 2 in Ak(k) lifts to a point of order 2 in A(K).
Pick a Galois extension L/K of degree 2 with associated residue field extension
kL/k. Consider the twist B/K of A/K obtained from the natural map Gal(L/K)→
{±id} ⊂ Aut(A/K). The abelian variety B/K has purely additive reduction K.
Indeed, A×B is isogenous over K to the Weil restriction RL/K(AL) ([Mil], Prop.7),
and this Weil restriction has abelian rank over K equal to the abelian rank of A/K
since the kernel of the norm map RL/K(AL)→ A has unipotent reduction (see, e.g.,
[ELL], proof of Thm. 1).

Since the points of order 2 of A(K) are invariant under the action of Gal(L/K),
we find that B[2](K) contains a subgroup C of order 2g. Indeed, consider an iso-
morphism ρ : BL → AL defined over L. Then the map c : G→ Aut(A/K) given by
cσ := ρσ ◦ρ−1 is the cocycle giving the twist B/K. If P is a point of order 2 in A(K),
then ρ−1(P ) has order 2 in B(K). To show that ρ−1(P ) belongs to B(K), we note
that since P is a fixed point of the inverse map, we must have cσ(P ) = P for all σ.
Thus, ρ−1(P ) = (ρ−1(P ))σ for all σ, and ρ−1(P ) ∈ B(K). We claim that the natural
reduction map red : B(K)→ ΦB,K is not trivial when restricted to C, which implies
that ΦB,K 6= (0). Indeed, let B0

k denote the connected component of the special
fiber of the Néron model of B/K over OK . The group scheme B0

k is unipotent. If
red(C) ⊆ B0

k, we find that the image of C under the reduction map B(L)→ BL,kL
,

where BL/OL is the Néron model of BL/L, is trivial, contradicting the hypothesis
that the points of C reduce to the points of order 2 in BL,kL

= Ak ×k kL. Thus,
ΦB,K 6= (0).

Now choose L/K such that eL/K = 1. By construction, the map ΦB,K → ΦB,L =
(0) is not injective. Hence, Ker(ΦB,K → ΦB,L) is not killed by eL/K . Thus, 〈 , 〉K is
not perfect.

Remark 3.6 In the above example, the group of components of the abelian variety
RL/K(AL) is isomorphic to the group ΦAL,L and, thus, is trivial. In particular,
Grothendieck’s pairing for RL/K(AL) is perfect. On the other hand, Grothendieck’s
pairing for A × B is not perfect, as the example above shows, even though A × B
and RL/K(AL) are isogenous.

Our last example is an example where 〈 , 〉K is perfect while 〈 , 〉F is not perfect,
even though the natural map ΦA,K → ΦA,F is an isomorphism. We start with
a couple of preliminary lemmata. Let K be a field of mixed characteristic, with
vK(p) = ps, s ≥ 0. Let X/K denote the plane projective curve

ypz = xp+1 + axpz + bπpr

zp+1,(3)

such that r > 0, a, b ∈ O∗
K , and with a /∈ (k∗)p and b ∈ (k∗)p. This curve is smooth

of genus p(p−1)/2 with a rational point at infinity. We describe below the minimal
regular model X /OK of X/K in terms of r, s. It turns out that this model can be
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obtained by a sequence of blow-ups

X0 ← X1 ← · · · ← Xn−1 ← X = Xn,

where X0 is the closure of X in P2
OK

, and Xi+1 is obtained by blowing up a single
point in the exceptional divisor of the map Xi → Xi−1.

Let us denote by Km the following reduction type (the meaning of the segments
is as in 2.3). The integer m represents the number of dotted segments, each repre-
senting a smooth rational line over the extension k[ p

√
a]. The first m+2 components

on the left intersect with multiplicity p. The last p − 1 components on the right
intersect with multiplicity 1.

1 1 11 1
p−1

p−2 1
2

Lemma 3.7. Let X/K be given by the equation yp = xp+1 + axp + bπpr

as in (3).
Then the reduction is of type Km with m = pr−1 + (ps − 1)/(p− 1).

Sketch of Proof: The computation of the reduction of X/K is not difficult, and
we shall only illustrate it on one example, when r = 1 and s = 1. We start with

yp = xp+1 + axp + bπp.

We blow up (π, x, y), and look in the chart
(y

π

)p

= π
(x

π

)p+1

+ a
(x

π

)p

+ b.

Since b ∈ (k∗)p, we may change coordinates (u := x/π, v := y/π − c with cp = b) to
obtain a new equation

vp + pvp−1c + · · ·+ pvcp−1 = πup+1 + aup.

The singular point is (π, u, v). Using our hypothesis that p = απp with α ∈ O∗
K , we

blow up this point and look in the chart

(v

π

)p

+ · · ·+ απ
( v

π

)

cp−1 = π2
(u

π

)p+1

+ a
(u

π

)p

.

The new special fiber is the curve V p = aUp, which is not geometrically reduced.
We blow up

V p + · · ·+ απV cp−1 = π2Up+1 + aUp

at (π, U, V ) and look in the chart

(∗)
(

V

U

)p

Up−2 + · · ·+ α
π

U

V

U
cp−1 =

( π

U

)2

Up+1 + aUp−2.

The exceptional divisor is U = 0. When p = 2, the model is regular, with exceptional
divisor a smooth conic. When p > 2, the exceptional divisor consists of two affine
lines π

U
= 0 and V

U
= 0. Let us look at the ring

A = OK

[

U,
π

U
,
V

U

]

/
( π

U
U − π

)

.

The line π
U

= 0 in the exceptional divisor is given by the ideal P := ( π
U
, U), while

V
U

= 0 is given by P′ := (V
U
, U).
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In AP, PAP is principal, generated by U . The equation (∗) shows that
(

π
U

)

=

(βAP)p−2. It follows that, since π = π
U
·U , the multiplicity of the component

(

U, π
U

)

in the special fiber of Xk is p− 1. Similarly, the multiplicity of
(

U, V
U

)

is 1.
The blow-up of the singular point of the chart (∗) produces again an exceptional

divisor with two components, one of multiplicity p− 2 and the other of multiplicity
2. The process terminates in the type K2, as desired. This concludes the sketch of
the proof of Lemma 3.7.

Lemma 3.8. Let X/K be given by the equation yp = xp+1 + axp + bπpr

as in (3),
with A = Jac(X). Then ΦA,K = Z/pZ. Let P ∈ X(K) be a rational point reducing
in Xk on the first component of Km of multiplicity 1. Let Q ∈ X(K) be a rational
point reducing in Xk on the last component of Km of multiplicity 1. Then P −Q in
Jac(X)(K) reduces to a generator τ in ΦA,K .

Sketch of Proof: The computation of |ΦK | when the reduction is Km is best done
as follows. First the intersection matrix associated with the graph Km defines as in
[B-L], section 2, a group Φ(Km). As noted at the end of [B-L], section 2, we have
an exact sequence

0→ ΦK → Φ(Km)→ (Z/pZ)m → 0

The order of |Φ(Km)| can be computed easily using the formula in [BLR], 9.6/7.
We find that |Φ(Km)| = pm+1. Thus ΦK

∼= Z/pZ.
To prove that τ is a generator, consider the intersection matrix M associated with

Km (numbering the components from left to right) as well as the vectors S and T
below satisfying the relation MS = pT (all other entries in the matrix M on the
left are assumed to be 0):



































−p p
p −2p p

. . .
. . .

. . .
p −2p p

p −p2 p
p −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2





































































−m
−m + 1

...
−1
0
1
2
...

p− 2
p− 1



































= p





































1
0
...
...

...

...
0
−1





































Using the description of ΦK given by Raynaud (see, e.g., [BLR], chap. 9, or [B-L],
section 2), we conclude that τ has order p in ΦK if and only if there does not exist
an integer vector S ′ such that MS ′ = T . That MS ′ 6= T for any integer vector S ′ is
obvious since all coefficients of the first line of M are divisible by p. This concludes
the proof of the lemma. Let us now state the following example.

Proposition 3.9. Let A/K denote the jacobian of X/K, given by the equation
yp = xp+1+axp+bπpr

as in (3). Let F/K be any extension with p = eF/K = [F : K].
Let ΦK and ΦF denote the groups of components of the Néron models of A/K and
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AF /F , respectively. Then ΦK
∼= Z/pZ ∼= ΦF and the natural map ΦK → ΦF is

bijective. It follows that 〈 , 〉F is not a perfect pairing.

Proof: Let us show that the natural map ΦK → ΦF is an isomorphism when
[F : K] = p = eF/K . Lemma 3.7 shows that the reduction of X/K is of type Km,
with m = pr−1 + (ps − 1)/(p − 1). We find, using 3.7 again, that the reduction of
XF /F is Km′ with m′ = pr + (ps+1− 1)/(p− 1). Indeed, in F , with uniformizer πF ,
we have πK = cπp

F for some c ∈ O∗
F . Hence, the equation of XF/F is

yp = xp+1 + axp + bcpr

πpr+1

F ,

and bcpr ∈ (k∗)p since b ∈ (k∗)p. We conclude from 3.8 that ΦK
∼= Z/pZ ∼= ΦF . Let

X /OK denote the model of X/K of type Km and let X ′/OF denote the model of
XF /F of type Km′ . Let P ∈ X(K) be a rational point reducing in Xk on the first
component of Km of multiplicity 1. Let Q ∈ X(K) be a rational point reducing in
Xk on the last component of Km of multiplicity 1. It is easy to check that P and
Q still reduce to the first (resp. the last) component of multiplicity 1 of X ′. Since
P, Q ∈ X(F ) are still such that P −Q reduces to a generator of ΦF (3.8 applied to
ΦF ), we conclude that ΦK → ΦF is an isomorphism.

To show that 〈 , 〉F is trivial, we use formula (2). Let x, y ∈ ΦF . Let x′, y′ be
preimages of x, y under ΦK → ΦF . Then, since 〈x′, y′〉K has order at most p = eF/K

in Q/Z, we find that 〈x, y〉F = eF/K〈x′, y′〉K = 0.

Example 3.10 We show below that it is possible for the pairing 〈 , 〉K to be perfect
with ΦK 6= (0), while after an extension F/K with eF/K = [F : K], the pairing 〈 , 〉F
is not perfect, even though the map ΦA,K → ΦA,F is an isomorphism.

Let us consider the same curve X/K as in 3.9, with r = 1. We showed in 3.9
using elementary means that 〈 , 〉F is not perfect for any extension F/K with
[F : K] = p = eF/K . It does not seem possible to prove by elementary means only
that 〈 , 〉K is perfect. Thus, we will use the results of [B-L], where 〈 , 〉K is computed
explicitly for jacobians. We proceed as follows. Pick the points P and Q on X(K)
as in 3.8 to get a generator τ of ΦK .

Lemma 3.11. Assume that X/K has reduction Km. Then 〈τ, τ〉K = −m+1
p

in Q/Z.

Proof: Let us consider the intersection matrix M associated with Km, as well as
the two vectors S, T with the relation MS = pT . The main result of [B-L] shows
that

〈τ, τ〉K = (tS/p)M(S/p) mod Z

=
−m

p
− p− 1

p

=
−m + 1

p
.

It follows in particular that when p - m− 1, 〈 , 〉K is perfect.
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Thus, returning to the example of the curve yp = xp+1 + axp + πp (so r = 1), we
find that the reduction is of type Km with m = 1 + (ps − 1)/(p− 1). Hence,

〈τ, τ〉K =
−1− (ps−1 + ps−2 + · · ·+ p + 1) + 1

p
mod Z

=
−1

p
,

so 〈 , 〉K is perfect. We note that when r > 1, the reduction is of type Km with
m = pr−1 + ps−1

p−1
, and in this case 3.11 shows that 〈τ, τ〉K = 0, as we found already

in 3.9.
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[McC] W. McCallum, Duality Theorems for Néron models, Duke Math. J. 53 (1986), 1093-1124.



REDUCTION IN THE CASE OF IMPERFECT RESIDUE FIELDS 25

[Mil] J. Milne, On the arithmetic of abelian varieties, Inv. Math. 17 (1972), 177-190.
[Pin] H. Pinkham, Singularités rationelles de surfaces, in Séminaire sur les singularités des
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