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Abstract

Let E be an elliptic curve defined over Q. Let Γ be a free subgroup of rank r
of E(Q). For any prime p of good reduction, let Γp be the reduction of Γ modulo
p and Ep be the reduction of E modulo p. We prove that if E has CM then for all
but o(x/ log x) of primes p ≤ x,

|Γp| ≥ p
r

r+2
+ε(p),

where ε(p) is any function of p such that ε(p) → 0 as p →∞. This is a consequence
of two other results. Denote by Np the cardinality of Ep(Fp), where Fp is a finite
field of p elements. Then for any δ > 0, the set of primes p for which Np has a
divisor in the range (pδ−ε(p), pδ+ε(p)) has density zero. Moreover, the set of primes
p for which |Γp| < p

r
r+2

−ε(p) has density zero.

Keywords: Reduction mod p of elliptic curves, Elliptic curves over finite fields, Brun-
Titchmarsh inequality, Large sieve in number fields.
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1 Introduction

Artin’s primitive root conjecture asserts that if a ∈ Z and a 6= ±1 or a square, then the
set of primes p for which a (mod p) is a primitive root has positive density.

∗Research of both authors is partially supported by NSERC.

1



More generally, we may consider an algebraic group G defined over Q and Γ a finitely
generated subgroup of G(Q). For all but a finite number of primes p, there is a natural
reduction map

Γ → Ḡ(Fp) (1)

where Ḡ denote the reduction of G mod p, and we may ask for the distribution of primes
p for which this map is surjective. Thus, in the classical Artin primitive root conjecture,
G = Gm and Γ is the subgroup generated by a.

Lang and Trotter [LT] considered the case where G is an elliptic curve E and Γ is a
free subgroup of the group of rational points E(Q). Significant results on this question
were obtained by Gupta and R. Murty [GM]. In particular, they showed assuming the
Generalized Riemann Hypothesis that if the rank of Γ is sufficiently large, then the set of
primes for which (1) is surjective has a density.

It is also of interest to consider lower bounds on the size of the image in (1). Let Γ be a
subgroup of Q∗ generated by r non-zero multiplicatively independent rationals a1, · · · , ar.
For all primes p not dividing the numerators and the denominators of a1, · · · , ar, we let
Γp be the reduction of Γ mod p. Erdös and R. Murty [EM] proved the following theorem
regarding the size of Γp as p varies.

Theorem 1.1 (Erdös and R. Murty) Let ε(x) be any function tending to zero as
x→∞. Then for all but o(x/ log x) primes p ≤ x,

|Γp| ≥ p
r

r+1
+ε(p).

In this paper we prove an elliptic analogue of this result. More precisely, Let E be an
elliptic curve defined over Q. For any prime p of good reduction, let Ep be the elliptic
curve over Fp obtained by reducing E modulo p. By the Mordell theorem we know that
E(Q) is finitely generated. Let Γ be a free subgroup of rank r of E(Q) and let Γp be the
reduction of Γ mod p. One can ask how the size of Γp grows as p → ∞. For arbitrary
r one can prove the following result which is implicit in the work of Matthews [M] and
Gupta and R. Murty [GM].

Proposition 1.2 Let E be an elliptic curve over Q and Γ be a free subgroup of rank r
of E(Q). Let ε(p) be a function of p such that increases monotonically to ∞ as p → ∞.
Then for all but o(x/ log x) of primes p ≤ x, we have

|Γp| ≥ p
r

r+2
−ε(p).

In this paper we improve the above bound for the case that E is a CM elliptic curve.
From now on let E have CM by the entire ring of integers of an imaginary quadratic field
K, and for a prime of good reduction let Np = #Ep(Fp).
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Theorem 1.3 Let E be a CM elliptic curve. Let Γ be a free subgroup of rank r of E(Q).
Let Γp be the reduction of Γ mod p. Let ε(p) be a function of p such that ε(p) → 0 as
p→∞. Then for all but o(x/ log x) of primes p ≤ x, we have

|Γp| ≥ p
r

r+2
+ε(p).

Next let
PΓ(θ) = {primes p such that |Γp| ≤ pθ}.

R. Murty, Rosen and Silverman proved that

δ̃(PΓ(θ)) ≤
(

1 +
2

r

)
θ,

where δ̃( ) denotes the upper logarithmic Dirichlet density of a set. We observe that this
result is non-trivial only if θ ≤ r

r+2
. The following is a direct consequence of Theorem 1.3.

Corollary 1.4 Let θ ≤ r
r+2

. Then under the assumptions of Theorem 1.3, PΓ(θ) has

density zero and so δ̃(PΓ(θ)) = 0.

To prove our results, several tools are necessary. Firstly, we need to establish a Brun-
Titchmarsh type inequality for Np and we do this in Section 2. Also, we need information
about the normal order of the number of divisors ofNp which discuss in Section 3. Another
important tool that we need is a version of the large sieve inequality for integers in an
imaginary quadratic field. All of these tools are used to prove a key technical theorem
(Theorem 4.1). This is stated in Section 4 along with a strategy to prove it. The proof
itself is given in Sections 5, 6, and 7. Finally, in Sections 8 and 9 the proofs of Proposition
1.2 and Theorem 1.4 are given.

We make some remarks regarding the analogue of Theorem 1.3 for elliptic curves
without complex multiplication. A key tool that we use is the Brun-Titchmarsh inequality
for Np. In the non-CM case, this has not yet been proved. Moreover, even assuming the
Generalized Riemann Hypothesis, the error term in the Chebotarev density theorem grows
too rapidly for an argument to work. Thus, at present, without additional hypothesis,
we are not able to prove the analogue of Theorem 1.3 in the non complex multiplication
case. However this difficulty can be overcome if we assume that Γ has sufficiently large
rank.
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2 Brun-Titchmarsh inequality for Np

From now on p denote a rational prime and l denote an integer that may or may not be
prime. Let (a, l) = 1 and define

π(x; l, a) =
∑
p≤x

l|p−a

1.

The classical Brun-Titchmarsh inequality in its sharpest known form (due to Montgomery
and Vaughan [MV]) states that

π(x; l, a) ≤ 2x

φ(l) log (x/l)

for 1 ≤ l < x. Here we are interested in an analogue of this inequality for divisors of Np

of an elliptic curve.
Let E be an elliptic curve defined over Q which has complex multiplication by the

entire ring of integers OK of an imaginary quadratic field K. We want to obtain an upper
bound for

πE(x; l) =
∑
p≤x
l|Np

′
1.

In the above sum ′ means that the sum is taken over primes p of good reduction and
moreover p 6= 2, 3.

To establish such a bound, we closely follow the arguments given in Lemma 14 of [C].
For simplicity, we first consider the case that l is prime, and then we study the general
case.

prime l
We break the sum into the following sums.

πE(x; l) =
∑
p≤x
l|Np

′
1 =

∑
p≤x,ss
l|Np

′
1 +

∑
p≤x,ord

l|Np

′
1 = (I) + (II).

Here ss stands for supersingular and ord stands for ordinary. Now we estimate each of
the above sums.

(I) In this case we have Np = p+1 for p ≥ 5, and so by the Brun-Titchmarsh inequality∑
p≤x,ss
l|Np

′
1 ≤ π(x; l,−1) ≤ 2x

φ(l) log (x/l)
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for l < x.
(II) To study the other sum, we need the following lemma which is a simple corollary

of Theorem 6 of [S].

Lemma 2.1 Let l be an integral ideal of an imaginary quadratic field K. For x ≥ 2, let

πK(x; l, 1) = #{ω ∈ OK ; N(ω) ≤ x, (ω) a prime ideal, ω ≡ 1 (mod l)}.

Then we have
πK(x; l, 1) �K

x

φ(l) log (x/N(l))

as long as N(l) ≤ x
log x

. Here N(ω) = ωω̄, φ(l) = |(OK/l)
∗| is the number of invertible

residue classes mod l, and N(l) is the norm of the ideal l in the extension K/Q. The
implied constant in the inequality depends only on K.

From the theory of complex multiplication we know that for an ordinary prime p there
is a unique choice of an element πp ∈ OK such that πp represents the p-power Frobenius
morphism, p = πpπ̄p, (πp) is a prime ideal of OK , and K = Q(πp). Moreover, in this case

Np = (πp − 1)(π̄p − 1)

and K has class number 1. (For more information regarding these facts see Chapter 5
and Appendix C of [Si].)

Now (l) can be an inert prime, a split prime or a ramified prime in K. We consider
each of these cases in turn.

(II-in) Since (l) is inert, so (l) is a prime in OK , and so

l | Np ⇐⇒ πp ≡ 1 (mod (l)).

Now from here and Lemma 2.1 we have∑
p≤x,ord
l|Np,in

′
1 ≤ πK(x; (l), 1) � x

(l2 − 1) log(x/l2)
,

for l ≤
(

x
log x

)1/2

.

(II-sp) In this case (l) = l1l2. So

l | Np ⇐⇒ πp ≡ 1 (mod l1) or πp ≡ 1 (mod l2).
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So from here and Lemma 2.1 we have∑
p≤x,ord
l|Np,sp

′
1 ≤ πK(x; l1, 1) + πK(x; l2, 1) � x

φ(l) log(x/l)
,

for l ≤ x
log x

.

(II-ram) In this case (l) = l2. So

l | Np ⇐⇒ πp ≡ 1 (mod l).

So from here and Lemma 2.1 we have∑
p≤x,ord
l|Np,ram

′
1 ≤ πK(x; l, 1) � x

φ(l) log(x/l)
,

for l ≤ x
log x

.
Putting everything together, for l prime, we have

πE(x; l) �K
x

φ(l) log (x/l2)
,

for l ≤
(

x
log x

)1/2

.

General l
Now we drop the restriction that l is prime. The analysis of the first sum (I) is

the same, so we assume that p is ordinary. We first decompose l as l = lin lsp lram =

(
∏

i p
αi
i )(
∏

j q
βj

j )(
∏

k r
γk

k ), where (pi)’s are inert, (qj)’s are split and (rk)’s are ramified in
K. We have

l|Np ⇐⇒ pαi
i |Np, q

βj

j |Np, r
γk

k |Np, for all i, j, k.

Now note that
pαi

i |Np ⇒ πp ≡ 1 (mod (pi)
δi),

where

δi =

{ [
αi

2

]
+ 1 if αi is odd

αi

2
if αi is even

.

Next let ηj be the highest power of qj in the factorization of Np. Since K is a principal
ideal domain, there is a unique integer α in OK such that

e
Np

q
ηj−βj

j

= αᾱ,
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where α | πp − 1, ᾱ | π̄p − 1, and e is a unit of K. Since (qi) splits we have (qj) = qj1qj2.
Let µj1 be the highest power of qj1 in the prime factorization of (α) and µj2 the highest
power of qj2 in the prime factorization of (α). We have

q
βj

j |Np ⇒ πp ≡ 1 (mod q
µj1

j1 q
µj2

j2 ),

where
µj1 + µj2 = βj.

Finally
rγk

k |Np ⇒ πp ≡ 1 (mod rγk

k ),

where (rk) = r2
k. Let J denote the set of indices j. For each function

f : J −→ Z

given by
f(j) = µj,1

where 0 ≤ µj,1 ≤ βj, set
µj,2 = βj − f(j)

and consider the ideal
af =

∏
i

(pi)
δi

∏
j

q
µj1

j1 q
µj2

j2

∏
k

rγk

k .

Note that the number of such maps f is∏
j

(βj + 1) = d(lsp).

It is clear that
l|Np ⇒ πp ≡ 1 (mod af ),

for some af . From here and Lemma 2.1, we have

∑
p≤x,ord

l|Np

′
1 ≤

∑
f

πK(x; af , 1)

�K

∏
j

∑
µj1+µj2=βj

1

φ(q
µj1

j )φ(q
µj2

j )∏
i(p

2δi
i − p2δi−2

i )
∏

k φ(rγk

k )

x

log

(
xQ

i p
2δi
i lsplram

) ,
for
∏

i p
2δi
i lsplram ≤ x

log x
. So we have the following proposition.
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Proposition 2.2 Let E be an elliptic curve over Q which has complex multiplication by
the ring of integers of an imaginary quadratic number field K. Let l = linlsplram. Then

πE(x; l) �K
2ω(lsp)d(lsp)

φ(l)

x

log (x/l2)
,

for l ≤
(

x
log x

)1/2

. Here, ω(lsp) is the number of distinct prime divisors of lsp, d(lsp) is the

number of divisors of lsp, and φ(l) is the Euler function.

Proposition 2.3 Under the conditions of the Proposition 2.2 we have

πE(x; l) �K
d(lsp)

l
x,

where the implied constant depends only on K.

Proof Following the arguments before Proposition 2.2, we have

πE(x; l) ≤ π(x; l,−1) +
∑

f

π(x; af , 1).

Note that since K is an imaginary quadratic field of class number 1, we have

πK(x; a, 1) ≤ #{ω ∈ OK ; N(ω) ≤ x, ω ≡ 1 (mod a)}
≤ #{γ ∈ OK ; N(γ) � x

N(a)
}

�K
x

N(a)
.

Therefore

πE(x; l) �K
x

l
+

d(lsp)x∏
i p

2δi
i lsplram

�K
d(lsp)

l
x.

3 Normal order of ω(Np)

In [C] and [L], Cojocaru and Liu independently proved that for a CM elliptic curve over
Q, the normal order of ω(Np) is log log p, where ω(n) denotes the number of distinct prime
divisors of n. This means that given ε > 0,

#{p ≤ x, |ω(Np)− log log p| > ε log log p} = o(π(x)),
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where π(x) denotes the number of primes not exceeding x. Cojocaru and Liu’s result is
a consequence of the following theorem.

Theorem 3.1 (Cojocaru and Liu) For y < x
1
6 , we have∑

l≤y
l prime

πE(x; l) = π(x) log log y +O(π(x)),

and for y < x
1
12 we have∑

l1,l2≤y
l1 6=l2 prime

πE(x; l1l2) = π(x)(log log y)2 +O(π(x) log log y).

Proof See the proof of Theorem 1 in [L] or the proof of Theorem 5 in [C]. �

To explain our next statement we need to introduce some notations. Let ε(x) be a
function such ε(x) → 0 as x → ∞. For simplicity we write ε(x) as ε. We call a number
a C if it is only composed of primes in the interval (xε, xδ], where 0 < δ < 1 is a fixed
number. We denote by C(Np) the largest C that divides Np. We claim that the normal
order of C(Np) is ξ(p), where ξ = log (1/ε). More precisely we have

Proposition 3.2
∑
p≤x

′
(ω(C(Np))− ξ)2 = O(π(x)ξ). Here ′ means that the sum is taken

over primes of good reduction.

Proof We have ∑
p≤x

′
(ω(C(Np))− ξ)2

=
∑
p≤x

′
ω2(C(Np))− 2ξ

∑
p≤x

′
ω(C(Np)) + π(x)ξ2. (2)

If δ < 1
6
, we get from Theorem 3.1 that∑

p≤x

′
ω(C(Np)) =

∑
p≤x

′ ∑
l|Np

xε<l≤xδ

1

=
∑

xε<l≤xδ

πE(x; l)

= π(x)ξ +O(π(x)). (3)
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If δ ≥ 1
6
, the same result is again true, since∑

p≤x

′ ∑
l|Np

xε<l≤xδ

1 =
∑
p≤x

′ ∑
l|Np

xε<l≤x
1
7

1 +O(π(x)).

Another application of Theorem 3.1 yields∑
p≤x

′
ω2(C(Np)) = π(x)ξ2 +O(π(x)ξ). (4)

Now applying (3) and (4) in (2) imply the result. �

The following is a direct corollary of the previous theorem.

Corollary 3.3 #{p ≤ x; ω(C(Np)) >
4
3
ξ} � π(x)

ξ
.

Remark. We remark that arguments similar to the above were used in [MM].

4 The Key Technical Theorem

Our improvement upon Proposition 1.2 is a corollary of the following theorem regarding
the divisors of Np in a short interval.

Theorem 4.1 Let E be a CM elliptic curve. Let 0 < δ < 1 and let ε1(x) and ε2(x) be
such that

lim
x→∞

ε1(x) = lim
x→∞

ε2(x) = 0.

Let

H(x, xδ−ε1(x), xδ+ε2(x)) = #{p ≤ x; ∃u | Np such that xδ−ε1(x) < u < xδ+ε2(x)}.

Then we have

H(x, xδ−ε1(x), xδ+ε2(x)) = o

(
x

log x

)
as x→∞.
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Remark. Note that this is false for δ = 0. For example, if t = |E(Q)tors| > 1 then Np

has a divisor that is O(1), namely t itself.

We will prove Theorem 4.1 in the case ε1(x) = ε(x) and ε2(x) = 0. The proof for the
remaining case ε1(x) = 0 and ε2(x) = ε(x) is exactly similar. For simplicity we write ε(x)
as ε. Also without loss of generality we assume that xε → ∞, since otherwise we can
replace ε with a bigger function ε′ such that ε′ → 0 and xε′ → ∞ as x → ∞. Then the
theorem for ε follows from the theorem for ε′.

The strategy of our proof is inspired by a proof of a theorem of Erdös [E], regarding
the set of multiples of a special sequence, given in [HR], Chapter V, Theorem 16. To
prove the theorem we need to introduce some notations. Let

ξ = log

(
1

ε

)
, I = [1, xε], and J = (xε, xδ].

We use the letter A for an integer that is entirely composed of primes in I and denote
the greatest A that divides Np by A(Np) .

Recall that the letter C represents an integer that is entirely composed of primes in
the interval J and the greatest C that divides Np is denoted by C(Np).

We denote by B those square-free C’s that are in the interval (xδ−(ε+εξ), xδ].
Finally we call a square-free C a C∗ if it satisfies the following two conditions:
(i) ω(C∗) ≤ 4

3
ξ.

(ii) C∗ has a representation in the form C∗ = BC.
The proof of Theorem 4.1 proceeds as follows.
Let

D = {p ≤ x; ∃d | Np such that xδ−ε < d ≤ xδ}.

Let A(n) (respectively C(n)) be the largest A (respectively C) that divides n. We consider
the following four subsets of D.

D1 = {p ∈ D; C(Np) is divisible by the square of a prime},

D2 = {p ∈ D; ω(C(Np)) >
4

3
ξ},

D3 = {p ∈ D; A(d) > xεξ},
D4 = {p ∈ D; C(Np) is a C∗}.

We observe that
D = D1 ∪ D2 ∪ D3 ∪ D4.
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We claim that the density of each of these 4 sets in the set of primes is zero, which proves
the theorem. Corollary 3.3 shows this assertion for D2. In the next section we prove the
claim for D1 and D4. Finally in section 6 we prove the claim for D3.

Note. If p is supersingular then Np = p+ 1 for p ≥ 5, thus the estimations for supersin-
gular primes in D1, D2, D3, and D4 are exactly similar to the p− 1 estimates of [EM]. So
without loss of generality, in the next section, we do our computations only for ordinary
primes. Also note that δ is a fixed constant, however ε and ξ are functions of x.

5 Lemmas on C’s, B’s, and A’s

Lemma 5.1 The number of primes p ≤ x such that C(Np) is divisible by the square of a
prime (> xε) is bounded by

π(x)

xε
+ x

4
5 .

Proof The number in question is bounded by∑
l>xε

l prime

πE(x; l2).

Using Propositions 2.2 and 2.3, one can deduce that∑
l>xε

l prime

πE(x; l2) =
∑

xε<l<x
1
5

l prime

πE(x; l2) +
∑
l≥x

1
5

l prime

πE(x; l2) � π(x)

xε
+ x

4
5 .

�

In the sequel we need to apply a version of the large sieve in an imaginary quadratic
field K. Let

A = {τ ∈ OK ; N(τ) ≤ u}.

Let P be a set of prime ideals p ∈ P in OK with the ideal norm N(p) ≤ z. Let Λ(p) be a
map which associates to any p a subset Λ(p) of O/p. Let λ(p) = |Λ(p)|. We set

S(A,P) = {τ ∈ OK ; N(τ) ≤ u and τ(mod p) 6∈ Λ(p) for all p ∈ P}.
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Lemma 5.2 We have

|S(A,P)| � u+ z2

L(z)

with an absolute implied constant where

L(z) =
∑

N(d)≤z

µ2(d)
∏
p|d

λ(p)

N(p)− λ(p)
.

Here µ(d) is the analogue of the classical Möbius function.

Proof See [H] and Corollary 5.18 of [K]. �

We also need the following lemma in the proof of Propositions 5.4 and 5.5.

Lemma 5.3 Let P be the set of prime ideals in OK with norm less than or equal to z.
Let P1 be a subset of P and P2 be the complement of P1 in P. Let P1 (respectively P2)
be the product of the elements of P1 (respectively P2). Set

λ(p) =

{
1 if p | P1,
2 if p | P2.

Then

L(z) =
∑

N(d)≤z

µ2(d)
∏
p|d

λ(p)

N(p)− λ(p)
�
∏
p|P1

(
1− 1

N(p)

)
(log z)2,

where the implied constant depends only on K.

Proof We have

L(z) =
∑

N(d)≤z

µ2(d)λ(d)

N(d)

∏
p|d

(
1− λ(p)

N(p)

)−1

=
∑

N(d)≤z

µ2(d)λ(d)

N(d)

∏
p|d

(
1 +

λ(p)

N(p)
+
λ2(p)

N(p)
+ · · ·

)
=

∑
N(s(m))≤z

λ(m)

N(m)

≥
∑

N(m)≤z

λ(m)

N(m)
,
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where s(m) denotes the square-free part of the ideal m and λ(m) is the completely multi-
plicative function defined by λ(p). Let m2 be the largest divisor of m whose prime divisors
composed entirely of primes of P2. Then we have∑

N(m)≤z

λ(m)

N(m)
≥

∑
N(m)≤z

d(m2)

N(m)

=
∑

N(m)≤z

1

N(m)

∑
e|m,(e,P1)=1

1

≥
∑

N(m)≤z

1

N(m)

∑
e|m,(e,P1)=1

N(e)≤
√

z

1

≥
∑

N(f)≤
√

z

∑
N(e)≤

√
z

(e,P1)=1

1

N(f)N(e)
.

Now the result follows since∑
N(e)≤

√
z

(e,P1)=1

1

N(e)
≥
∏
p|P1

(
1− 1

N(p)

) ∑
N(e)≤

√
z

1

N(e)
,

and ∑
N(a)≤Q

1

N(a)
= αK logQ+O(1),

where αK is the residue of Dedekind’s zeta function belonging to the field K (see Lemma
5 of [S] for details). �

Proposition 5.4 Consider a fixed number of type C that is square-free. Denote it by C.
Let

M(u;C) = #{t ≤ u; tC = Np for some ordinary p and ωJ(t) = 0},
where ωJ(t) is the number of distinct prime divisors of t which belong to J = (xε, xδ]. If
C is divisible by an inert prime, then M(u,C) = 0. Otherwise, we have

M(u;C) � ε2ω(C)
∏
p|C

(
1 +

1

p− 1

)
u log x

(log u)2
,

as long as 3 ≤ xε < uα ≤ xδ, where α = min{δ, 1
2
}. The implied constant depends only on

K and δ.
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Proof Since p is ordinary then Np = (πp − 1)(π̄p − 1). Moreover, K = Q(πp) is a
quadratic imaginary field of class number one and so OK is a unique factorization domain.
If M(u,C) 6= 0, then none of the prime divisors of C can be inert in OK as C is square-free
and (t, C) = 1. This shows that there is a γ ∈ OK such that C = N(γ). We note that
such γ is not unique, and up to units there are at most 2ω(C) possibilities for γ. On the
other hand since Np = N(πp − 1), we can conclude that there is a τ ∈ OK such that
t = N(τ). So if tC = Np, there are τ , and γ ∈ OK and a unit e such that eτγ + 1 = πp.
We have

M(u,C) ≤
∑

γ

∑
e∈O×K

|Se,γ|,

where Se,γ is

{τ ∈ OK ; N(τ) ≤ u, (eτγ + 1) = q, for some prime q, and ωJ(τ τ̄) = 0}.

Now by employing the large sieve we estimate the size of Se,γ.
Let A be elements of OK with norm ≤ u, and P be prime ideals of OK with norm

≤ z. Here z ≤ xδ and will be chosen later as a power of u. Let C = (γ). Then we have

|Se,γ| � |P|+ |S(A,P)|,

where

λ(p) =


1 if N(p) ≤ xε,
2 if xε < N(p) ≤ z, (p,C) = 1,
1 if xε < N(p) ≤ z, p | C.

Now from Lemma 5.2 we have

|Se,γ| � |P|+ u+ z2

L(z)
. (5)

By Lemma 5.3 and the number field analogue of Mertens’ theorem, we have

L(z) �
∏

N(p)≤xε

(
1− 1

N(p)

)∏
p|C

(
1− 1

p

)
(log z)2

�
∏
p|C

(
1− 1

p

)
(log z)2

log xε
.

Finally by applying the lower bound for L(z) and choosing z = uα (α = min{δ, 1
2
}) in

(5) we have the result. �
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The following proposition is also a consequence of the large sieve.

Proposition 5.5 Let C be a fixed number of type C which is square-free and A be a fixed
number of type A. Let

M̃(u;AC) = #{t ≤ u; t is prime, tAC = Np for some ordinary p and (t, AC) = 1}.

If C is divisible by an inert prime or A is exactly divisible by an inert prime to an odd
exponent, then M̃(u,AC) = 0. Otherwise, we have

M̃(u;AC) � d(Anin)2
ω(C)

∏
p|Anin

(
1 +

1

p− 1

)2∏
p|C

(
1 +

1

p− 1

)
u

(log u)2
,

where Anin denotes the largest divisor of A whose prime divisors are not inert in K. The
implied constant depends only on K.

Proof The proof is very similar to the previous proposition. If C is not divisible by an
inert prime and inert primes of A have even multiplicity, then there are γ and α ∈ OK such
that C = N(γ), and A = N(α). We note that up to units there are at most d(Anin)2

ω(C)

possibilities for αγ. So as in the previous proposition, we have

M̃(u,C) ≤
∑
αγ

∑
e∈O×K

|S̃e,αγ|,

where S̃e,αγ is

{τ ∈ OK ; N(τ) ≤ u, (τ) is prime and (eταγ + 1) = q, for some prime q}.

Next let A be elements of OK with norm ≤ u, and P be prime ideals of OK with norm
≤ z. Let AC = (α)(γ) = (αγ). Then we have

|S̃e,αγ| � |P|+ |S̃(A,P)|,

where

λ̃(p) =

{
2 if N(p) ≤ z, (p,AC) = 1, and N(p) 6= 2,
1 if N(p) ≤ z, p | AC, or N(p) = 2.

Now from Lemma 5.2 we have

|S̃e,αγ| � |P|+ u+ z2

L̃(z)
. (6)
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By Lemma 5.3 we have

L̃(z) �
∏
p|A

(
1− 1

N(p)

)∏
p|C

(
1− 1

N(p)

)
(log z)2

�
∏

p|Anin

(
1− 1

p

)2∏
p|C

(
1− 1

p

)
(log z)2.

Finally by applying the lower bound for L̃(z) and choosing z = u1/2 in (6) we have
the result. �

From now on, without loss of generality, we assume that xε ≥ 3 and each C does not have
any inert prime divisor. For square-free C we define

ψ(C) =
∏
p|C

(
1

p
+

1

p(p− 1)

)
.

Note that ψ(C) = 1/φ(C). Also for an A we assume that any inert prime divisor has even
multiplicity. Let p denote non-inert prime divisors of A and q denote inert prime divisors
of A. We define

ψ(A) = ψ(
∏
p|A

pb
∏
q|A

q2c) =
∏
p|A

(
1

pb
+

2

pb(p− 1)
+

1

pb(p− 1)2

)∏
q|A

1

q2c
,

where b or c ≥ 1. Note that if b = 0, we define the product over p | A as 1.
The following is a consequence of Propositions 5.4 and 5.5.

Corollary 5.6 With the notations of Section 4

|D4| � ε
κ+1
2 ξ

5
2
x

log x
,

where κ > −1. More precisely, κ+ 1 = 2
3
− 4

3
log 3

2
' 0.126.

Proof We have

D4 = {p ∈ D; C(Np) = C∗ ≤ 3x1−ε
κ+1
4 }

∪ {p ∈ D; C(Np) = C∗ > 3x1−ε
κ+1
4 }

= D41 ∪ D42.

17



From Proposition 5.4 we have

|D41| �
∑
C∗

M(
3x

C∗
;C∗) � εx log x

∑
C∗

2ω(C∗)ψ(C∗)

(log(3x/C∗))2

� εx

ε
κ+1
2 log x

∑
C∗

2ω(C∗)ψ(C∗).

In Lemma 5.9 we prove that ∑
C∗

2ω(C∗)ψ(C∗) � εκξ
5
2 ,

which shows that

|D41| � ε
κ+1
2 ξ

5
2
x

log x
. (7)

Next note that if p ∈ D42, thenNp = A(Np)C(Np) = AC∗ = ABC, where C > 3x1−δ−ε
κ+1
4 .

Now since δ < 1, ω(C) ≤ 4
3
ξ, and ξε

κ+1
4 → 0 as x→∞, we can assume that C = C1q for

a prime q > xε
κ+1
4 . So by employing Proposition 5.5, we have

|D42| �
∑

ABC1≤3x1−ε
κ+1
4

M̃(
3x

ABC1

;ABC1)

�
∑

ABC1≤3x1−ε
κ+1
4

d(Anin)2
ω(BC1)ψ(A)ψ(BC1)

(log(3x/ABC1))
2

� x

ε
κ+1
2 (log x)2

(∑
A

]
d(Anin)ψ(A)

)(∑
C∗

2ω(C∗)ψ(C∗)

)
,

where ] denotes that the sum ranges over A with ω(A) ≤ 4
3
ζ. Here ζ = log log xε is the

normal order of ω(A(Np)), so the number of primes with ω(A(Np)) >
4
3
ζ has density zero

in the set of primes. Applying Lemmas 5.10 and 5.9 in the last inequality results in

|D42| � ε
κ+1
2 ξ

5
2
x

log x
. (8)

Now (7) and (8) yield the result. �

The next four lemmas establish the results needed in the previous corollary.
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Lemma 5.7 Let C(s) be a number of type C with exactly s distinct prime factors. Suppose
that s ≤ 4

3
ξ. Then ∑

i

µ
ψ(C

(s)
i ) � ξs

2ss!
,

where µ means that C
(s)
i runs through square-free values.

Proof We have∑
p∈J

p non−inert

ψ(p) =
∑
p∈J

p non−inert

(
1

p
+

1

p(p− 1)

)

=
log log xδ

2
− log log xε

2
+O

(
1

log xε

)
≤ ξ

2
+ c.

So ∑
i

µ
ψ(C

(s)
i ) � 1

s!

(∑
p∈J

ψ(p)

)s

�
( ξ

2
+ c)s

s!

� ξs(1 + 2cξ−1)
4
3
ξ

2ss!

� ξs

2ss!
.

�

Lemma 5.8 If r ≤ 4
3
ξ, then

∞∑
i=1

ψ(B
(r)
i ) � εξ2 ξr

2rr!
, where B

(r)
i denote a number of type

B with exactly r distinct prime factors.

Proof With the notation as previous lemma, let

B
(r)
i = p1p2 · · · pr, p1 < p2 < · · · < pr.

It is clear that pr belongs to the interval(
xδ−(ε+εξ)

p1 · · · pr−1

,
xδ

p1 · · · pr−1

)
.

We note that since pr
r > B

(r)
i , we have

p1p2 · · · pr−1 < (xδ)(r−1)/r.
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Taking

U =
xδ−(ε+εξ)

p1 · · · pr−1

, V = xε+εξ

in the inequality ∑
U<p≤UV

1

p
� log V

logU
+O

(
1

logU

)
yields ∑

U<pr≤UV

ψ(pr) �
rε(1 + ξ)

δ − r(ε+ εξ)
� εξ2.

(Note that r ≤ 4
3
ξ.) Now similar to the previous lemma we have

∞∑
i=1

ψ(B
(r)
i ) � εξ2

(r − 1)!

 ∑
p∈J

p non−inert

ψ(p)


r−1

� εξ2 ξr−1

2r−1(r − 1)!

� εξ2 ξr

2rr!
.

�

Lemma 5.9
∞∑
i=1

2ω(C∗i )ψ(C∗i ) � εκξ
5
2 , where κ > −1.

Proof By definition of C∗ and Lemmas 5.7 and 5.8 we have

∞∑
i=1

2ω(C∗i )ψ(C∗i ) �
∑

0≤r+s≤ 4
3
ξ

∞∑
i=1

2rψ(B
(r)
i )
∑

i

µ
2sψ(C

(s)
i )

� εξ2
∑

0≤r+s≤ 4
3
ξ

ξr+s

r!s!
= εξ2

[ 4
3
ξ]∑

l=0

(2ξ)l

l!
.

We note that for l ≤ 2ξ, (2ξ)l

l!
increases with l, so

∞∑
i=1

2ω(C∗i )ψ(C∗i ) � εξ2 (2ξ)
4
3
ξ

Γ(4
3
ξ)
.
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By Stirling’s formula we have

1

Γ(4
3
ξ)
� ξ

1
2

(
e
4
3
ξ

) 4
3
ξ

,

and so
∞∑
i=1

2ω(C∗i )ψ(C∗i ) � εξ
5
2 (

3e

2
)

4
3
ξ.

The result follows since (3e
2
)

4
3 = ec for some c < 2. More precisely, κ = 1 − c = −1

3
−

4
3
log 3

2
' −0.874. �

Lemma 5.10 We have ∑
A

]
d(Anin)ψ(A) � ε log x,

where ] denotes that the sum ranges over A with ω(A) ≤ 4
3
ζ = 4

3
log log xε.

Proof Let I = [1, xε]. We have

∑
l∈I

prime

∞∑
i=1

d(linin)ψ(li) =
∑
p∈I

p non−inert

∞∑
b=1

(
b+ 1

pb
+

2(b+ 1)

pb(p− 1)
+

b+ 1

pb(p− 1)2

)

+
∑
q∈I

q inert

∞∑
c=1

1

q2c

=
∑
p∈I

p non−inert

2

p
+O(1) ≤ ζ + c.

Now let A(s) be an A with exactly s distinct prime factors. So

∑
A(s)

d(A
(s)
nin)ψ(A(s)) � 1

s!

∑
l∈I

prime

∞∑
i=1

d(linin)ψ(li)


s

� (ζ + c)s

s!

� ζs(1 + cζ−1)
4
3
ζ

s!

� ζs

s!
.
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Finally we have

∑
A

]
d(Anin)ψ(A) �

4
3
ζ∑

s=0

∑
A(s)

d(A
(s)
nin)ψ(A(s))

�
4
3
ζ∑

s=0

ζs

s!
� exp(ζ) = ε log x.

�

6 Another Lemma on A’s

Lemma 6.1 Let
N(x) = #{p ≤ x; A(Np) > xεξ}.

Then

N(x) � π(x)

ξ
.

Proof Let N(x) be the number of primes in question. We have

N(x)εξ log x ≤
∑
p≤x

logA(Np)

=
∑
p≤x

∑
d|A(Np)

Λ(d) =
∑
l≤xε

l prime

log l
∑
p≤x

A(Np)≡0 (mod li)

1

≤
∑
l≤xε

l prime

(log l){πE(x; l) + πE(x; l2) + · · · }. (9)

By Proposition 2.2, for prime l, we have

πE(x; li) � (i+ 1)

φ(li)

x

log (x/l2i)
for li ≤

(
x

log x

) 1
2

. (10)

Now the right hand side of (9) can be written as∑
l≤xε

∑
li<x

1
3

(log l)πE(x; li) +
∑
l≤xε

∑
li≥x

1
3

(log l)πE(x; li) = ΣI + ΣII . (11)
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An application of (10) in ΣI yields

ΣI � π(x)
∑
l≤xε

log l

l − 1
+ π(x)

∑
l≤xε

∞∑
i=2

(i+ 1) log l

li

� π(x)ε log x+ π(x)
∞∑
l=1

log l

l2

� π(x)ε log x+ π(x). (12)

We have

ΣII � x
∑
l≤xε

∞∑
i= 1

3ε

(i+ 1) log l

li

� x

ε

∞∑
l=2

log l

l
1
3ε

� x

ε

(
−ζ ′

(
1

3ε

))
. (13)

Now applying (12) and (13) in (11) together with (9) imply

N(x) � π(x)

ξ

(
1 +

1

log xε
+

(
1

ε

)2(
−ζ ′

(
1

3ε

)))
.

This implies the result since xε →∞ and(
1

ε

)2(
−ζ ′

(
1

3ε

))
→ 0

as x→∞ (see [T], page 43). �

7 Proof of Theorem 1.3

Proof By employing Lemmas 5.1 and 6.1 and Corollaries 3.3 and 5.6, we have

H(x, xδ−ε, xδ) = |D| ≤ |D1|+ |D2|+ |D3|+ |D4|

� π(x)
(
x−ε + x−

1
5 log x+ ξ−1 + ε

κ+1
2 ξ

5
2

)
,
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where κ > −1. This completes the proof of the theorem since

lim
x→∞

(
x−ε + x−

1
5 log x+ ξ−1 + εκ+1ξ

5
2

)
= 0.

�

8 Proof of Proposition 1.2

Proof We first prove that

#{p; |Γp| < z} = O

(
z1+ 2

r

log z

)
.

Let {Q1, Q2, · · · , Qr} be a basis of Γ. We consider the set

S = {n1Q1 + n2Q2 + · · ·+ nrQr; 0 ≤ ni ≤ z
1
r }.

Since Q1, Q2, · · · , Qr are linearly independent, then the number of elements of S exceeds

([z
1
r ] + 1)r > z.

Now if p is a prime such that |Γp| < z, then there are two distinct elements of S, say P

and Q such that P = Q in Ep(Fp). In other words there are integers |mi| ≤ z
1
r such that

m1Q1 + · · ·+mrQr 6= O in E(Q),

however
m1Q1 + · · ·+mrQr = O in Ep(Fp),

where O denotes the identity element. (Note that here we used the same notation for a
point in E(Q) and its reduction in Ep(Fp).) Let R = m1Q1 + · · ·+mrQr in E(Q). Then
R is a rational point in E(Q), and so has a representation in the form

R =
(m
e2
,
n

e3

)
,

where m, n, and e are integers with e > 0 and (m, e) = (n, e) = 1 (See [ST], page 68).
Now since under reduction mod p, R maps to O, we conclude that p | e. So for fixed mi

the number of primes satisfying |Γp| < z is bounded by

ω(e) � log e

log log e
� hx(R)

log hx(R)
,
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where ω(e) is the number of distinct prime divisors of e and

hx(R) = hx

((m
e2
,
n

e3

))
= log max{|m|, |e2|},

is the x-height of R. Recall that the canonical height

ĥ(R) = lim
n→∞

hx(2
nR)

22n

is a quadratic form on E, and it gives a bilinear pairing 〈 , 〉 with ĥ(R) = 〈R,R〉 (see [Si],
page 229, Theorem 9.3). Moreover we know that ĥ = hx +O(1), where O(1) depends on
E only. So we have

ω(e) � log e

log log e
� hx(R)

log hx(R)
=

ĥ(R) +O(1)

log
(
ĥ(R) +O(1)

) � 〈R,R〉
log 〈R,R〉

.

So for fixed |mi| ≤ z
1
r , we have ω(e) � z

2
r / log z. The number of possible values for e

is bounded by the number of possible R. Noting the range of the mi (i.e. |mi| ≤ z
1
r ) , we

conclude that the number in question is O
(
z1+ 2

r /log z
)
.

To deduce the result, note that

#
{
p ≤ x; |Γp| < p

r
r+2

−ε(p)
}

≤ o

(
x

log x

)
+ #

{
x

log x
< p ≤ x; |Γp| < x

r
r+2

(
x

log x

)−ε( x
log x)

}
,

which is o(x/ log x) upon choosing

z = x
r

r+2

(
x

log x

)−ε( x
log x)

in the above estimate. �

9 Proof of Theorem 1.4

Proof First of all note that without loss of generality we can assume that pε(p) → ∞,
since otherwise we can always find an ε1(p) such that ε(p) ≤ ε1(p), ε1(p) → 0, pε1(p) →∞,
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and then the result for ε(p) follows from the result for ε1(p). In fact, we can assume that
pε(p) is a monotone increasing function. Next let

A = #{p ≤ x; p
r

r+2
−ε(p) < |Γp| < p

r
r+2

+ε(p)}.

We have

A = o

(
x

log x

)
+ #{ x

log x
< p ≤ x; p

r
r+2

−ε(p) < |Γp| < p
r

r+2
+ε(p)}

≤ o

(
x

log x

)
+ #{ x

log x
< p ≤ x;

(
x

log x

) r
r+2

x−ε(x) < |Γp| < x
r

r+2
+ε(x)}

≤ o

(
x

log x

)
+ #{ x

log x
< p ≤ x; x

r
r+2

−(ε(x)+ r
r+2

log log x
log x ) < |Γp| < x

r
r+2

+ε(x)}.

Now since |Γp| is a divisor of Np, by Theorem 4.1, A = o(x/ log x). Combining this with
Proposition 1.2 implies the result. �
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