REDUCTION OF A MATRIX DEPENDING ON PARAMETERS TO A DIAGONAL FORM BY ADDITION OPERATIONS

L. N. VASERSTEIN
(Communicated by Louis J. Ratliff, Jr.)

Abstract

It is shown that any n by n matrix with determinant 1 whose entries are real or complex continuous functions on a finite dimensional normal topological space can be reduced to a diagonal form by addition operations if and only if the corresponding homotopy class is trivial, provided that $n \neq 2$ for real-valued functions; moreover, if this is the case, the number of operations can be bounded by a constant depending only on n and the dimension of the space. For real functions and $n=2$, we describe all spaces such that every invertible matrix with trivial homotopy class can be reduced to a diagonal form by addition operations as well as all spaces such that the number of operations is bounded.

Introduction. Let X be a topological space \mathbf{R}^{X} the ring of all continuous functions $X \rightarrow \mathbf{R}$ (the reals), \mathbf{R}_{0}^{X} the subring of bounded functions. For any natural number n and a ring $A, M_{n} A$ denotes the ring of all n by n matrices over A.

A matrix α in $M_{n} \mathbf{R}^{X}$ can be regarded as a real matrix depending continuously on a parameter which ranges over X, or as a continuous $\operatorname{map} X \rightarrow M_{n} \mathbf{R}$.

Assume now that $\operatorname{det}(\alpha)=1$, i.e. $\alpha \in \mathrm{SL}_{n} \mathbf{R}^{X}$. We want to reduce α to the identity matrix 1_{n} by addition operations, i.e. represent α as a product of elementary matrices $a^{i j}$, where $a \in A=\mathbf{R}^{X}, 1 \leq i \neq j \leq n$. Since the subgroup $E_{n} A$ of $\mathrm{SL}_{n} A$ generated by all elementary matrices is normal [6], it does not matter whether we use row or column addition operations, or both. Note that, by the Whitehead lemma, every diagonal matrix in $\mathrm{SL}_{n} A$ is a product of $4(n-1)$ elementary matrices (for any commutative ring A), so a matrix α in $\mathrm{SL}_{n} A$, can be reduced to 1_{n} if and only if it can be reduced to a diagonal form.

When X is a point, so $A=\mathbf{R}^{X}=\mathbf{R}$, it is well known that this can be done. Moreover [3, Remark 10 with $\operatorname{sr}(\mathbf{R})=m=1$], this can be done using at most $(n-1)(3 n / 2+1)$ addition operations.

For an arbitrary X, a homotopy obstruction may exist which prevents the reduction. Namely, the addition operations do not change the homotopy class $\pi(\alpha)$ of the corresponding map $X \rightarrow \mathrm{SL}_{n} \mathbf{R}$. So if this class is not trivial, the reduction is impossible.

Assume now that the homotopy class $\pi(\alpha)$ is trivial (for example, this is always the case when X is contractible). Is it possible to reduce α to 1_{n} by addition operations, i.e. does α belong to the subgroup $E_{n} \mathbf{R}^{X}$ of $\mathrm{SL}_{n} \mathbf{R}^{X}$ generated by elementary matrices)? If yes, how many operations are needed?

[^0]In this paper, we give an answer to both questions. It turns out that the answer in case $n=2$ is different from that in the case $n \neq 2$. The reason is that the fundamental group $\pi_{1}\left(\mathrm{SL}_{n} \mathbf{R}\right)$ is infinite when $n=2$ (namely, it is infinite cyclic) and it is finite otherwise (it is of order 2 when $n \geq 3$).

More precisely, for any α in $\mathrm{SL}_{n} A$ (where A is a commutative ring with 1 such as $A=\mathbf{R}^{X}$ or \mathbf{R}_{0}^{X}), denote by $l_{A}(\alpha)$ the least k such that α is a product of k elementary matrices over A. If no such k exists, i.e. α is outside $E_{n} A$, we set $l_{A}(\alpha)=\infty$. As in [3], $e_{n}(A)$ denotes the supremum of $l_{A}(\alpha)$, where α ranges over $E_{n} A$.

TheOrem 1. Let X be a topological space, $A=\mathbf{R}^{X}$ or \mathbf{R}_{0}^{X} as above. Then (a) $e_{2}(A)<\infty$ if and only if $\mathbf{R}^{Y}=\mathbf{R}$ for every connected component Y of X; (b) $l_{A}(\alpha)<\infty$ for all α in $\mathrm{SL}_{2} A$ with $\pi(\alpha)=0$ if and only if X is pseudocompact, i.e. $\mathbf{R}^{X}=\mathbf{R}_{0}^{X}$.

Now we consider the case $n \geq 3$.
THEOREM 2. For any integers $n \geq 3$ and $d \geq 0$ there is a natural number z such that $l_{A}(\alpha) \leq z$ for $A=\mathbf{R}^{X}$ or \mathbf{R}_{0}^{X} with any normal topological space X of dimension d and any α in $\mathrm{SL}_{n} A$ with $\pi(\alpha)=0$. In particular, $e_{n}(A) \leq z$.

As a consequence of Theorem 2 (which is extracted here from results of [1, 2]) we obtain that $\mathrm{SL}_{n} A / E_{n} A$ is a homotopy type invariant of X for finite dimensional spaces X if $n \geq 3$. This was proved in [6] for $X=\mathbf{R}$ and in [4] for $X=\mathbf{R}^{3}$ by different methods.

It is easy to extend Theorems 1 and 2 to subrings A of \mathbf{R}^{X} different from \mathbf{R}^{X} and \mathbf{R}_{0}^{X}, compare with [6]. This is because of the following fact.

Proposition 3. Let A be as in Theorem 1 and B is a subring with 1 of A such that B is dense in A and $\mathrm{GL}_{1} B$ is open in B, both in the topology of uniform convergence. Then $\left|e_{n}(B)-e_{n}(A)\right| \leq(n+3)(n-1)$ for every n.

Note that the condition that $\mathrm{GL}_{1} B$ is open in B, i.e. $f B=B$ for every function f in B sufficiently close to 1 , cannot be dropped. The following example shows this. Let X be the unit interval $0 \leq x \leq 1$ and $B=\mathbf{R}[x]$, the polynomial ring. In this example, $\mathrm{SL}_{n} B=E_{n} B$ for all n, but $e_{n}(B)=\infty$ for each $n \geq 2$ [5]. At the same time, B is dense in $A=\mathbf{R}^{X}=\mathbf{R}_{0}^{X}$ and $e_{n}(A)<\infty$ for $n \geq 3$ by Theorem 1 .

Next we consider the ring \mathbf{C}^{X} of all continuous functions $X \rightarrow \mathbf{C}$, the complex numbers, and its subring \mathbf{C}_{0}^{X} of bounded functions.

TheOrem 4. For any natural number n and an integer $d \geq 0$ there is a natural number z^{\prime} such that $l_{A}(\alpha) \leq z^{\prime}$ for any normal topological space X of dimension d and any matrix α in $\mathrm{SL}_{n} A$ with $\pi(\alpha)=0$, where $A=\mathbf{C}^{X}$ or \mathbf{C}_{0}^{X}. In particular, $e_{n}(A) \leq z^{\prime}<\infty$ for all n.

COROLLARY 5. For each natural number n and an integer $d \geq 0$ there is a natural number $z^{\prime \prime}$ such that $e_{n}(B) \leq z^{\prime \prime}<\infty$ for any dense subring B with 1 of A with $\mathrm{GL}_{1} B$ open in B, where A is as in Theorem 4.

Note that \mathbf{C}^{X} is endowed with the topology of the uniform convergence, and that the constant $z^{\prime \prime}$ depends only on n and the dimension of X. We do not give any
explicit bounds in this paper, although the proofs in [1, 2] seem to be constructive enough to yield some explicit bounds.

ACKNOWLEDGEMENTS. I discussed $\mathrm{SK}_{1}\left(\mathbf{R}^{X}\right)$ and related topics with many mathematicians. Particularly useful were conversations with M. Freedman in February 1987. A. Ocneanu and the referee corrected a few misprints.

Proof of Theorem 1. Let X be a topological space, $A=\mathbf{R}^{X}$ or \mathbf{R}_{0}^{X} as in Theorem 1. For any $f \in \mathbf{R}^{X}$ we set

$$
\rho f=\left(\begin{array}{cc}
\cos (f) & \sin (f) \\
-\sin (f) & \cos (f)
\end{array}\right) \in \mathrm{SO}_{2} \mathbf{R}^{X}=\mathrm{SO}_{2} \mathbf{R}_{0}^{X} \subset \mathrm{SL}_{2} \mathbf{R}_{0}^{X}
$$

For any $f \in \mathbf{C}^{X}$, let $\|f\|=\sup |f(x)|$, where x ranges over X.
Lemma 6. Let α be a product of k elementary matrices in $\mathrm{SL}_{2} A$ with $k \geq 1$. Then α has the form $\delta \varepsilon(\rho f)$, where ε is an elementary matrix, δ is a diagonal matrix, $f \in \mathbf{R}^{X}$ and $\|f\| \leq(k-1) \pi / 2$.

Proof. We proceed by induction on k. When $k=1$, we can take $\delta=1_{2}$, $f=0$. Assume now that $k \geq 2$ and $\alpha=\varepsilon_{1} \cdots \varepsilon_{k}$ with elementary matrices ε_{i}. By the induction hypothesis, $\varepsilon_{2} \cdots \varepsilon_{k}=\delta^{\prime} \varepsilon^{\prime}\left(\rho\left(f^{\prime}\right)\right)$ with an elementary ε^{\prime}, diagonal δ^{\prime}, and $\left\|f^{\prime}\right\| \leq(k-2) \pi / 2$. If the elementary matrices ε_{1} and ε^{\prime} are of the same type, i.e. $\varepsilon_{1} \varepsilon^{\prime}$ is an elementary matrix, then $\alpha=\delta^{\prime}\left(\delta^{\prime-1} \varepsilon_{1} \delta^{\prime} \varepsilon^{\prime}\right)\left(\rho\left(f^{\prime}\right)\right)$ is the required representation, i.e. we can take $\delta=\delta^{\prime}, \varepsilon=\delta^{-1} \varepsilon_{1} \delta \varepsilon^{\prime}, f=f^{\prime}$. Assume now that $\varepsilon^{\prime}, \varepsilon_{1}$ are not of the same type, that is either $\varepsilon_{1} \in A^{1,2}$ and $\varepsilon^{\prime} \in A^{2,1}$, or $\varepsilon_{1} \in A^{2,1}$ and $\varepsilon^{\prime} \in A^{1,2}$. Consider the first case (the second one is similar).

Then $\delta^{\prime-1} \varepsilon_{1} \delta^{\prime} \varepsilon^{\prime}=b^{1,2} c^{2,1}$ with b and c in A. Applying the Gram-Schmidt process to the rows of this matrix, we obtain

$$
b^{1,2} c^{2,1}=\left(\begin{array}{cc}
1+b c & b \\
c & 1
\end{array}\right)=\left(\begin{array}{cc}
1 / e & 0 \\
0 & e
\end{array}\right)\left(\begin{array}{cc}
e(1+b c) & e b \\
c / e & 1 / e
\end{array}\right)
$$

with $e=\left(1+c^{2}\right)^{1 / 2} \geq 0$,

$$
\begin{aligned}
\left(\begin{array}{cc}
e(1+b c) & e b \\
c / e & 1 / e
\end{array}\right) & =\left(\begin{array}{cc}
1 & b+c+c b c \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / e & -c / e \\
c / e & 1 / e
\end{array}\right) \\
& =(b+c+c b c)^{1,2} \rho f^{\prime \prime}
\end{aligned}
$$

with $(c / e, 1 / e)=\left(-\sin \left(f^{\prime \prime}\right), \cos \left(f^{\prime \prime}\right)\right)$ and $\left\|f^{\prime \prime}\right\|<\pi / 2$.
Thus, $\alpha=\varepsilon_{1} \cdots \varepsilon_{k}=\varepsilon_{1} \delta^{\prime} \varepsilon^{\prime}\left(\rho\left(f^{\prime}\right)\right)=\delta^{\prime}\left(\delta^{\prime-1} \varepsilon_{1} \delta^{\prime}\right) \varepsilon^{\prime}\left(\rho f^{\prime}\right)=\delta^{\prime}\left(b^{1,2} c^{2,1}\right) \rho f^{\prime}=$ $\delta \varepsilon \rho f$, where

$$
\delta=\delta^{\prime}\left(\begin{array}{cc}
1 / e & 0 \\
0 & e
\end{array}\right)
$$

is a diagonal matrix, $\varepsilon=(b+c+c b c)^{1,2}$ is an elementary matrix, and $f=f^{\prime}+f^{\prime \prime}$ with $\|f\| \leq\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\| \leq(k-2) \pi / 2+\pi / 2=(k-1) \pi / 2$.

Lemma 6 is proved.
Corollary 7. If X is connected, then for any $g \neq 0$ in A we have

$$
l_{A}(\rho g) \geq(\sup (g)-\inf (g)) / \pi+1
$$

Proof. Suppose that ρg is a product of k elementary matrices. Then by Lemma 6, $\rho g=\delta \varepsilon \rho f$ with diagonal δ, elementary ε, and $\|f\| \leq(k-1) \pi / 2$. It
follows that $\varepsilon=1_{2}$, and $\delta=1_{2}$ or -1_{2}, hence $f-g=2 \pi m$ or $\pi+2 \pi m$ with a continuous function $m: X \rightarrow \mathbf{Z}$ (the integers). Since X is connected, m is a constant. Therefore, $\sup (g)-\inf (g)=\sup (f)-\inf (f) \leq 2\|f\| \leq(k-1) \pi$. Thus, $k \geq 1+(\sup (f)-\inf (f)) / \pi=(\sup (g)-\inf (g)) / \pi+1$. The corollary is proved.

Proposition 8. For any f in A, we have $l_{A}(\rho f) \leq 2(\sup (f)-\inf (f)) / \pi+6$.
Proof. If f is not bounded, there is nothing to prove. So we can assume that f is bounded, i.e. $f \in \mathbf{R}_{0}^{X}$, i.e. $r=\sup (f)-\inf (f)<\infty$. Set $t=(\sup (f)+\inf (f)) / 2$ and write $f=t+(f-t)$, where t means a constant function and $|f-t| \leq r / 2$ everywhere on X. We have to write ρf as a product of $k \leq 2 r / \pi+6$ elementary matrices over A. Set $s=[r / \pi+1]$.

We have $\rho f=\rho t(\rho((f-t) / s))^{s}$. Note that $|(f-t) / s| \leq r / 2 s=r / 2([r / \pi+1])<$ $\pi / 2$. So $\cos ((f-t) / s) \in \mathrm{GL}_{1} A$. Therefore $\rho((f-t) / s)$ is a product of two elementary matrices and a diagonal matrix, hence ρf is a product of $\rho(t)$, a diagonal matrix, and $2 s$ elementary matrices. The product of the constant matrix ρt and the diagonal matrix has an invertible entry in the first column, so it is the product of at most 4 elementary matrices. Thus, ρf is the product of $2 s+4 \leq 2 r / \pi+2+4=2 r / \pi+6$ elementary matrices. This proves the proposition.

Now we are prepared to prove Theorem 1. The case of empty X is trivial, so let X be nonempty.

To prove part (a) of Theorem 1, suppose first that $\mathbf{R}^{Y}=\mathbf{R}$ for every connected component Y of X. Then $\mathbf{R}^{X}=\mathbf{R}^{X^{\prime}}$ and $\mathbf{R}_{0}^{X}=\mathbf{R}_{0}^{X^{\prime}}$, where X^{\prime} is the discrete set of connected components of X. So $e_{2}(A)=e_{2}(\mathbf{R})=4<\infty$.

Suppose now that $\mathbf{R}^{Y} \neq \mathbf{R}$ (or, equivalently $\mathbf{R}_{0}^{Y} \neq \mathbf{R}$), for some connected component Y of X. We will show that then $e_{2}(B)=\infty$ for $B=\mathbf{R}^{Y}$ and for $B=\mathbf{R}_{0}^{Y}$. This will imply that $e_{2}(A)=\infty$.

Pick a nonconstant function f in \mathbf{R}^{Y}. By Corollary 7 applied to Y instead of $X, l_{B}(\rho(f m)) \geq m(\sup (f)-\inf (f)) / \pi+1$ for any natural number m. Taking large m, we conclude that $e_{2}(B)=\infty$.

To prove Theorem 1(b), consider the exact sequence [6] (see also [1, 2])

$$
0 \rightarrow \mathbf{R}^{X} / \mathbf{R}_{0}^{X} \rightarrow \mathrm{SL}_{2} A / E_{2} A \rightarrow \pi^{1}(X) \rightarrow 0
$$

The sequence says that X is pseudocompact, if and only if $\mathrm{SL}_{2} A / E_{2} A=\pi^{1}(X)$, i.e. if and only if $\alpha \in E_{2} A$ for every α in $\mathrm{SL}_{2} A$ with $\pi(\alpha)=0$.

Proof of Theorem 2. If the theorem is wrong, then for some $n \geq 3$ and $d \geq 0$ there is a sequence $X(i)$ of normal topological spaces of dimension d and $\alpha(i) \in \mathrm{SL}_{n} A(i)$, where $A(i)=\mathbf{R}^{X(i)}$ or $\mathbf{R}_{0}^{X(i)}$ depending on whether $A=\mathbf{R}^{X}$ or \mathbf{R}_{0}^{X} in the theorem, such that $\pi(\alpha(i))=0$ for all i and $l_{A(i)}(\alpha(i)) \rightarrow \infty$. In the case $A=\mathbf{R}_{0}^{X}$, we can bring each $\alpha(i)$ to $\mathrm{SO}_{n} A(i)$ by $(n+6)(n-1) / 2$ addition operations [6, Lemma 21], so we can assume that $\alpha(i) \in \mathrm{SO}_{n} A(i)$.

We define X to be the disjoint union of all $X(i)$. The matrices $\alpha(i) \in \mathrm{SL}_{n} A(i)$ give a matrix α in $\mathrm{SL}_{n} A$ whose restriction to $X(i)$ is $\alpha(i)$. We have $\pi(\alpha)=0$, i.e. the corresponding map $X \rightarrow \mathrm{SL}_{n} \mathbf{R}$ is homotopic to the trivial map $X \rightarrow 1_{n}$. Now we invoke results of $[\mathbf{1}, \mathbf{2}]$ to conclude that the map $X \rightarrow \mathrm{SL}_{n} \mathbf{R}$ is uniformly homotopic to the trivial map.

First of all, Gram-Schmidt's process [6] reduces the matrix α in $\mathrm{SL}_{n} A$ (as well as its homotopy to the trivial map) to a matrix $f: X \rightarrow \mathrm{SO}_{n} \mathbf{R}$ in the special
orthogonal group (of the sum of n squares) $\mathrm{SO}_{n} A$ by addition operations (resp. to a homotopy of f to the trivial map into this subgroup). Since $n \geq 3$, the fundamental group $\pi_{1} \mathrm{SO}_{n} \mathbf{R}=\mathbf{Z} / 2 \mathbf{Z}$ is finite. Since X is finite dimensional and normal, Theorem 1 of [1] (see [2] for a shorter and a great deal more transparent proof) gives the desired conclusion.

Thus, f is uniformly homotopic to the trivial map in $\mathrm{SO}_{n} \mathbf{R}$, i.e. the corresponding matrix in $\mathrm{SO}_{n} A$ belongs to the connected component of 1_{n}, hence α belongs to the connected component of 1_{n} in $\mathrm{SL}_{n} A$, where $\mathrm{SL}_{n} A$ is endowed with the topology induced by the uniform convergence topology on A.

It is known (see, for example, [6, Theorem 2]) that this component coincides with $E_{n} A$. So α is a product of (finitely many) elementary matrices. Restriction to $X(i)$ yields that each $\alpha(i)$ is the product of a bounded (uniformly in i) number of elementary matrices over $A(i)$. This contradicts to our choice of $\alpha(i)$ with $l_{A(i)}(\alpha(i)) \rightarrow \infty$. So Theorem 2 is proved.

REMARK. The condition that X is normal can be easily dropped; for arbitrary X, the dimension should be understood in the sense of $[7]$, i.e. it is $\operatorname{sr}(A)-1$. It is not clear how z depends on d or whether a uniform upper bound exists. Obviously, z cannot be taken less than $n^{2}-1$, the dimension of $\mathrm{SL}_{n} \mathbf{R}$.

Proof of Proposition 3.

Lemma 9. Let B be a commutative topological ring with 1 such that $\mathrm{GL}_{1} B$ is open in B. Then $l_{B}(\alpha) \leq(n+3)(n-1)$ for any n and any matrix α in $\mathrm{SL}_{n} B$ sufficiently close to 1_{n}.

Proof. It is clear that every α sufficiently close to 1_{n} has the form $\beta \gamma$ with a lower triangular β with ones along the main diagonal and an upper triangular matrix γ. We have $l_{B}(\beta) \leq n(n-1) / 2$, and $l_{B}(\gamma) \leq(n+6)(n-1) / 2$ by [$\mathbf{6}$, Lemma 21]. So $l_{B}(\alpha) \leq n(n-1) / 2+(n+6)(n-1) / 2=(n+3)(n-1)$.

Let us prove now Proposition 3. Let $\alpha \in E_{n} B$. We can write α as a product of $k=l_{A}(\alpha)$ elementary matrices over A. Using that B is dense in A we can write α as a product of k elementary matrices over B and a matrix α^{\prime} arbitrarily close to 1_{n}. By Lemma $9, \alpha^{\prime}$ is a product of $(n+3)(n-1)$ elementary matrices. So $l_{A}(\alpha) \leq l_{B}(\alpha) \leq l_{A}(\alpha)+(n+3)(n-1)$ for any α in $E_{n} B$. Therefore, $e_{n}(B) \leq$ $e_{n}(A)+(n+3)(n-1)$.

Let now $\alpha \in E_{n} A$. Since B is dense in A, we can write $\alpha=\beta \gamma$ with $\beta \in E_{n} B$ and γ arbitrarily close to 1_{n}. So $l_{A}(\alpha) \leq l_{A}(\beta)+(n+3)(n-1)$, by Lemma 9 applied to A instead of B. So, $e_{n}(A) \leq e_{n}(B)+(n+3)(n-1)$.

Proposition 3 is proved.
Proof of Theorem 4. If the theorem is wrong, then for some $n \geq 2$ there is a sequence $X(i)$ of normal topological spaces of dimension d and $\alpha(i) \in \mathrm{SL}_{n} A(i)$, where $A(i)=\mathbf{C}^{X(i)}$ or $\mathbf{C}_{0}^{X(i)}$ depending on whether $A=\mathbf{C}^{X}$ or \mathbf{C}_{0}^{X} in the theorem, such that $\pi(\alpha(i))=0$ for all i and $l_{A(i)}(\alpha(i)) \rightarrow \infty$. In the case $A=\mathbf{C}_{0}^{X}$, we can bring each $\alpha(i)$ to $\mathrm{SU}_{n} A(i)$ by $(n+6)(n-1) / 2$ addition operations [6, Lemma 21], so we can assume that $\alpha(i) \in \mathrm{SU}_{n} A(i)$.

We define X to be the disjoint union of all $X(i)$. The matrices $\alpha(i) \in \mathrm{SL}_{n} A(i)$ give a matrix α in $\mathrm{SL}_{n} A$ whose restriction to $X(i)$ is $\alpha(i)$. We have $\pi(\alpha)=0$. By $[1,2], \alpha$ belongs to the connected component of 1_{n}, where $\mathrm{SL}_{n} A$ is endowed with
the topology induced by the uniform convergence topology on A (here we used that $\pi_{1}\left(\mathrm{SL}_{n} \mathrm{R}\right)$ is trivial).

It is known that this component coincides with $E_{n} A$. So α is a product of (finitely many) elementary matrices. Restriction to $X(i)$ yields that each $\alpha(i)$ is the product of a bounded (uniformly in i) number of elementary matrices over $A(i)$. This contradicts our choice of $\alpha(i)$ with $l_{A(i)}(\alpha(i)) \rightarrow \infty$.

So Theorem 4 is proved.
Proof of Corollary 5. In the case $A=\mathbf{C}^{X}$, we argue as in the proof of Proposition 3 to conclude that $l_{A}(\alpha) \leq l_{B}(\alpha) \leq l_{A}(\alpha)+(n+3)(n-1)$ for each α in $\mathrm{SL}_{n} B$, hence $e_{n}(B) \leq e_{n}(A)+(n+3)(n-1)$, and that $e_{n}(A) \leq e_{n}(B)+(n+3)(n-1)$. Thus, $\left|e_{n}(B)-e_{n}(A)\right| \leq(n+3)(n-1)$, so we can take $z^{\prime \prime}=z^{\prime}+(n+3)(n-1)$.

References

1. Allan Calder and Jerrold Siegel, Homotopy and uniform homotopy, Trans. Amer. Math. Soc. 235 (1978), 245-269.
2. \qquad , Homotopy and uniform homotopy. II, Proc. Amer. Math. Soc. 78 (1980), 288-290.
3. R. K. Dennis and L. N. Vaserstein, On a question of M. Newman on the number of commutators, J. Algebra (submitted).
4. W. Thurston and L. Vaserstein, On K_{1}-theory of the Euclidean space, Topology Appl. 23 (1986), 145-148.
5. W. van der Kallen, $\mathrm{SL}_{3}(\mathrm{C}[x])$ does not have bounded word length, Lecture Notes in Math., vol. 966, Springer-Verlag, Berlin and New York, 1982, pp. 357-362.
6. L. N. Vaserstein, On K_{1}-theory of topological spaces, Contemp. Math., vol. 55, Amer. Math. Soc., Providence, R.I., 1986, pp. 729-740.
7. __, The stable range of rings and the dimension of topologcial spaces, Funktsional Anal. i Prilozhen. 5 (1971), 17-27.

Department of Mathematics, Penn State University, University Park, Pennsylvania, 16802

[^0]: Received by the editors March 2, 1987 and, in revised form, June 18, 1987.
 1980 Mathematics Subject Classification (1985 Revision). Primary 18F25.

