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ABSTRACT. It is shown that any n by n matrix with determinant 1 whose

entries are real or complex continuous functions on a finite dimensional normal

topological space can be reduced to a diagonal form by addition operations if

and only if the corresponding homotopy class is trivial, provided that n j¿2 for

real-valued functions; moreover, if this is the case, the number of operations

can be bounded by a constant depending only on n and the dimension of the

space. For real functions and n = 2, we describe all spaces such that every

invertible matrix with trivial homotopy class can be reduced to a diagonal form

by addition operations as well as all spaces such that the number of operations

is bounded.

Introduction. Let X be a topological space Rx the ring of all continuous

functions X —* R (the reals), R* the subring of bounded functions. For any

natural number n and a ring A, MnA denotes the ring of all n by n matrices over

A.
A matrix a in MnRx can be regarded as a real matrix depending continuously

on a parameter which ranges over X, or as a continuous map X -4 MnR.

Assume now that det(a) = 1, i.e. a E SL„RX. We want to reduce a to the iden-

tity matrix ln by addition operations, i.e. represent a as a product of elementary

matrices a,J', where a E A = Rx, 1 < i'. ■£ j < n. Since the subgroup EnA of SLnA

generated by all elementary matrices is normal [6], it does not matter whether we

use row or column addition operations, or both. Note that, by the Whitehead

lemma, every diagonal matrix in SLnA is a product of 4(n — 1) elementary matrices

(for any commutative ring A), so a matrix a in SLnA, can be reduced to 1„ if and

only if it can be reduced to a diagonal form.

When X is a point, so A = Rx = R, it is well known that this can be done.

Moreover [3, Remark 10 with sr(R) = m = 1], this can be done using at most

(n — l)(3n/2 + 1) addition operations.

For an arbitrary X, a homotopy obstruction may exist which prevents the re-

duction. Namely, the addition operations do not change the homotopy class 7r(o;)

of the corresponding map X —> SLnR. So if this class is not trivial, the reduction

is impossible.

Assume now that the homotopy class 7r(a) is trivial (for example, this is always

the case when X is contractible). Is it possible to reduce a to ln by addition

operations, i.e. does a belong to the subgroup EnRx of SL„RX generated by

elementary matrices)? If yes, how many operations are needed?
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742 L. N. VASERSTEIN

In this paper, we give an answer to both questions. It turns out that the answer

in case n = 2 is different from that in the case n/2. The reason is that the

fundamental group 7Ti(SLnR) is infinite when n — 2 (namely, it is infinite cyclic)

and it is finite otherwise (it is of order 2 when n > 3).

More precisely, for any a in SL„j4 (where A is a commutative ring with 1 such

as A = Rx or Rx), denote by /^(a) the least k such that a is a product of k

elementary matrices over A. If no such k exists, i.e. a is outside EnA, we set

Ia{oí) — oo. As in [3], e„(A) denotes the supremum of Ia{oi), where a ranges over

EnA.

THEOREM 1. Let X be a topological space, A = Rx or Rx as above. Then

(a) e2{A) < oo if and only ifRY = R for every connected component Y of X; (b)

Ia(&) < co for all a in SL2A with n(a) — 0 if and only if X is pseudocompact, i.e.
Rx _ r>X— "0 '

Now we consider the case n > 3.

THEOREM 2. For any integers n > 3 and d > 0 there is a natural number z

such that I a (a) < z for A = Rx or Rx with any normal topological space X of

dimension d and any a in SLnA with n(a) = 0. In particular, en(A) < z.

As a consequence of Theorem 2 (which is extracted here from results of [1, 2])

we obtain that SLnA/EnA is a homotopy type invariant of X for finite dimensional

spaces X if n > 3. This was proved in [6] for X = R and in [4] for X = R3 by

different methods.

It is easy to extend Theorems 1 and 2 to subrings A of Rx different from Rx

and Rx, compare with [6]. This is because of the following fact.

PROPOSITION 3. Let A be as in Theorem 1 and B is a subring with 1 of A

such that B is dense in A and GLiB is open in B, both in the topology of uniform

convergence.  Then \en(B) — en(yl)| < (n + 3)(n — 1) for every n.

Note that the condition that GLiß is open in B, i.e. fB = B for every function

f va B sufficiently close to 1, cannot be dropped. The following example shows

this. Let X be the unit interval 0 < x < 1 and B = R[:r], the polynomial ring. In

this example, SLnB = EnB for all n, but en(B) — 00 for each n > 2 [5]. At the

same time, B is dense in A = Rx = Rx and en(A) < 00 for n > 3 by Theorem 1.

Next we consider the ring Cx of all continuous functions X —* C, the complex

numbers, and its subring Cx of bounded functions.

THEOREM 4. For any natural number n and an integer d > 0 there is a natural

number z' such that Ia{<x) < z' for any normal topological space X of dimension d

and any matrix a in SLnA with w(a) = 0, where A = Cx or Cx. In particular,

en{A) < z' < 00 for all n.

COROLLARY 5. For each natural number n and an integer d > 0 there is a

natural number z" such that en(B) < z" < 00 for any dense subring B with 1 of A

with GLi-B open in B, where A is as in Theorem 4.

Note that Cx is endowed with the topology of the uniform convergence, and that

the constant z" depends only on n and the dimension of X.  We do not give any
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explicit bounds in this paper, although the proofs in [1, 2] seem to be constructive

enough to yield some explicit bounds.

ACKNOWLEDGEMENTS. I discussed SKi(Rx) and related topics with many

mathematicians. Particularly useful were conversations with M. Freedman in Febru-

ary 1987. A. Ocneanu and the referee corrected a few misprints.

PROOF OF THEOREM l. Let X be a topological space, A = Rx or Rx as in

Theorem 1. For any / E Rx we set

= / cos(/)     sin(/) \ x m x x

\-sin(/)    cos(/)y u u

For any / 6 Cx, let ||/|| = sup |/(«)|, where x ranges over X.

LEMMA 6. Let a be a product of k elementary matrices in SL2A with k > 1.

Then a has the form 8e{pf), where e is an elementary matrix, 8 is a diagonal

matrix, / € Rx and ||/|| < (ifc - l)ir/2.

PROOF. We proceed by induction on k. When k = 1, we can take 8 = l2,

/ = 0. Assume now that k > 2 and a = £i • • •£* with elementary matrices e¿. By

the induction hypothesis, e2 ■ ■ ■ Sk = 6'e'(p(f')) with an elementary e', diagonal 8',

and ||/'|| < [k — 2)ir/2. If the elementary matrices t\ and e' are of the same type,

i.e. £\s' is an elementary matrix, then a = 8' (S1-1 eiS' e')(p(f')) is the required

representation, i.e. we can take 8 — 8', e = 8~lE\8e', f = f. Assume now that

e',£i are not of the same type, that is either £i E A1'2 and e' E A2,1, or ex E A2'1

and e' E A1'2. Consider the first case (the second one is similar).

Then 8'~1ei8'e' = bl'2c2'1 with b and c in A. Applying the Gram-Schmidt

process to the rows of this matrix, we obtain

.12 2 1 _/l + fcc    b\_fl/e   0\(e(l +be)     eb

' \    c        1 )~ \  0     e ) \     c/e        1/e

withe=(l+c2)1/2 >0,

/e(l + 6c)     eb\   _(l    b + c + cbc\(

V     c/e        1/e) ~\0 1 A

= {b + c + cbc)1'2pf"

with (c/e, 1/e) = (-sin(/"),cos(/")) and ||/"|| < tt/2.

Thus, a = £!••■£* = ei6'ef{p{ñ) = 8'(8'-1e18')e'(pf) = b'^c^pf =
Sepf, where

8 = 8'i1!"   °\ 0     e

is a diagonal matrix, e = (b + c + cbc)1'2 is an elementary matrix, and / = /' + /"

with U/H < ||/'|| + ||/"|| < (k - 2)tt/2 + tt/2 = (*- 1)tt/2.
Lemma 6 is proved.

COROLLARY 7.   If X is connected, then for any g ^0 in A we have

U{pg) > (sup(ff) - mf{g))/ir + 1.

PROOF. Suppose that pg is a product of k elementary matrices. Then by

Lemma 6, pg = 8epf with diagonal 6, elementary e, and ||/|| < (k — l)n/2.   It

1/e    —c/e

c/e     1/e
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follows that g = I2, and 8 = 12 or —12, hence / — g = 2irm or 7r + 27rm with

a continuous function m: X —» Z (the integers). Since X is connected, m is a

constant. Therefore, sup(ff) - \ni{g) = sup(f) - inf(/) < 2||/|| < {k - 1)tt. Thus,

k > 1 + (sup(/) - inf(/))/7r = (sup(g) - inf((?))/7r + 1. The corollary is proved.

PROPOSITION 8.   For any f in A, we have U(pf) < 2(sup(/) - inf(/))/7r + 6.

PROOF. If / is not bounded, there is nothing to prove. So we can assume that /

is bounded, i.e. / e Rx, i.e. r = sup(/) - inf(/) < 00. Set t = (sup(/) + inf(/))/2

and write f = t + (f — t), where t means a constant function and [f — t\ < r/2

everywhere on X. We have to write pf as a product of k < 2r/-K + 6 elementary

matrices over A. Set s = [r/n + 1].

We have pf = pt(p{{f -t)/s))s. Note that \{f-t)/s\ < r/2s = r/2{[r/ir + 1]) <

7r/2. So cos((/-i)/s) E GLiA. Therefore p({f—i)/s) is a product of two elementary

matrices and a diagonal matrix, hence pf is a product of p{t), a diagonal matrix,

and 2s elementary matrices. The product of the constant matrix pt and the diagonal

matrix has an invertible entry in the first column, so it is the product of at most 4

elementary matrices. Thus, pf is the product of 2s + 4 < 2r/7r + 2 + 4 = 2r/7r + 6

elementary matrices. This proves the proposition.

Now we are prepared to prove Theorem 1. The case of empty X is trivial, so let

X be nonempty.

To prove part (a) of Theorem 1, suppose first that Ry = R for every connected

component Y of X. Then Rx = Rx' and Rx = Rx , where X' is the discrete set

of connected components of X. So e2(A) = e2(R) = 4 < 00.

Suppose now that Ry ^ R (or, equivalently Ry ^ R), for some connected

component Y of X. We will show that then e2(B) = 00 for B = Rv and for

B = RY. This will imply that e2(.A) = 00.

Pick a nonconstant function / in Ry. By Corollary 7 applied to Y instead of

X, Ißipifm)) > m(sup(/) — inf(/))/7T +1 for any natural number m. Taking large

m, we conclude that e2(B) = 00.

To prove Theorem 1(b), consider the exact sequence [6] (see also [1, 2])

0 -» Rx/Rx - SL2A/E2A -* k1(X) -» 0.

The sequence says that X is pseudocompact, if and only if SL2A/E2A = 7r1(X),

i.e. if and only if a E E2A for every a in SL2^4 with 7r(a) = 0.

PROOF OF THEOREM 2. If the theorem is wrong, then for some n > 3 and

d > 0 there is a sequence X(i) of normal topological spaces of dimension d and

ce(i) E SLnA(i), where A{i) = Rx(î) or RX(l) depending on whether A = Rx or

Rx in the theorem, such that ir(a(i)) = 0 for all i and lA(i){a{i)) —* 00. In the

case A = Rx, we can bring each a(i) to SOnA(i) by (n + 6)(n - l)/2 addition

operations [6, Lemma 21], so we can assume that á{i) E SOnA(i).

We define X to be the disjoint union of all X(i). The matrices a(i) E SL„ A(i)

give a matrix a in SL„v4 whose restriction to X(i) is a(i). We have 7r(a) = 0,

i.e. the corresponding map X —* SLnR is homotopic to the trivial map X —► 1„.

Now we invoke results of [1, 2] to conclude that the map X —> SL„R is uniformly

homotopic to the trivial map.

First of all, Gram-Schmidt's process [6] reduces the matrix a in SL„^1 (as well

as its homotopy to the trivial map) to a matrix /:  X —+ SOnR in the special
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orthogonal group (of the sum of n squares) SO„j4 by addition operations (resp.

to a homotopy of / to the trivial map into this subgroup). Since n > 3, the

fundamental group ^SOnR = Z/2Z is finite. Since X is finite dimensional and

normal, Theorem 1 of [1] (see [2] for a shorter and a great deal more transparent

proof) gives the desired conclusion.

Thus, / is uniformly homotopic to the trivial map in SOnR, i.e. the correspond-

ing matrix in SOn^4 belongs to the connected component of 1„, hence a belongs to

the connected component of 1„ in SL„A, where SL„^4 is endowed with the topology

induced by the uniform convergence topology on A.

It is known (see, for example, [6, Theorem 2]) that this component coincides

with EnA. So a is a product of (finitely many) elementary matrices. Restriction

to X{i) yields that each a(i) is the product of a bounded (uniformly in i) num-

ber of elementary matrices over A(i). This contradicts to our choice of a(i) with

lA(i){a{i)) —* co. So Theorem 2 is proved.

REMARK. The condition that X is normal can be easily dropped; for arbitrary

X, the dimension should be understood in the sense of [7], i.e. it is sr(A) — 1. It is

not clear how z depends on d or whether a uniform upper bound exists. Obviously,

z cannot be taken less than n2 — 1, the dimension of SLnR.

Proof of Proposition 3.

LEMMA 9. Let B be a commutative topological ring with 1 such that GLii? is

open in B. Then ls{ce) < (n + 3)(n — 1) for any n and any matrix a in SL„ß

sufficiently close to 1„.

PROOF. It is clear that every a sufficiently close to ln has the form /?7 with

a lower triangular ß with ones along the main diagonal and an upper triangular

matrix 7. We have lß{ß) < n(n — l)/2, and Ib{"i) < (n + 6)(n — l)/2 by [6, Lemma

21]. So lB{a) < n{n - l)/2 + (n + 6)(n - l)/2 = {n + 3)(n - 1).

Let us prove now Proposition 3. Let a E EnB. We can write a as a product of

k = Ia{o) elementary matrices over A. Using that B is dense in A we can write

a as a product of k elementary matrices over B and a matrix a' arbitrarily close

to ln. By Lemma 9, a' is a product of (n + 3)(n — 1) elementary matrices. So

U(a) < lß(a) < Ia{oi) + (n + 3)(n - 1) for any a in EnB. Therefore, en(B) <

en{A) + {n + 3){n-l).

Let now a E EnA. Since B is dense in A, we can write a = ßi with ß E EnB

and 7 arbitrarily close to ln. So Ia{ch) < lA{ß) + {n + 3)(n - 1), by Lemma 9

applied to A instead of B. So, en(A) < en(B) + (n + 3)(n - 1).

Proposition 3 is proved.

PROOF OF THEOREM 4. If the theorem is wrong, then for some n > 2 there is

a sequence X(i) of normal topological spaces of dimension d and a(i) E SLn A(i),

where A(i) = CXW or C0 depending on whether A = Cx or Cx in the theorem,

such that ir(a(i)) = 0 for all i and Ia(í){oí{í)) —+ 00. In the case A = Cx, we can

bring each a(i) to SVnA(i) by (n + 6)(n — l)/2 addition operations [6, Lemma 21],

so we can assume that a(i) E SUn,4(2).

We define X to be the disjoint union of all X(i). The matrices a(i) E SLnA(i)

give a matrix a in SL„.A whose restriction to X(i) is a(i). We have 7t(q) = 0. By

[1, 2], a belongs to the connected component of 1„, where SLnA is endowed with
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746 L. N. VASERSTEIN

the topology induced by the uniform convergence topology on A (here we used that

7Tj(SL„R) is trivial).

It is known that this component coincides with EnA. So a is a product of

(finitely many) elementary matrices. Restriction to X(z) yields that each a(i) is

the product of a bounded (uniformly in i) number of elementary matrices over A{i).

This contradicts our choice of a{i) with Zjt(t)(a(')) —* oo.

So Theorem 4 is proved.

PROOF OF COROLLARY 5. In the case A = Cx, we argue as in the proof of

Proposition 3 to conclude that /¿(a) < lß{a) < Ia{oi) + (n + 3)(n— 1) for each a in

SLnS, hence en{B) < en(A) + (n+3){n-l), and that en(A) < e„(S) + (n+3)(n-l).

Thus, \en(B) - en(A)\ < (n + 3){n - 1), so we can take z" = z' + (n + 3){n - 1).
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