
Reduction of Conductance Based Models with Slow

Synapses to

Neural Nets

Bard Ermentrout ∗

October 10, 2008

Abstract

The method of averaging and a detailed bifurcation calculation are
used to reduce a system of synaptically coupled neurons to a Hopfield
type continuous time neural network. Due to some special properties
of the bifurcation, explicit averaging is not required and the reduction
becomes a simple algebraic problem. The resultant calculations show
one to derive a new type of “squashing function” whose properties are
directly related to the detailed ionic mechanisms of the membrane.
Frequency encoding as opposed to amplitude encoding emerges in a
natural fashion from the theory. The full system and the reduced
system are numerically compared.

1 Introduction

The appearance of large scale modeling tools for “biophysically realistic”
models in neurobiology has led to increasingly complicated systems of non-
linear equations that defy any type of mathematical or heuristic analysis
(Wilson and Bower 1989, Traub and Miles 1991) Supporters of this ap-
proach argue that all of the added complexity is necessary in order to pro-
duce results that can be matched to experimental data. In contrast are
the very simple models that are based on firing rate (Hopfield and Tank
1986, Wilson and Cowan 1972) which are easily analysed and computation-
ally simple. These models inevitably invoke a sigmoid nonlinear transfer
function for the current to firing rate relationship. The motivation for this
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is generally heuristic. In a recent paper, Rinzel and Frankel (1991) show
that for some types of membrane models, one can explicitly derive neural
network-like equations from the biophysics by averaging and assuming slow
synapses. Our approach is similar with two important exceptions that we
outline in detail below.

Consider the following system of coupled neurons:

C
dVj

dt
+ Iion

j (Vj , ~wj) =
∑

k

λjksk(t)(V
rev
k − Vj) + Iappl

j (1.1)

d~wj

dt
= q(Vj, ~wj) (1.2)

dsj

dt
= ǫ(ŝj(Vj) − sj) (1.3)

The jth cell of the network is represented by its potential, Vj and all of the
auxiliary channel variables that make up the dynamics for the membrane,
~wj . (For the Hodgkin-Huxley equations, these would be m,n, h.) The term

Iappl
j is any tonic applied current. Finally, the synapses are modeled by

simple first order dynamics and act to hyperpolarize, shunt, or depolarize
the postsynaptic cell. Associated with each neuron is a synaptic channel
whose dynamics is governed by the variable sj which depends in a (gener-
ally nonlinear) manner on the somatic potential. Thus, one can think of
sj as being the fraction of open channels due to the presynaptic potential.
The functions ŝj have maxima of 1 and minima of 0. The effective maximal
conductances of the synapses between the cells are in the nonnegative num-
bers λjk and the reversal potentials of each of the synapses are V rev

j . Our
goal is to derive equations that involve only the sj variables and thus reduce
the complexity of the model yet retain the qualitative (and perhaps quanti-
tative) features of the original. (Note that we are explicitly assuming that
the synapses from a given neuron, k share the same synaptic dependencies,
sk. If this is unreasonable for a particular model, then one must include a
different variable for each of the different synaptic dependencies of a given
neuron. Nevertheless, the techniques of this article can still be used.)

The main idea is to exploit the smallness of ǫ and thus invoke the av-
eraging theorem on the slow synaptic equations. Each of the slow synapses
s1, . . . , sn is held constant and the membrane dynamics equations are solved
for the potentials, Vj(t; s1, . . . , sn). The potentials, of course, naturally de-
pend on the values of the synapses. We will assume that the potentials
are either constant or periodic with period, T (s1, . . . , sn). (If they are con-
stant, one can take T = 1 for example.) Once the potentials are found, one
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then averages the slow synaptic equations over one period of the membrane
dynamics obtaining

dsj

dt
= ǫ(Sj(s1, . . . , sn) − sj) (1.4)

where

Sj(s1, . . . , sn) =
1

Tj(s1, . . . , sn)

∫ Tj(s1,...,sn)

0
ŝj(Vj(t; s1, . . . , sn))dt. (1.5)

Our goal is to explicitly derive expressions for these dependencies and to
then compare the simplified or reduced system with the full model that
includes all of the fast membrane dynamics.

Many synapses in the nervous system are not slow and others which are
said to be slow are slow only in the sense that they have long lasting effects
(see, e.g., [7], Chapter 11). Thus, one must view this work as an approx-
imation of what really happens and as a means of converting full spiking
models to “firing rate” models while maintaining quantitative features of
the latter. While we have explicitly assumed that the synapses are slow in
order to derive the relevant equations, one does not need to be so specific as
to the separation of time scales between spiking and synaptic activity. The
main assumption is that the detailed phase and timing of individual spikes
in not important; that is , one is free to average over many spiking events.
If events are occurring far out on the dendritic tree, then the low-pass filter-
ing properties of long dendrites act in a manner similar to “slow synapses.”
Thus, one should regard the assumption of slowness as sufficient but not
necessary for the present reduction.

Rinzel and Frankel apply the same averaging methods to derive equations
for a pair of mutually coupled neurons that was motivated by an experimen-
tal preparation. In their paper, they require only cross connections with no
self-self interactions. Thus, they arrive at equations where Vj depends only
on sk where j = 1, 2, k = 2 for j = 1, and k = 1 for j = 2.

dsj

dτ
= ŝj(sk) − sj (1.6)

The key to their analysis is that they are able to numerically determine the
potential as a function of the strength of the synapses. They use a class
of membrane models that are called “class II” (see Rinzel and Ermentrout,
1989) where the transition from rest to repetitive firing occurs at a subcrit-
ical Hopf bifurcations and is typical of the Hodgkin-Huxley model [5]. This
latter assumption implies that the average potential exhibits hysteresis as a
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function of the synaptic drive. That is the functions ŝj(sk) are multivalued
for some interval of values of sk. Because of this hysteresis, they are able
to combine an excitatory cell and an inhibitory cell in a network as shown
in Figure 1 and obtain oscillations. It is well known that for smooth single
valued functions ŝj oscillations are impossible without self-excitatory inter-
actions (see, e.g. Rinzel and Ermentrout, 1989). If, however, one generalizes
their approach to include more than one type of synapse per cell or the ad-
dition of applied currents, then it is necessary to compute the voltages for
each set of possible synaptic values. This is a formidable numerical task.
The other feature of the Rinzel-Frankel analysis is that the nonlinearity ŝj

does not look like a typical Hopfield or Wilson-Cowan squashing function
due to the hysteresis phenomenon. This hysteresis can be avoided if the
bifurcation to periodic solutions is supercritical but then there are very del-
icate problems as the synapses slowly pass through the bifurcation point
(Baer et.al.,1989). (In fact, in this slow passage problem occurs in the sub-
critical case as well; the authors avoid its consequences by adding a small
amount of noise to the simulations.) Finally, in class II membranes, the
dependence of the frequency on the level of depolarization is discontinuous
and essentially piecewise quadratic. The amplitude of the potential varies
in a piecewise linear fashion. (See Figure 5.2 in [9].) Thus, the values of sj

in the Rinzel-Frankel model are not explicitly tied to the frequency of the
impulses as they are to the averaged magnitude of the potential.

In this paper, we consider use “class I” models of membranes instead of
“class II” membranes as the basis for the averaging. We show that this will
lead to a simpler form for the synaptic equations with the added benefits of
(i) obviating the complicated mathematical difficulties while passing through
the transition from rest to repetetive firing; (ii) suggesting a natural form
for the squashing function that is monotone increasing and which is very
similar to the firing rate curves of some cortical neurons; and (iii) making
very explicit the frequency encoding properties of the active membrane.
Note that this reduction requires that the membrane actually exhibit class I
dynamics and in those systems which class II dynamics occurs, the Rinzel-
Frankel reduction is appropriate.

In section 2, we review the membrane dynamics and show how the nec-
essary averages can be approximated by a simple algebraic expression. We
then apply this to a two-layer model with self-excitation and self-inhibition
as well as crossed connections. Comparisons between the full and the re-
duced models are given in the last section.
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2 Class I dynamics and firing rates

Ermentrout and Rinzel (1989) contrast the difference between class II and
class I membranes. The former include the well-known Hodgkin-Huxley
model while the latter include the model of Connors as well as models of
cortical cells with A currents (L. Abbott, personal communication.) Class II
axons have a transition from rest to repetitive firing that arises from a Hopf
bifurcation. As a consequence, the frequency goes from 0 spikes per second
to some finite nonzero rate and the average of the potential (in the case of
Rinzel and Frankel) has a discontinuous jump. As we discussed previously,
there is hysteresis so that the average value of the potential is as shown
Figure 2a.

In contrast to the dynamics of class II membranes, class I membranes
have a continuous transition from nonspiking to spiking both in the average
potential and in the firing rate of the membrane (see Figure 2b) A general
analysis of this type of bifurcation is given in Ermentrout and Kopell (1984)
with particular attention paid to slowly perturbed neural models (precisely
what we have here). In particular, we show that the frequency of the periodic
orbit is

ω = C(p∗)
√

[p − p∗]+ + O(|p − p∗|) (2.1)

where p is any parameter such that as p increases from below p∗, the mem-
brane switches into oscillations. (Here, [z]+ = z if z > 0 and vanishes for
z < 0.) There are several important advantages of this type of relation in so
far as coding of information by firing rate is concerned. First, the network is
extremely sensitive near threshold and thus a very large range of firing rates
is possible. This behavior is typical in continuous but non-differentiable
firing rate models. Secondly, slowly varying the parameter p yields the intu-
itively expected behavior of slowly varying the firing rate even as one crosses
the critical regime (cf Ermentrout and Kopell, Lemma 1.) In contrast, with
a class II membrane, there is bistability and thus an instant jump from no
firing to nearly maximal firing and a ramping effect where by, the system
may remain very close to rest even though the slowly moving parameter is
well past criticality (see Baer et,al.)

One can object that the computational problem of finding the average
of the potential as a function of possible many parameters still exists. How-
ever, as we will see, it turns out that the parametric computation of the
periodic solutions for the membrane can actually be reduced to an algebraic
computation of equilibria near criticality. Thus, the computation of hun-
dreds of periodic orbits is no longer necessary. Because of the special form
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of the membrane potential, the algebraic calculation is one of finding fixed
points to a scalar equation!

Recall from (1.3) that ŝ is the function which determines the fraction of
open channels as a function of the presynaptic potential. This is generally
a function of the potential, e.g., ŝ(V ) = [tanh(σ(V − Vth))]+. Here σ is the
sharpness of the nonlinearity. Consider the averaged synaptic function:

S(p) =
1

T (p)

∫ T (p)

0
ŝ(V (t; p))dt (2.2)

where p is a critical parameter on which the potential depends. Suppose
that ŝ is 0 if the membrane is at rest (and thus below threshold) and 1 if the
voltage is above threshold (e.g., σ is very large.) Let ξ(p) denote the amount
of time during one cycle that the potential is above threshold. Then, (2.2)
is simplified to

S(p) =
ω(p)ξ(p)

2π
(2.3)

where we have used the fact that T = 2π/ω. A fortuitous property of class I
membranes is that the time for which the spike is above threshold is largely
independent of the period of the spike so that ξ(p) is essentially constant.
(This is certainly true near threshold and we have found it to be empirically
valid in a wide parameter range.) Thus, combining this with (2.1), we obtain
the very simple squashing function:

S(p) = C(p∗)
√

([p − p∗]+). (2.4)

where C(p) and of course p∗ depend on the other parameters in the model.
In deriving (2.4) we have made two simplifications (i) the actual frequency
is of the form (2.1) only near criticality and (ii) the synaptic function ŝ may
be more graded than a simple on/off. The first simplification seems to be
pretty reasonable; prior calculations (see Rinzel and Ermentrout) indicate
the square-root relationship holds over a wide range of the parameter. The
second simplification is not particularly important as the main effect is to
slightly change the constant C(p∗).

The squashing function is completely determined if we can compute p∗

and C(p∗) as a function of all of the remaining parameters in the membrane.
As we remarked in the above paragraph, the actual constant C(p∗) is not
that important, so that the crucial calculation is to find the critical value p∗

as a function of the remaining parameters. Since only the injected currents
and the other synapses will be variable, we can limit the number of param-
eters to vary. In the next section, we compute p∗ and thus obtain a closed
form equation for the synaptic activities.
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3 Computation of the squashing function for a

simple model

In this section, we detail the calculations of p∗ and C(p∗) for the dimension-
less Morris-Lecar membrane model (see Rinzel and Ermentrout; Morris and
Lecar) with excitatory and inhibitory synapses and injected current. The
explicit dimensionless equations are:

dV

dt
= I + ge(Ve − V ) + gi(Vi − V ) + Iion(V,w) (3.1)

dw

dt
=

w∞(V ) − w

τw(V )
(3.2)

where

Iion(V,w) = m∞(V )(1 − V ) + 0.5(−0.5 − V ) + 2w(−0.7 − V )

m∞(V ) = .5(1 + tanh((V + 0.01)/0.15))

w∞(V ) = .5(1 + tanh((V − 0.05)/0.1))

τw(V ) = 1/(3 cosh(((V − 0.05)/0.2)))

and Ve = 1, Vi = −0.7.
The transition from rest to oscillation occurs in class I membranes via a

saddle-node bifurcation of an equilibrium. Thus, if the differential equation
is

dx

dt
= f(x, p)

we want to solve f(x, p∗) = 0 where x = x(p) is a vector of rest states
depending on p such that the determinant of the Jacobi matrix of f with
respect to x evaluated at x(p∗) is zero (see Holmes and Guckenheimer, 1985).
For membrane models, this is very simple. Let V denote the membrane
potential and w denote the gating variable(s). Each of the gating variables
is set to its steady state value, w = w∞(V ) and thus the equilibrium for the
voltage satisfies:

0 = Iionic(V,w∞(V )) + ge(Ve − V ) + gi(Vi − V ) + I (3.3)

where ge and gi are the total excitatory and inhibitory conductances, Vj are
the reversal potentials and I is the total applied current. For each (ge, gi, I)
we find a rest state, V̄ . Next, we want this to be a saddle-node point, so we
want the derivative of this function to vanish:

0 =
dIionic(V,w∞(V ))

dV
− ge − gi. (3.4)
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Suppose we want to view ge as the parameter which moves us from rest to
repetitive firing. Then, we can solve (3.3) for ge(V, I, gi), substitute it into
(3.4) and use a root finder to get the critical value of V ∗ and thus g∗e . This is a
simple algebraic calculation and results in g∗e(gi, I), a two-parameter surface
of critical values of the excitatory conductance. A local bifurcation analysis
at this point enables us to compute C(p∗) as well. (The local bifurcation
calculation is tedious but routine (see[4]) and involves no more that a few
Taylor series terms of the nonlinearities and some trivial linear algebra. In
particular, no numerical calculations of periodic orbits are required. ) The
end result of this calculation is shown in Figure 3a,b. The figure for the
critical value of the excitatory conductance suggests that the relationship
between it and the parameters gi and I is almost linear. We have used a
least squares fit of this and find that

g∗e(gi, I) ≈ a + bI + cgi + dIgi (3.5)

where a = 0.02316, b = −0.7689, c = 0.3468, d = −0.1694. Note that the
dependence is not strictly linear; there is a small interaction term of the
inhibitory conductance with the current.

Using this we can obtain the slow equations for a Wilson-Cowan type
two-cell network of excitatory and inhibitory cells with self-excitatory con-
nections (in contrast to Figure 1.) The conductances are related to the
synapses by the relations, gαβ = λαβsα where α, β are either e or i. Thus,
we arrive at the coupled network:

τe
dse

dt
+ se = Ce

√

[λeese − g∗e(λiesi, Ie)]+ (3.6)

τi

dsi

dt
+ si = Ci

√

[λeise − g∗e(λiisi, Ii)]+ (3.7)

Note that Ce and Ci also depend on g∗e so that the dependence is not
strictly a square-root. However, as illustrated in Figure 3b, the bifurcation
coefficient is close to constant, so that throughout the rest of this paper,
we have chosen it as such. Note that the equations are not strictly additive
as would be the case in a “pure” Hopfield network. This is because the
inhibitory interactions are not just the negative of the excitatory interac-
tions. Both are multiplied by their respective reversal potentials. Also, note
that one does not have to compute the critical point with respect to ge and
could just as easily compute it with respect to some other parameter such
as gi. The function g∗e is the critical value of excitatory conductance as a
function of all of the other parameters and thus there is no “symmetry” in
the notation for the two equations (3.6,3.7).
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Since the computation of g∗e is purely local (that is, we need only compute
rest states and their stability) for any given model, we can find g∗e as a
function of gi and I. Once this is done, a curve fitting algorithm can be
used to approximate the surface. Finally, the results can be substituted into
(3.6-3.7) to arrive at a neural network model that is directly derived from
the biophysical parameters. If one wishes to investigate a large network of
such neurons, then the calculation remains simple as long as the only types
of synapses are excitatory and inhibitory. As different synaptic types are
added, one must compute g∗e as a function of these additional parameters.
Because the global rhythmic behavior of class I membranes is so stereotypical
(at least, near threshold, and for many models, well beyond threshold) , it
is unnecessary to compute the dynamical periodic solutions numerically and
so the computational complexity is reduced considerably.

There is no obvious manner in which the present computation could be
extended to neurons which intrinsically burst or which have slow modula-
tory processes such as spike adaptation. However, such slow modulatory
processes could be incorporated into the dynamic equations along along
with the firing rate equations. The reduction would then no longer lead to
a single equation for each neuron, but rather several corresponding to each
of the modulatory dynamic variables.

4 Some numerical comparisons

In this section, we compare the simplified dynamics with the membrane
models. In particular, the simple models predict the onset of oscillations in
the firing rate of the full system (bursting) as well as transient excitation
and bistability. As a final calculation, we illustrate spatial patterning in
a two-layer multi-neuron network and compare it to a reduced model of
the same type. For the present calculations, we have set the Morris-Lecar
parameters as in Figure 3 and varied only the synaptic time constants τe, τi,
currents, Ie, Ii, and weights, λjk.

In Figure 4, a typical nullcline configuration for (3.6,3.7) is shown when
there is a unique steady state. If τi is not too small, then it is unstable and as
can be seen in the figure, there is a stable periodic solution. Using the same
values of the network parameters, we integrate (1.1) with ǫ = .01. Figure 5
shows the phase-portrait of the averaged and the full models. There is good
agreement in the shape of the oscillation. Figure 6b shows the time course
of se for the averaged equations and Figure 6a shows that of Ve and se for
the full model. The slow oscillation of the synaptic activities is reflected by
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the bursting activity of the potential. One point that is evident is that the
period of the full oscillation is roughly the same as that of the averaged.
Indeed, the period of the full model is about 5.405 and that of the averaged
is 5.45 (in slow time units.) Thus, not only is there qualitative agreement,
but quantitative agreement between the full and reduced models.

Figure 7a shows the nullclines and phase-plane for a set of parameters for
which the reduced model is either excitable (τi ≈ 1) or bistable (τi << 1.)
Figure 7b compares the phase-planes of the full and reduced models in the
excitable regime. In the bistable regime, one finds that the potentials exist
either silently or in an oscillatory mode corresponding to the upper steady-
state of the synaptic activities. The reduced model is a good predictor of
transient activity as well as the sustained bursting shown in the previous
example.

As a final simulation that truly illustrates the power of the method, we
consider a two-layer network of 20 cells coupled in a ring of length 2π as
shown in Figure 8. The network equations for the reduced model have the
form:

τe
dsj

e

dt
+ sj

e (4.1)

= Ce

√

[λee

∑

k

we(j − k)sk
e − g∗e(λie

∑

k

wi(j − k)si, Ie)]+
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τi
dsj

i

dt
+ sj

i (4.2)

= Ci

√

[λei

∑

k

we(j − k)sk
e − g∗e(λii

∑

k

wi(j − k)sk
i , Ii)]+

Here we and wi are periodized Gaussian weights

wα(j) = Bα

∞
∑

n=−∞

exp(−
j + 2πn

σα

2

)

where α is either e or i and the constants Bα are chosen so that
∑

∞

n=−∞
wα(n) =

1. Setting σe = .5 and σi = 2.0 we obtain a network with lateral inhibitory
properties. The parameters Ie and Ii are externally applied stimuli to the
network. This network is integrated numerically starting with initial data
with two peaks and a random perturbation. The steady state spatial pro-
files of the reduced and the averaged models are shown in Figure 9a. The
spacing, width, and height of the peaks agrees well between the two regimes.
Figure 9b shows a space-time plot of the potentials of the excitatory cells in
the fast time scale (thus showing the individual spikes of the active region.)
The strip is broken into spatially distinct regimes of oscillatory and silent
cells.

These simulations show that there is very good qualitative and even
quantitative agreement between the reduced system and the full model for
simple two cell networks as well as for spatially extended systems. There is
a huge increase in computational speed for the simplified models and thus
one can use them to find “interesting” parameter ranges before attempting
to simulate the full model.

The main feature of this method is that it makes explicit the dependence
of the frequency encoding of a neuron on its biophysical properties. By using
membranes with so called class I excitability, the actual computation of the
reduced models is reduced to an algebraic problem in combination with a
curve fitting algorithm. We suggest that to the usual types of squashing
functions seen in the neural network literature, one add the square-root
model since it can be explicitly derived from the conductance properties of
nerve membranes. We finally want to point out that this reduction justifies
the use of so-called connectionist models under the assumptions that the
synaptic interactions are slow compared to the ionic flows in the membrane.
Furthermore, the time scales of the present reduced models are not those of
the membrane time constant to which many of the Hopfield models refer.
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Nevertheless, many neuronal processes occur at time scales slower than the
action potentials; thus our technique can be useful in understanding these
phenomena.

Figures

1. Two cell network with reciprocal connections. No self-connections are
allowed.

E

I
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2. Average potential and frequency of firing as a function of current for
(a) class II membranes; (b) class I membranes.
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3. Critical surface (a) and bifurcation coefficient (b) for dimensionless
Morris-Lecar model (3.1)
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4. Nullclines and trajectory for (3.6-3.7). Nullclines are shown in dark
lines, trajectory in light lines. Parameters are τe = τi = 1, Ie =
0.05, Ii = −0.1, and λee = .5, λei = .6, λie = 1, λii = 0.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
se

si

se’=0

si‘=0

15



5. Phase-plane comparing full and averaged models for parameters of
figures 3 and 4.
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6. Time course of (a) full model showing excitatory potential and synap-
tic activity; (b) reduced model showing excitatory synaptic activity.
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7. (a) Nullclines and trajectory for (3.6-3.7) in the excitable regime. Pa-
rameters as in Figure 4 except that Ie = 0.0. Circle indicates the
initial condition. (b) Comparison of phase-plane of full and reduced
models.
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8. Schematic of a network of connected cells in a ring.
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9. Simulation of the ring. Parameters are τe = τi = 1, Ie = 0.1, Ii = 0,
and λee = .2, λei = .6, λie = .8, λii = 0. (a) Spatial profile of the
reduced and full excitatory synaptic activity. (b) Potential of the
excitatory cell as a function of space and time. (Note that this is in
the fast time-scale so that individual spikes can be seen in the active
regions.)
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