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Abstract. The main emphases of this paper are control concepts, which reduce the contact force in case of
rubbing between rotor and stator. This is achieved by designing a controller in such a way that the auxiliary
bearing (stator) tracks the given rotor trajectory and by activating the controller before the occurrence of the first
contact. Then the control system assures smooth transition to the permanent contact condition (full annular
rub), so that multi-contacts are avoided and the complete system will be stable.
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1 Introduction

Because of continuous performance increase of turbo machines it comes to rubbing between components of the
rotor and the housing. These unwanted rubbing processes are complicated mechanisms which induce vibrations
with the consequence of emerging contact forces, causing not only high impact loads, but also a multitude of
vibrations with large amplitudes or even instabilities. This can lead to heavy damage of the machine or to
complete destruction. In order to avoid this, a method has been investigated with the help of controlled active
bearings to minimize the contact forces. An auxiliary bearing exerts control forces on the rotating system, which
is connected to the base through electromagnetic actuators. Because of problem specific control strategies multi
impacts during rubbing can be avoided and the amplitude of the single impacts can be drastically reduced,
which will be shown by numeric simulations.

The mathematical model characterizes the rotor as an elastic shaft which is pivoted over two passive bearings
with linear characteristic curves. The theoretical approach takes into account the degrees of freedom of the
bending and of the torsion of the rotor. The used rigid-body contact model, which is described as constraints
between contact forces and relative kinematics, allows the calculations of the normal and tangential momentum
by means of a time-stepping algorithm. The complete equation of motions are being set up as hybrid multi-body
systems (HMBS), whereas coupling between rotor and active auxiliary bearing exists only during the appearance
of contact forces. The introduced concepts have been validated with numerical computations and are about to
be proven experimentally.

Several authors presented control concepts for minimizing the contact forces in rotor systems. For example,
Jiang and Ulbrich (2003) developed optimal control for a Laval rotor. His control design bases on a stability
investigation, when the system is in full annular rub. This means that the amplitude and the frequency of the
vibrations of the rotor and the auxiliary bearing are both the same and constant. Ulbrich et. al. (2004) showed
that it is possible to reduce the contact force between the flexible rotor and the auxiliary bearing. The controller
has been activated before the first contact occurs. Therefore a smooth transition to full annular rub is ensured.
Yigit and Christouforou (2000) used a linearized drill model and a quadratic cost functional to cancel vibration
from friction between bore hole and drill.

2 Modelling of the equations of motion

The computer model of the overall system is depicted in Fig. 1. It consists of an elastic rotor, which is held
by two isotropic ball bearings, an auxiliary bearing connected to electromagnetic actuators, a magnetic bearing
to create realistic excitations to the rotor and an asynchronous motor as controlled driving unit.
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Figure 1: rotor - active auxiliary bearing system

2.1 Rotor

The following assumptions have been made. The rotor has a continuous mass distribution and has been
modelled by the Euler-Bernoulli beam theory. The elastic deformation of the beam for bending and torsion are
small and of first order. The moment of inertia, inner damping, gyroscopic effects and the rotation symmetry
have been accounted for in the mathematical model.

The derivation of the equations of motion of the rotor has been done by the principles of linear and angular
momentum. This method grants a modular and physical transparent description also of complex dynamical
systems. Description of the rotor system took place in the fixed Cartesian coordinates so that the center line
of the shaft lies on the z-axis. To separate the coordinates the Ritz approach has been adopted. The vectors
u(z) and ϑ(z) are the admissible shape functions with dimensions equal to the numbers of the shape functions.
From this follows:

Mrq̈r + (Dr + Gr)q̇r + (Sr + Nr)qr = hr (1)

Mr consist of mass matrix, Dr + Gr is the damping and skew gyroscopic matrix , Sr + Nr is the stiffness
and the skew circulatory symmetric matrix. The vector hr is the generalized outer force. The vector qr(t) =
[uT

x (t) uT
y (t) ϑT (z)]T is representing the generalized coordinates. The calculation of the matrices is pointed out

in detail by Bremer and Pfeiffer (1992), Bremer (1988), Ulbrich (1986) and others.

2.2 Active auxiliary bearing

Figure 2: electromagnetic actuator.

The schematic of the auxiliary bearing with the actuator is
shown in Fig. 1. The active support of the auxiliary bearing is
realized by two actuators with a 45o alignment, whereby the stiff-
ness is rotational symetric. Within these work a electromagnetic
actuator is utilized which is completely described in the disserta-
tion of Oberbeck (2002).

The model of this actuator is shown in Fig. 2. The active auxil-
iary bearing is assumed as a rigid body, which is connected through
damper-spring elements at the housing of the actuator to the base,
Fig. 1.

The equation of motion of the active auxiliary bearing is
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Figure 3: characteristic curve.

Mf q̈f (t) + Df q̇f (t) = F(qf , i) (2)

with qf as the degree of freedom in x, and y direction. Mf is
the mass matrix of the auxiliary bearing and the actuator. Df is
the matrix for the outer damping. F(qf , i) is the force vector of the
characteristic curve for both actuators.

The characteristic curve of the actuator as it is shown in
Fig. 3 depicts the relation between the force, the regulat-
ing distance and the coil current. To control these actua-
tors the voltage which is proportional to the coil current is
used.



2.3 Contact kinematics

Figure 4: planar contact.

The contact law is being formulated by the non-smooth characteristic
curve as described in Pfeiffer and Glocker (1996), Glocker (1995). Fol-
lowing the argumentation of these authors a unilateral contact can be
opened or closed during the time dependent process.

When the contact is closed (active contact) a pressure force can be
transferred through the contact point. Figure 4 shows a cross section
before contact of the auxiliary bearing and the rotor.

In order to analyze the contact kinematics a generalized vector q with
n dimensions is defined. The vectors qr and qf , which are defined by Eq.
(1) and (2), respectively have dimensions of n − 2 and 2.

q = [qT
r qT

f ]T ∈ IRn (3)

A matrix JT,f , JT,r, JR,r is defined as

JT,f =




0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


 ∈ IR3×n

JT,r =




uT (z) 0 0 0 0
0 uT (z) 0 0 0
0 0 0 0 0


 ∈ IR3×n

JR,r =




0 −u′T (z) 0 0 0
u′T (z) 0 0 0 0

0 0 ϑT (z) 0 0


 ∈ IR3×n

(4)

In Equation (4), JT,r and JR,r are the translatory and the rotatory Jacobian matrices and JT,f is the
translatory Jacobian matrix of the active auxiliary bearing. u(z), ϑ(z) are the vectors of the shape functions
of the rotor and u′(z) the derivation of u(z).

In Figure 4 is δ = |
−−−→
P1P2| the relative distance, n1, t1 normal and tangential vector and ẽ3 the basis vector of

the z-axis. ãb is defined by ãb = a × b.

δ =
√

qT [JT,r − JT,f ]T [JT,r − JT,f ]q
n1 = −δ−1[JT,r − JT,f ]q
t1 = ẽ3n1

(5)

The distance between the contact points (s1, s2) in Fig. 4 can be formulated in the following way:

gN = −rT
Dn1 = δ0 − δ

ġN = vT
s1n1 + vT

s2n2 = −δ−1qT [JT,r − JT,f ]T [JT,r − JT,f ]︸ ︷︷ ︸
A

q̇

ġT = vT
s1t1 + vT

s2n2 = δ−1qT [JT,r − JT,f ]T ẽT
3 [JT,r − JT,f ]︸ ︷︷ ︸

B

q̇ + rre
T
3 JR,r︸ ︷︷ ︸
c

q̇

(6)

gN is the norm of the distance, ġN , ġT are the norm of the tangential and relative velocity, respectively.
After the analysis of the contact kinematics the total differential of Eq. (6) will be discretized (first order
Tayler approximation) as already formulated in Stiegelmeyr (2001), Stiegelmeyr and Pfeiffer (1999). The finite
difference in the following equation is denoted as ∆.

dgN (q) =
∂gN

∂q︸︷︷︸
WT

N

dq → ∆gN (q) = WT
N∆q + O(2)

dġN (q̇,q) =
∂ġN

∂q̇︸︷︷︸
WT

N

dq̇ +
∂ġN

∂q︸︷︷︸
cWT

N

dq → ∆ġN (q̇,q) = WT
N∆q̇ + ŴT

N∆q + O(2)

dġT (q̇,q) =
∂ġT

∂q̇︸︷︷︸
WT

T

dq̇ +
∂ġT

∂q︸︷︷︸
cWT

T

dq → ∆ġT (q̇,q) = WT
T ∆q̇ + ŴT

T ∆q + O(2)

(7)



WN = −δ−1Aq WT = −δ−1[BT q + δcT ]

ŴN = δ−1[ġNWN − Aq̇] ŴT = δ−1[(ġT − cq̇)WN + Bq̇]
(8)

With the help of: ∆q = q(t + ∆t) − q(t) = ql+1 − ql, ∆gN = gN (q + ∆q) − gN (q) = gl+1
N − gl

N , ∆ġN =

gN (q̇ + ∆q̇,q + ∆q) − gN (q̇,q) = ġl+1
N − ġl

N und ∆ġT = gT (q̇ + ∆q̇,q + ∆q) − gT (q̇,q) = ġl+1
T − ġl

T .

Figure 5: Characteristic line for system with unilateral contact.

2.3.1 Unilateral constrain force

The equation of motion with unilateral contact in a more compact form:

Mq̈ = −h(q̇,q, t) + WNλN + WT λT (9)

Here λN and λT are the normal and tangential force. The vector WN and WT are the contact vectors from
Eq. (8) which projecting the contact forces in the configuration coordinates into the generalized coordinates.
The vector h contains all gyroscopic and active forces as well as all moments and will be defined in the sections
below.

The discretization of the acceleration in Eq. (9) is realized through the explicit Euler formula (Eq. 10) and
the velocity is discretized by the implicit rule (Eq. 11).

q̈ =
q̇l+1 − q̇l

∆t
(10)

q̇l+1 = q̇l + M−1[h + WT
NλN + WT

T λT ]∆t

ql+1 = ql + q̇l+1∆t
(11)

Equation (9), Eq. (10), Eq. (11) were inserted in Eq. (7) leading to the formula:

[
gN

ġT

]l+1

=

[
GNN∆t GNT ∆t

GTN GTT

] [
ΛN

ΛT

]
+

[
GN

GT

]
H∆t +

[
rN

rT

]
+

[
gN

ġT

]l

(12)

The forces were multiplied with ∆t, ΛN = λN∆t, ΛT = λT ∆t and H = h∆t. More abbreviations are listed
below:

GN = WT
NM−1 ; GT = [WT + ŴT ∆t]T M−1

GNN = GNWN ; GNT = GNWT ; GTN = GT WN ; GTT = GT WT

rN = WT
N q̇l∆t ; rT = ŴT

T q̇l∆t

The calculation of the momentum ΛN , ΛT , and accordingly the normal and tangential forces λN , λT are
derived from the left hand side of Fig. 5.

gl+1
N ≥ 0 λN ≥ 0 gl+1

N λN = 0

ġl+1
T = 0 | λT | −µλN ≤ 0

ġl+1
T 6= 0 λT − sign(ġl+1

T ) µλN = 0

(13)



2.3.2 Poisson’s impact law

The classical theory of impacts explains them as sudden changes of the motion state of a mass. These impacts
are dealt with on the momentum level. Therefore the discretization on the position level is omitted. To do this
Eq. (9) is reformulated as an equivalent mass equation.

Mdq̇ + dH − WNdΛN − WT dΛT = 0 (14)

The discretization of the Eq. (14) has already been done in Stiegelmeyr (2001). The author assumes that the
impact time in real systems is finite and therefore the part of the momentum dH can not be disregarded. Using
Poisson’s law the impact process will be separated into a compression and an expansion phase. The compression
starts at time tA and ends at tC . The expansion follows immediately and ends at time tE . The Equation (14)
bases on the discrete compression time τC = tC − tA, so that (d → ∆).

M ∆q̇︸︷︷︸
q̇
C
−q̇

A

= ∆H︸ ︷︷ ︸
HC

+WN ∆ΛN︸ ︷︷ ︸
ΛNC

+WT ∆ΛT︸ ︷︷ ︸
ΛT C

qC − qA = q̇CτC

(15)

The relative velocity at the end of the compression phase ġNC , ġTC , can be calculated analogously to Eq.
(12)

[
ġNC

ġTC

]
=

[
CNN CNT

CTN GTT

] [
ΛNC

ΛTC

]
+

[
CN

CT

]
HC +

[
rNC

rTC

]
+

[
ġA

ġA

]
(16)

With the following shortcuts:

CN = [WN + ŴNτC ]T M−1 ; CT = [WT + ŴT τC ]T M−1

CNN = CNWN ; CNT = CNWT ; CTN = CT WN ; CTT = GT WT

rNC = ŴT
N q̇AτC ; rTC = ŴT

T q̇AτC

The part in the middle of Fig. 5 shows the contact law for the compression phase in normal and tangential
contact direction.

ġNC ≥ 0 ΛNC ≥ 0 gNCΛNC = 0
ġTC = 0 | ΛTC | −µΛNC ≤ 0
ġTC 6= 0 ΛTC − sign(ġTC) µΛNC = 0

(17)

The relative velocity at the end of the expansion phase ġNE , ġTE possesses the same structure as in the
compression phase in Eq. (16). Swapping of the indices in Eq. (16) (C → E, A → C, τC → τE) with the
discrete expansion time τE = tE − tC , one gets

[
ġNE

ġTE

]
=

[
ENN ENT

ETN ETT

] [
ΛNE

ΛTE

]
+

[
EN

ET

]
HE +

[
rNE

rTE

]
+

[
ġNC

ġTC

]
(18)

During the expansion phase Poisson’s impact law was used in normal direction with (ΛNE = εNΛNC). Here
εN is the dissipation coefficient. The expansion law in tangential direction has been adopted from Beitelschmit
(1999). The displacement of the characteristic line on the right side in Fig. 5 of εNΛNC expresses the partly
elastic type of the expansion. It is assumed that the contact partners during the expansions can move against
each other, without sliding at the contact point. This effect considers the displacement of the left branch of the
characteristic line εNεT ΛTC with the impact number εT (0 ≤ εN ≤ 1) as the degree of the dissipation of the
tangential impact in the expansion phase.

ġNE ≥ 0 ΛNE − εNΛNC ≥ 0 ġNE(ΛNE − εNΛNC) = 0
ġTE − ġTE0 = 0 εNεT | ΛTC |≤ sign(ΛTC) ΛTE ≤ µΛNE

ġTE − ġTE0 > 0 ΛTE − sign(ΛTC) εNεT | ΛTC |= 0
ġTE − ġTE0 < 0 ΛTE − sign(ΛTC) µΛNE = 0

(19)



2.4 Overall system

With the help of

[
Mr 0

0 Mf

]

︸ ︷︷ ︸
M

[
q̈r

q̈f

]

︸ ︷︷ ︸
q̈

+

[
Dr + Gr(Ω) 0

0 Df

]

︸ ︷︷ ︸
D

[
q̇r

q̇f

]

︸ ︷︷ ︸
q̇

+

[
Sr + Nr(Ω, Ω̇) 0

0 0

]

︸ ︷︷ ︸
S

[
qr

qf

]

︸ ︷︷ ︸
q

and

h(q̇,q, i) = −Dq̇ − Sq + JT
T,r funw + JT

T,r fmag|z=zm
+ JT

R,r ldmo|z=zd︸ ︷︷ ︸
hq

+JT
F,r uakt︸ ︷︷ ︸

hu

the equation of motion can be described in compact form as
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Figure 6: Speed torque curve.

Mq̈ = hq + hu︸ ︷︷ ︸
h

+
[

WN WT

]
︸ ︷︷ ︸

W

[
λN

λT

]

︸ ︷︷ ︸
λ

(20)

With the mass matrix M, the damping matrix D and the
stiffness matrix S. The vector h, which contains all gyroscopic
effects, as well as all active forces and moments, is composed of
hq and the control force vector hu. JT,r, JR,r and JT,f which
have been described in Eq. (4) are the Jacobi matrices at the
magnetic bearing (z = zm) and at the torque (z = zd) as can be
seen in Fig. 1. The constrain matrix is W and the vector of the
contact force is λ. The characteristic curve of the torque ldmo is
shown in Fig. 6.

3 Control concept

The control concept should not only minimize the contact force but also account for the nonlinearity of the
actuator. The design of the controller should provide smooth contacts to ensure stability while the system is in
permanent contact.

uakt = arg min

(q̈,q̇,q)

{
gN

ġN

(21)

With arg min f(x) = value of x that minimizes f(x). The ġT will not be take in consideration in Eq. (21)
because a non-sliding contact would demand a very high backward whirl compared with the speed of rotation.

3.1 Sliding Control

Figure 7: Time variant surface s.

The main idea of sliding control explained in Khalil (2002), Slotine
and Le (1991), Friedland (1996), is the transformation of the problem
of tracking error into a problem of stabilizing a time dependent surface,
which will be presented in this section.

For designing the controller the mathematical description of the
system is taken.

q̈ = M−1(hq + Wλ)︸ ︷︷ ︸
f

+M−1JT
T,f︸ ︷︷ ︸

B

uakt = f(q̇,q, t) + Buakt (22)

First, introducing the vector q̃ = q − qd which defines the error
between the generalized coordinates q and the time variant vector qd.
This leads to

Q = [ q̃ T ˙̃q T ] T (23)



Then the time variant surface s is established. The abbreviation for the diagonal matrix is diag().

s(Q; t) = ˙̃q + diag(ψ) q̃ (24)

diag(ψ) is a positive-definite matrix. If the conditions s → 0 and ṡ → 0 are met then the stabilization of the
surface s can be assured. The calculation of s can be done after the reorganization of Eq. (22) and derivation of
Eq. (24). The vector function f in Eq. (22) is not exactly known because of the parameter λ and is estimated

by f̂ = M−1hq. The best approximation to a continuously control law is

ûakt = BT M(−f̂ + q̈d − diag(ψ) ˙̃q) (25)

In order to remove the discontinuity along s (chattering effect) caused by the controller, a boundary layer was
defined with the positive- definit matrix diag(ψ).

B(t) = {Q, | s(Q; t) |≤ φ} (26)

The boundary layer will be attractive if the controller fulfills the following criterions:

si ≥ φi →
d
dt

(si − φi) ≤ −ni

si ≤ −φi →
d
dt

(si − φi) ≥ ni

}
ṡ ≤ diag(φ − n) sign(s) (27)

With k =| f(q) − f̂(q) | and kd =| f(qd) − f̂(qd) | the derivation of the boundary layer is defined as

diag(k̄) = diag(k − kd) + diag(ψ)diag(φ) ; diag(φ̇) + diag(ψ) diag(φ) = diag(kd)

From this follows the control law

uakt = ûakt − diag(k̄) sat(diag(Φ)−1s) (28)

The trajectory inside the boundary layer can be expressed directly in terms of the variable s

1

2

d

dt
sT s ≤ −sT BBT diag(k̄)diag(Φ)−1s (29)

3.2 Feedback linearization und cross coupled feedback

To compensate the nonlinearity of the actuator a feedback-linearization has been applied. The basic principles
are stated in Khalil (2002), Slotine and Le (1991). The so linearized actuator is being used for two applications.
Firstly, the actuator is used in connection with the auxiliary bearing to stabilize the system when it comes to
rubbing and to minimize contact forces as previously explained. Secondly, it is used to simulate the behavior
of a passive rotor-auxiliary bearing system.

The cross coupled feedback is activated after the occurrence of the first small impact. The control law is:
−k(Ω)ẽ3JT,f q̇. With ẽ3, JT,f and q̇ according to the Eq. (5), Eq. (4), Eq. (3), respectively. The factor k

is determinated to provide a smooth transition to the steady state condition in order to avoid multi impacts.
Others stabilization contact force concepts can be found in Ulbrich (2004), Jiang und Ulbrich (2003).

4 Numerical results

The rotor-active auxiliary bearing used in the following simulation is shown in Fig. 1. First the rotor is on
a steady state orbit with a constant rotatory frequency of 50 Hertz. Then after 100 ms the rotor has passed
through five cycles, the magnet bearing is activated and produces a rotor amplitude larger than the air gap
(0.5 mm). In order to minimize the impulse (Λ) or rather the contact force (λ) the controller is activated 4 ms
before the impacts occurs.

The first five plots (Fig. 8) show the performance of the sliding- and cross coupled feedback controller. The
first column presents the reduction of the impulse in the normal- und tangential direction and the stabilization
of the contact kinematics. The second column shows the stabilization of the gN → 0, ġN → 0 (Eq. 21) in order
to minimize the contact force. It can be seen in the last picture, that in case of a passive rotor-auxiliary bearing
(rotor rubbing without control), the contact force will guide the rotor system to the unstable state with a heavy
coupling between transversal- und torsional vibration.

The left picture of the Fig. 9 shows the course of the control force, as previously mentioned. The active
auxiliary bearing tracks the rotors trajectory and then stabilizes thes contact forces. The behaviour of the rotor
amplitude in x-axis (with-, without control) is showed in central figure. The last picture shows die coil current
in the actuators within a distinct time windows from 0.1 to 0.4 second. The actuators are controlled in such a



way that the active auxiliary bearing behaves as if it would be a ring supported by a symmetrical set of linear
springs und dampers.
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Figure 8: Comparison between the controlled- und uncontrolled system.
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Figure 9: Control force, rotor displacement and current control results.

5 Conclusions and Outlook

This paper dealt with the reduction of contact force in a rotor-stator system. The rotor is modelled as
an elastic beam. In addition, an auxiliary bearing, which is connected to electromagnetic actuators has been
considered in the model. The torque provided by the drive system follows the speed-torque characteristic of
Fig. 6. It accelerates the rotor from zero to full-load speed. The contact process is represented by a rigid body
approach with the fundamental property, that for a contact the quantity of the relative kinematics is zero when
the corresponding constrain forces is not zero, or vice versa. The integration of the equation of motions is based
on a time stepping algorithm.

Numerical results show in case of no constant angular velocity, that the rotor rubbing can result in an unstable
state with large relative normal velocity and contact force.

The drive system that ensures a constant angular velocity during the rotor-to-stator rubbing will be take into
consideration in the future. Finally, for verification of the theoretical results experiment have to be carried out.
These experiments are already in progress. At the TU Munich an experimental set-up has been constructed in
order to verify the theorical work and the computer simulation, which have been previously carried out. The
designed test rig is showed in Fig. 10.
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Figure 10: Test rig at TU Munich
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Berichte VDI, Reihe 18: Mechanik, Bruchmechanik, No. 271.

Ulbrich, H., 1986, ”Dynamik und Rergelung von Rotorsystemen”, Forstschritt-Berichte VDI, Reihe 11:
Schwingungstechnik, No. 86.

Ulbrich, H. and Chavez, A. and Dhima, R., 2004, ”Minimization of Contact Forces in Case of Rotor Rubbing
Using an Actively Controlled Auxiliary Bearing”, Proceedings of 10th International Symposium on Transport
Phenomena and Dynamics of Rotating Machinery”, ID 042, pp. 1-10.

Yigit, A. and Christorouf, A., 2000, ”Coupled Torsional and Bending Vibration of Actively Controlled
Drillstring”, Journal of Sound and Vibration, Vol. 234, No. 1, pp. 67-83.


