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Reduction of false alarms in the intensive care unit using an

optimized machine learning based approach
Wan-Tai M. Au-Yeung 1, Ashish K. Sahani1, Eric M. Isselbacher2 and Antonis A. Armoundas1,3

This work attempts to reduce the number of false alarms generated by bedside monitors in the intensive care unit (ICU), as a

majority of current alarms are false. In this study, we applied methods that can be categorized into three stages: signal processing,

feature extraction, and optimized machine learning. At the stage of signal processing, we ensured that the heartbeats were

properly annotated. During feature extraction, besides extracting features that are relevant to the arrhythmic alarms, we also

extracted a set of signal quality indices (SQIs), which we used to distinguish noise/artifact from normal physiological signals. When

applying a machine learning algorithm (Random Forest), we performed feature selection in order to reduce the complexity of the

models and improve the efficiency of the algorithm. The dataset used is from Reducing False Arrhythmia Alarms in the ICU: the

PhysioNet/Computing in Cardiology Challenge 2015. Using the performance metric “score” from the Challenge, we achieved a

score of 83.08 in the real-time category on the hidden test set, which is the highest in all published work.
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INTRODUCTION

In the intensive care unit (ICU), bedside monitors are used to alert
healthcare providers when a patient’s physiological signals are out
of normal range so that an appropriate response can be provided.
In a prior study, it was discovered that 88.8% of annotated
arrhythmia alarms were false positives.1 Therefore, the majority of
alarms do not require clinical intervention and, consequently,
become a burden.1,2 Excessive numbers of false alarms cause
noise disturbance (the volume is often over 80 dB in an ICU3,4),
desensitization, and decreased quality of care, such that false
alarms have often been listed as one of the top technology
hazards.5,6

Common sources of false alarms in the ICU are noisy physiologic
signals that go out of range. Many attempts have been made to
alleviate the problem of false alarms, including sensor fusion
methods using multiple physiological signals7, signal processing
methods (such as median filters) to improve the signal quality8,
and artificial intelligence methods (such as rule-based expert
systems).9 For example, an algorithm to suppress false critical
electrocardiographic (ECG) arrhythmia alarms using morphological
and timing information using the arterial blood pressure (BP)
signal was proposed in a study by Aboukhalil et al.10 That
algorithm was able to suppress 59.7% of the false alarms while the
true alarm reduction rates were all 0%, except for ventricular
tachycardia alarms at 9.4%. In another study, Li et al.11 presented a
framework for false alarm reduction using a machine learning
approach that combined up to 114 signal quality and physiolo-
gical features extracted from the ECG, photoplethysmograph
(PPG), and, optionally, the BP waveform. In that study, false alarm
suppression rates were 86.4% for asystole, 100% for extreme
bradycardia, 27.8% for extreme tachycardia, and 19.7% for
ventricular tachycardia, with 0% true alarm suppression. Although
these methods are promising, much improvement is still needed.

In this study, we aimed to achieve a high false alarm
suppression rate with a low true alarm suppression rate by
utilizing features that characterize the arrhythmias and quantify
the signal quality, and an optimized machine learning based
approach. The features include a set of signal quality indices (SQIs)
that can distinguish noise/artifact from normal physiological
signals. The introduction of the SQIs is inspired by the fact that
the source of many false alarms is noise/artifact in the
physiological signals.9 If noise/artifact can be distinguished from
normal physiological signals reliably using these SQIs, the number
of false alarms could be greatly reduced. Also, we utilized a
machine learning-based method as it is capable of finding an
underlying structure in a complex dataset.12 Since, in the ICU,
decisions about whether or not to sound an alarm need to be
made in real time, reducing the complexity of the models and
increasing their efficiency by selecting an optimal subset of
features makes the use of machine learning algorithms an
appealing approach. We validate these algorithms in a dataset
from the PhysioNet 2015 Challenge (physionet.org) that offers
1250 true or false alarms separated into a training set of 750
alarms and a test set of 500 alarms. For each alarm, the signals
provided are ECGs, and/or PPG, and/or BP. The alarms were
annotated as true or false by a team of expert annotators.

RESULTS

Determining the cost of false negatives

Supplementary Figs. 1–5 show that the classification performance
vs. the cost of false negatives (FN) for each type of arrhythmia,
while the cost of false positives (FP) is fixed at 1. It can be
observed that as the cost of FN increases, the true positive (TP)
rate mostly increases while the true negative (TN) rate mostly
decreases for all types of arrhythmia. This is because the machine

Received: 5 April 2019 Accepted: 5 August 2019

1Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; 2Healthcare Transformation Lab, Massachusetts General Hospital, Boston, MA 02114,

USA and 3Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Correspondence: Antonis A. Armoundas (aarmoundas@partners.org)

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

http://orcid.org/0000-0003-0198-4630
http://orcid.org/0000-0003-0198-4630
http://orcid.org/0000-0003-0198-4630
http://orcid.org/0000-0003-0198-4630
http://orcid.org/0000-0003-0198-4630
https://doi.org/10.1038/s41746-019-0160-7
mailto:aarmoundas@partners.org
www.nature.com/npjdigitalmed


learning algorithm is trying to minimize the total cost of errors. As
the cost of FN increases, the machine learning algorithm tries to
classify more positive records correctly while sacrificing the
accuracy of negative record classification. Supplementary Table 1
shows the cost of FN chosen for each type of arrhythmia, which
maximize the overall score. They are all in the range of 1–1.4.

Feature selection for each arrhythmia

Supplementary Figs. 6–10 show the plot of importance of features
for each type of arrhythmia.
Asystole–for asystole, the most important feature is ECG 1

maximum RR interval between consecutive R-waves. Besides
maximum RR interval between R-waves, one can see that different
measures of swing play important roles in the classification
performance as well.
Bradycardia–for bradycardia, the three most important feature

is the minimum heart rate measured from the ECG signals and
the PPG.
Tachycardia–for tachycardia, the two most important feature is

the maximum heart rate measured from the ECG signals, followed
by the SQIs for ECGs which include correlation measure, peak
height stability measure and sharpness measure.
Ventricular fibrillation–for ventricular fibrillation (VF), frequency

domain features of the ECG signals, are the most important ones:
the mean frequency, the median frequency, and the maximum
power to the total power ratio. This is because during VF the ECG
resembles a sinusoidal signal. Frequency domain analysis presents
a simple yet effective way to separate true VF from false VF.
Ventricular tachycardia–for ventricular tachycardia (VT), the

most important feature is the ECG correlation measure, which
makes sense as consecutive beats have a uniform and stable QRS
morphology during monomorphic VT. Two other SQIs—peak
height stability measure and periodicity measure—are the next
most important features.

Random forest and feature selection

Supplementary Figs. 11–15 show the median and mean score
curves vs. the number of features selected for each type of
arrhythmia. The most important feature was used, as the
predictor, first, and then the next most important feature was
added as a predictor, one by one. For each type of arrhythmia, it
can be observed that the mean and median scores that measure
the performance of the classification began to plateau before all
the features were used as predictors. Therefore, we can reduce the
number of features used for building the classifiers but still retain
the same level of performance. Table 1 shows the total number of
features considered, in the initial selection and in the final
selection for each type of arrhythmia. Supplementary Tables 2–6
list the features selected in the final selection with their
importance, in descending order. Supplementary Figs. 16–20
show the scatter plot of true and false alarms with the two most
important features for each type of arrhythmia.

Algorithm comparison with the state of the art

As shown in Table 2, the results on the hidden dataset are good
for all types of arrhythmias, except bradycardia, compared with
published results13–16. Notably, we achieved the highest scores in
all published studies in tachycardia, VF, and VT. After obtaining the
test result presented in Table 2, we attempted to improve our
algorithm's performance to classify bradycardia alarms.
By visualizing the vital-sign signals of the bradycardia alarms,

we have observed that there is at least one reliable signal in each
of these alarms. For example, as seen in Supplementary Fig. 21,
the reliable signal is the ECG signal, while the PPG signal looks
very noisy. As a result, for the final implementation, the most
reliable signal was chosen by selecting the signal with the highest

correlation measure for bradycardia. Then, its slowest rate for 4
consecutive beats was calculated: If the rate was slower than 46
bpm, then the alarm was classified as true; otherwise, the alarm
was classified as false. After changing the method of classification
of bradycardia alarms, the classification performance of brady-
cardia alarms improved (Table 3), and resulted to the highest
overall score.

DISCUSSION

A high volume of false alarms in the ICU creates a noisy
environment and causes alarm fatigue among caregivers. Many
efforts have been made to reduce the number of false alarms, but
clearly better solutions are still needed. In this report, we present a
method that aims to reduce false alarms in the ICU, that is based
on signal processing, feature extraction, and machine learning
tools. Moreover, SQIs, such as correlation measure, are introduced.
Several conclusions can be drawn from this study: first, domain
knowledge is important in feature design as the features
introduced in this paper, especially the SQIs, are based on an
understanding of physiological signals, and they play an
important role in the classification performance; second, adjusting
the ratio of misclassification cost of FNs and FPs helps optimize

Table 1. Number of features considered, in the initial selection and in

the final selection for each type of arrhythmia

Arrhythmia Total number of
features
considered

Number of
features in the
initial selection

Number of
features in the
final selection

Asystole 35 20 25

Bradycardia 22 14 18

Tachycardia 22 12 15

Ventricular
fibrillation

32 23 29

Ventricular
tachycardia

28 23 28

Table 2. Result with the hidden test set

TPR (%) TNR (%) Score

Asystole 94 93 91.19

Bradycardia 74 74 52.55

Tachycardia 100 100 100

Ventricular fibrillation 100 92 93.10

Ventricular tachycardia 88 86 78.67

Real-time 92 87 79.89

Retrospective 93 89 82.12

Table 3. Result with the hidden test set after changing the method for

classification of bradycardia alarms

TPR (%) TNR (%) Score

Asystole 94 93 91.19

Bradycardia 97 62 73.27

Tachycardia 100 100 100.00

Ventricular fibrillation 100 92 93.10

Ventricular tachycardia 88 86 78.67

Real-time 95 85 83.08

Retrospective 98 87 87.60
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the performance of the machine learning algorithms; third,
redundant features may be eliminated by forward feature
selection, which would lead to simpler, more efficient, and equally
accurate (if not more accurate) machine learning models; and,
fourth, a combination of features with good discriminating power
and modern machine learning algorithm can help reduce the
number of false alarms.
The proposed method achieved a higher score than any of the

previously published methods that have used the PhysioNet 2015
challenge hidden test set. Machine learning algorithms such as
Support Vector Machine and Random Forest have been employed
by some of the competitors in the PhysioNet/Computing in
Cardiology 2015 Challenge, but they did not achieve the same
level of performance.14,15,17 This may be due to the quality and the
quantity of features we used. Domain knowledge is important in
feature selection and design. In this work, we devised the features
based on understanding of cardiovascular signals and human
physiology. Different features that characterize the arrhythmias,
such as blank area swing used for asystole alarms or maximum
power to total power ratio used for VF alarms, have been pivotal in
the performance of the classification. Also, although SQIs are not
directly related to the characteristics of the different arrhythmias,
they have played an important role in the classification of the
alarms and that was shown by their importance calculated with
the Random Forest (RF) algorithms.
In the proposed algorithm, all features including the SQIs and

the arrhythmia-specific features were fed into the RF classifiers at
the same stage. Given the good classification performance, it can
be concluded that the RF classifiers are able to separate true
alarms and false alarms using the SQIs and arrhythmia-specific
features, without the need of further post-processing of these
features before feeding them into the RF classifiers. It should be
noted that a previous study also used RF as its machine learning
algorithm.14 However, one major difference between our
approach and that study is that we input all the arrhythmia-
specific features and SQIs from all available signals into the RF
classifier, while the previous study performed signal selection by
their purity first, and then input features from these selected
signals into the RF classifiers.
Another reason for our method’s good performance is that, in

order to maximize the score, we tuned the ratio of the cost of the
FN to FP for each type of arrhythmia. One can almost always
improve the overall performance by tuning the hyper-parameters
of the machine learning algorithms. Very lengthy analysis is often
required to determine the true ratio of the cost of FP to FN, as
there are many different factors to be considered, including the
risks patients encounter as a consequence to false negative alarms
and the desensitization the caregivers experience due to false
positive alarms. Although we did not perform such an analysis in
the current report, we set the ratio to give the maximum score in
this specific dataset.
The fact that the algorithm performed less well than expected

in classifying bradycardia alarms in the hidden test set may be
explained by the fact that the training and hidden test sets differ
significantly in terms of bradycardia events. We managed to

improve the score for bradycardia by choosing the most reliable
signals and comparing their correlation measures. Similar
methods estimating the heart rate using multiple signals have
been developed before.10,18

Because our ultimate goal is to implement such algorithms in
real time, we performed feature selection. As the algorithms are
more efficient when fewer features are calculated, we managed to
reduce the number of features used in the final models for
asystole, bradycardia, tachycardia and ventricular fibrillation, while
not compromising the performance of the RF classifiers, as shown
in Supplementary Figs. 11–15.
The dataset used in this study is relatively small, especially for

VF, for which there are only 6 true alarms. In the future, our
algorithms should be trained, validated, and tested using larger
datasets to examine if they would perform at a similarly high level.
In addition, challenges remain before our algorithms can be
implemented in clinically active bedside monitors. For example,
the TP rates are still below 100% for some types of arrhythmias,
which means that some of the true alarms will be missed. Missed
alarms can have significant consequences, including even patient
death. Although investigators have made great efforts to reduce
the rate of false alarms in the ICU through improvement in the
arrhythmia detection algorithms, perfect results (i.e., TP rate=
100% and TN rate= 100%) have never been achieved on any
datasets, confirming how challenging this problem is. In the
future, rather than solving this problem by improving the
arrhythmia detection algorithms alone, supplemental approaches
could also be introduced to manage ICU alarms more effectively,
such as alarm training and prioritizing actionable alarms.19

In this work we have used SQIs, arrhythmia-specific features and
and an optimized machine learning approach to classify ICU
arrhythmia alarms and, in doing so, we have achieved the highest
score among all published works in the hidden test set from the
PhysioNet Challenge 2015. This demonstrates that excellent
classification results can be achieved with good feature engineer-
ing and the use of an advanced machine learning algorithm. Such
an approach therefore has the promise to improve the ICU
environment for patients and healthcare providers alike.

METHODS

Dataset

The dataset we used is from the Reducing False Arrhythmia Alarms in the
ICU: the PhysioNet/Computing in Cardiology Challenge 2015.13 This
challenge used bedside monitor data with a total of 1250 life-
threatening arrhythmia alarms recorded from three of the largest intensive
care monitor manufacturers’ bedside units. These alarms occurred because
the monitors detected the occurrence of either asystole, extreme
bradycardia, extreme tachycardia, ventricular tachycardia or ventricular
flutter/fibrillation. The alarms were annotated as true or false by a team of
expert annotators according to the definitions listed in Table 4. These
alarms were divided into a training set and a test set. These training and
test sets consist of two subsets of mutually exclusive patient populations.
The training set has 750 recordings and it is publicly available while the
test set has 500 recordings and it is hidden from the public. All the alarms
occurred at the 300th second of the records. Due to the retrospective

Table 4. Definition of the five types of arrhythmia

Arrhythmia Definition

Asystole No QRS for at least 4 s

Extreme bradycardia Heart rate lower than 40 bpm for 5 consecutive beats

Extreme tachycardia Heart rate higher than 140 bpm for 17 consecutive beats

Ventricular tachycardia 5 or more ventricular beats with heart rate higher than 100 bpm

Ventricular flutter/fibrillation Fibrillatory, flutter, or oscillatory waveform for at least 4 s
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nature of this study using only publically available data, ethics approval for
the study was not required.

Performance metrics

The four possible outcomes of the classification algorithm are TP, TN, FP,
and FN as illustrated in the confusion matrix in Supplementary Table 7. The
performance of all classification algorithms is further quantified by the TP
rate, TN rate and score set by Computing in Cardiology. These three
metrics are described by Eqs. (1–3) respectively:

TP rate ¼
TP

TPþ FN
(1)

TN rate ¼
TN

TNþ FP
(2)

Score ¼
TPþ TN

TPþ TNþ FPþ 5 ´ FN
´ 100 (3)

Note that in the denominator of the Score, FN is multiplied by 5
compared to FP. This makes clinical sense as a missed alarm (FN) is of
greater consequence than a FP.

Signal processing

Modified Zong’s method for identification of valleys of BP and PPG. Zong
et al. had reported an open source algorithm for the identification of the
onset of BP pulses.20 Building upon Zong’s method, we calculated the
slope sum function (SSF) twice on the signal and skipped the low-pass
filtering step. This method was applied to both BP and PPG signals; S1=
SSF(BP or PPG), S2= SSF(S1).
S2 has very sharp peaks that are similar to the QRS complex on the ECG.

The peaks of S2, which indicate the onset of the waveform in the original
signal, are then detected by using Martínez’s method for QRS detection.21

The advantage of this method is that it works well for both BP and PPG and
it is insensitive to baseline wander, which can be very close to the heart
rhythm. Plots of BP and its double SSF were shown in Supplementary
Fig. 22.

Signal abnormality of the BP waveform. First, we identified good quality
portions of the BP signal by using all criteria proposed by Sun et al.,22

except the heart rate and the change of the duration of successive beats.
Then, we extracted features from the good-quality BP signals for the
purpose of classification of the alarms as true or false.

Flat line detection. No processing is done if there is a flat line within a
window. A signal window is said to contain a flat line if it contains a
constant value for at least 2 seconds. This indicates probe disconnection.

Baseline wandering removal for ECG. As a preprocessing step for analyzing
the ECG signals, we remove the baseline wandering from the signals. This
is done with modeling the ECG segments within the windows with a 5th
order polynomial. This is effective for removing most of the baseline
wandering.

R-wave peak detection of the ECG signals. After baseline wandering is
removed, we use a state-of-the-art ECG delineation algorithm designed by
Martínez et al. based on the wavelet transform (WT).21 The method has
been reported to yield over 99.5% sensitivity and positive predictive value
in identifying the QRS complex in standard ECG databases. Supplementary
Fig. 23 shows a plot of ECG and the R-wave peak detections.

Amplitude envelope estimation of the ECG signals. The ECG delineation
algorithm can result in false R-wave peak detection due to artifact. We
adopted the method of amplitude envelope estimation proposed by
Plesinger et al. to mitigate this problem.16 This method can be used to
detect false R-wave peaks due to high-frequency pacing spikes and T-wave
over-sensing. In addition, it can be used to identify ventricular tachycardia
(VT) beats. Supplementary Figs. 24–26 show representative examples.

Feature extraction. Feature extraction was performed on ECG, BP, and
PPG signals. Classifiers were built using these features and the expert
annotations as inputs. We extracted a set of signal quality indexes (SQIs) on
all records and relevant features based on the definition of the

arrhythmias. Supplementary Table 8 shows the number of seconds each
record was analyzed for each type of arrhythmia. Feature extraction is
performed only once for each record, and each record is represented by
one vector of features except for true alarms in VF. We performed feature
extraction four times for each true VF alarm starting at the end of 293rd
second, 294th second, 295th second, and 296th second. The onset of VF
must be within 10 s of the alarm in order to meet the American National
Standards Institute/Association for the Advancement of Medical Instru-
mentation (ANSI/AAMI) EC13 Cardiac Monitor Standards, which means that
the four seconds of signals that trigger the VF alarms may not be starting
at the end of the 296th second. The descriptions of the features can be
found in the Supplementary Methods. Illustrations of a subset of features
can be found in Supplementary Figs. 27–35.

Machine learning–random forest algorithm. The machine learning algo-
rithm used, was Random Forest (RF),23,24 in MATLAB 2016B using the
function TreeBagger. RF is an ensemble learning method that can be used
for classification. It grows a multitude of decision trees during training
time, and each decision tree is trained with a bootstrap sample.25 At each
split of the decision tree, a number of features, which is set to be equal to
the square root of the total number of features, are randomly selected.
From these randomly selected features, those that, based upon the Gini’s
diversity index26, best separate the true from false alarms, are used to
create the split. For classification, each decision tree makes a vote and the
final result of classification is the mode of all the votes. We set the number
of trees to be equal to 301. At first, the default settings in the MATLAB
2016B TreeBagger function were used to create the RF. However, while
attempting to optimize our algorithm, we realized that by changing the
settings—such as the misclassification costs of true and false alarms—
could improve the final performance on the hidden test set. A more
detailed description of how we obtained the optimal misclassification costs
is provided below, in the cost-sensitive learning section.
RF was selected because it gave the best result compared to support

vector machines and shallow neural networks when these three algorithms
were evaluated on the training set. More information about the
performance of these machine learning algorithms can be found in the
Supplementary Table 9.

Cross-validation on the training set. As our goal was to achieve good
classification in the Physionet hidden data set, we performed cross-
validation on the training set to estimate the performance of our algorithm
on unseen data. Due to the small sample size, the leave-one-out cross
validation was performed.27

Feature ranking and selection. We measured and ranked the importance
of features by examining the increase of the prediction error if the values
of that variable are permuted across the out-of-bag observations. The
increase of the prediction error has been computed for every tree, then
averaged over the entire ensemble and divided by the standard deviation
over the entire ensemble. This is the default approach of calculating
feature importance when one sets the option “OOBVarImp” to “on” within
TreeBagger in MATLAB. We computed the importance of each feature as
we performed leave-one-out cross validation.
When one reduces the number of features used in the machine learning

algorithm, the classifier becomes less complex and the time required for
computation decreases. Therefore, we performed feature selection before
building a final RF classifier used in the hidden test set. We built multiple
RF classifiers with forward feature selection (incrementally adding the next
most important feature).28 Then, we evaluated their performance using
leave-one-out cross validation. We performed these procedures five times
to assess the overall average performance as every RF classifier built is
different, even if the same instances and features were input to the
algorithm. From these five runs, we plotted the median and mean score
curves vs. the number of features selected. We selected the number of
features, x, at which the curves have roughly plateaued. To build our final
RF classifiers for testing in the hidden dataset, we included 1.2*x (rounded
up) number of features. In addition, we included the same features from
both ECG signals in the final selection of features.

Prior. When the RF classifiers were built, the prior was set to uniform. This
would make the classifier treat the majority and minority classes with equal
importance instead of favoring the majority class in order to maximize the
accuracy.
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Cost-sensitive learning. The problem of optimal learning and decision-
making with different misclassification errors incurring different penalties
has been investigated before.29 As reflected in how the score is calculated
in Eq. (3), misclassifying a true alarm as a false alarm has a more severe
effect than misclassifying a false alarm as a true alarm. For purposes of this
study, we fixed the cost of FP at 1 but varied the cost of FN and performed
leave-one-out cross validation to find out the cost of FN that would
maximize the score for each type of arrhythmia. Finally, in building the RF
classifiers used for the hidden test set, the costs of FN that give the
maximum score for each type of arrhythmia during the leave-one-out cross
validation, were used.

RF classifiers built for the hidden test set. We built the final version of the
RF classifiers using all data in the training set with feature selection and
settings described above.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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