
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2019

Reduction of False Positives in Intrusion Detection Based on Reduction of False Positives in Intrusion Detection Based on

Extreme Learning Machine with Situation Awareness Extreme Learning Machine with Situation Awareness

Donald A. Burgio
Nova Southeastern University, dburgio@yahoo.com

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item

NSUWorks Citation NSUWorks Citation

Donald A. Burgio. 2019. Reduction of False Positives in Intrusion Detection Based on Extreme Learning

Machine with Situation Awareness. Doctoral dissertation. Nova Southeastern University. Retrieved from

NSUWorks, College of Engineering and Computing. (1093)

https://nsuworks.nova.edu/gscis_etd/1093.

This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Reduction of False Positives in Intrusion Detection Based on Extreme
Learning Machine with Situation Awareness

by

Donald A. Burgio

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Information Assurance

College of Engineering and Computing
Nova Southeastern University

2019

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Reduction of False Positives in Intrusion Detection Based on Extreme

Learning Machine with Situation Awareness

by

Donald A. Burgio

2019

Protecting computer networks from intrusions is more important than ever for our
privacy, economy, and national security. Seemingly a month does not pass without news
of a major data breach involving sensitive personal identity, financial, medical, trade
secret, or national security data. Democratic processes can now be potentially
compromised through breaches of electronic voting systems. As ever more devices,
including medical machines, automobiles, and control systems for critical infrastructure
are increasingly networked, human life is also more at risk from cyber-attacks. Research
into Intrusion Detection Systems (IDSs) began several decades ago and IDSs are still a
mainstay of computer and network protection and continue to evolve. However,
detecting previously unseen, or zero-day, threats is still an elusive goal. Many
commercial IDS deployments still use misuse detection based on known threat
signatures. Systems utilizing anomaly detection have shown great promise to detect
previously unseen threats in academic research. But their success has been limited in
large part due to the excessive number of false positives that they produce.

This research demonstrates that false positives can be better minimized, while
maintaining detection accuracy, by combining Extreme Learning Machine (ELM) and
Hidden Markov Models (HMM) as classifiers within the context of a situation awareness
framework. This research was performed using the University of New South Wales -
Network Based 2015 (UNSW-NB15) data set which is more representative of
contemporary cyber-attack and normal network traffic than older data sets typically used
in IDS research. It is shown that this approach provides better results than either HMM
or ELM alone and with a lower False Positive Rate (FPR) than other comparable
approaches that also used the UNSW-NB15 data set.

Acknowledgements

First, my appreciation and thanks go out to my dissertation committee of Drs. Cannady,
Cerkez, and Li for agreeing to support my research and for giving their time, talents, and
feedback. And thanks especially to Dr. Cannady for his willingness to be my advisor,
along with his encouragement, concise guidance, and patience. Dr. Cannady’s
description of his research efforts as the “intersection between artificial intelligence and
information security” had resonated with me while exploring program options prior to
embarking on this journey as it still does today.

I’d also like to thank my family, friends, and colleagues, especially Mark, that provided
their support, understanding, and encouragement along the way. Finally, this work would
not have been possible without drawing upon the prior research of the many that are cited
within this dissertation report.

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

List of Tables vii

List of Figures viii

List of Equations ix

Chapters

1. Introduction 1

 Background 1
 Problem Statement 3
 Goals 4
 Relevance and Significance 5
 Barriers and Issues 9
 Assumption, Limitations, and Delimitations 10
 Definition of Terms 11
 List of Acronyms Used 13
 Summary 15

2. Literature Review 17

 Overview 17
 Types of IDS 17
 IDS Performance Measurements 19
 Data Sets for Training and Testing 21
 IDS and Machine Learning Techniques 25
 Biologically Inspired Models 26
 Clustering 26
 Similarity and Distance Measures 27
 Decision Trees 27
 Boosting 28
 Mixture Models 29
 Bayesian Approaches 30
 Generic Algorithm 30
 Neural Networks 31
 Self-Organizing Map 32
 Kernel Machines 32
 ELM 33
 Deep Learning Approaches 36
 Markov Models 38
 Hybrid Methods 41
 Voting Schemes 43
 False Alarm Reduction Techniques 44

v

 ii

 Situation Awareness 47
 C2: Botnets 51
 Data Preprocessing and Feature Selection 52
 Summary 54

3. Methodology 56

 Overview 56
 The Data Set 59
 Feature Selection 62
 ELM Classifier 64
 HMM Architecture 66
 The Combined Classifier 68
 Experiments 68
 Evaluation Criteria 70
 Computing Resources Used 70
 Summary 71

4. Results 72

Experiment A (Time-Ordered Data) 72
Experiment B (Non-Time Ordered Data) 81
Training and Test Time Comparison 87
Comparisons to Other Literature 87
Summary of Results 89

5. Conclusions, Implications, Recommendations, & Summary 90

Conclusions 90
Summary 95
Implications 98
Recommendations 99

Appendices 101

A: UNSW-NB15 Features Description for Experiment A (Full 2.54M) 101
B: Information Gain Analysis of UNSW-NB15 Features for Experiment A 103
C: HMM Parameters for Experiment A 104
D: UNSW-NB15 Features Description for Experiment B (Train and Test) 106
E: Information Gain Analysis for Experiment B 108
F: HMM Parameters for Experiment B 109

Reference List 112

vi

 iii

List of Tables

Tables

1. UNSW-NB15 Based Data Sets 62

2. Distribution of Training and Test Data by Traffic Type (440K Data Set) 73

3. Distribution of Training and Test Data by Attack Type (440K Data Set) 74

4. Experiment A Results Sorted by Highest to Lowest FPR 80

5. Summary of Results Compared to Goals for Experiment A 81

6. Distribution of DoS Data by Traffic Type (DoS Data Set) 81

7. Experiment B Results Sorted by Highest to Lowest FPR 86

8. Summary of Results Compared to Goals for Experiment B 86

9. Training & Testing CPU Time Comparison by Classifier 87

10. Comparisons to Other Research Using UNSW-NB15 Data Sorted by FPR 88

11. UNSW-NB15 Features Description 101

12. Experiment A: Information Gain Analysis of UNSW NB-15 Features 103

13. UNSW-NB15 Features Description for the Train and Test Data Set 106

14. Experiment B: Information Gain Analysis of UNSW NB-15 Features 108

vii

 iv

List of Figures

Figures

1. IDS Model with Situation Awareness Level Boundaries 57

2. Feature Selection Process 64

3. HMM State Transition Representation 67

4. Accuracy by # of Features (440K Data Set) 75

5. FPR by # of Features (440K Data Set) 75

6. Accuracy by # of ELM Hidden Neurons (440K Data Set) 76

7. FPR by # of ELM Hidden Neurons (440K Data Set) 76

8. Accuracy by # of Features (DoS Data Set) 82

9. FPR by # of Features (DoS Data Set) 83

10. Accuracy by # of ELM Hidden Neurons (DoS Data Set) 83

11. FPR by # of ELM Hidden Neurons (DoS Data Set) 84

viii

 v

List of Equations

Equations

1. Accuracy 20

2. False Positive Rate (FPR) 20

3. False Negative Rate (FNR) 20

4. True Positive Rate (TPR) or Detection Rate (DR) 20

5. False Alarm Rate (FAR) 20

ix

Chapter 1

Introduction

Background

Intrusion Detection Systems (IDSs) are a collection of hardware and software

resources that can detect, analyze, and report indications of intrusions in computer

systems and networks. Extending from IDS research, there are Intrusion Prevention

Systems and Intrusion Response Systems focused on the prevention and response aspects

of intrusions respectively (Inayat, Gani, Anuar, Khan, & Anwar, 2016). Some IDSs can

be used in-line to both detect indications of and prevent intrusions in near real-time and

are sometimes referred to as Intrusion Detection and Prevention Systems. In other cases,

these systems can communicate with other security devices such as firewalls, which

monitor and control network traffic into and out of a protected network, to automatically

implement blocking rules in response to detection.

Research into IDSs began several decades ago with a key paper on computer

threat monitoring and surveillance, based on mainframe audit logs, by Anderson (1980).

The concept of intrusion detection analysis existed prior to Anderson’s report but

typically just consisted of system administrators manually scanning audit logs for

anomalies. Yost (2015) reported that Clyde began work in 1977 on a limited scope

commercial IDS, named Control, but that effort was not considered as influential or

comprehensive as Anderson’s analysis.

 2

Initially, intrusion detection was focused on after-the-fact batch analysis of audit

records until Denning and Neumann (1985) proposed requirements and a model for the

real-time Intrusion Detection Expert System with the goal of being able to detect most

intrusions while making it extremely difficult to avoid detection. In a follow-on seminal

paper, Denning (1987) went on to further the research into this field.

IDSs are characterized as either focused on misuse detection, based on known

attack patterns or signatures, or anomaly detection, based on deviations in behavior from

normal. Misuse detection has been preferred in commercial environments due to a higher

level of accuracy since it is grounded in known attacks. Academic research has favored

anomaly detection based on its higher potential to recognize novel attacks (Tavallaee,

Stakhanova, & Ghorbani, 2010; Mitchell & Chen, 2014).

Substantial research has been done in anomaly detection across many domains

including intrusion detection. Azad and Jha (2013), in a survey covering 75 research

papers, list over a dozen different data mining techniques that have been applied to

intrusion detection.

Other recent research using a variation of neural networks known as Extreme

Learning Machine (ELM), first introduced by Huang, Zhu, and Siew (2004), has been

applied to intrusion detection with promising results for reducing false positives while

providing good generalized performance with extremely fast learning speeds (Creech &

Jiankun, 2014; Fossaceca, Mazzuchi, & Sarkani, 2015). Baum and Petrie (1966)

originated Hidden Markov Models (HMMs), a type of Markov chain, which model

sequences of potential events. HMMs have been applied to several domains including

speech and handwriting recognition and more recently to modeling cyber-attacks.

 3

Endsley (1988) first introduced the concept of situation awareness in the context

of human factors research. She defined situation awareness as consisting of perception of

elements in time and space, comprehension of their meaning, and their projection into the

future. Hutchins, Cloppert, and Amin (2011) subsequently took a military-inspired

approach to cyber situation awareness, using a “kill chain,” citing the need to better

detect indications of multistage attacks including Advanced Persistent Threats (APTs).

Problem Statement

 Existing anomaly detection techniques for IDSs have a high False Positive Rate

(FPR) (Zuech, Khoshgoftaar, & Wald, 2015; Fernandes, Rodrigues, Carvalho, Al-

Muhtadi, & Proença, 2019). Anomaly based methods, which show promise of detecting

indications of novel cyber-attacks, still typically generate more false positives than

signature-based methods which tend to have more false negatives (Pao, Lee, & Huang,

2015). While substantial research has been conducted on IDSs in general, detection

uncertainty still exists (Inayat et al., 2016). Contributing to this uncertainty is the growth

in network sizes and the increasing complexity and variability of attacks. This, in turn,

has significantly complicated the ability of IDSs to produce accurate alerts (Spathoulas &

Katsikas, 2013a).

 Axelsson (2000) in his widely cited paper on the base rate fallacy called false

alerts the biggest issue in IDS effectiveness. Based on Bayesian statistics, he argues that

the false alarm rate should be measured in relation to how many intrusions one would

expect to detect rather than the maximum number of possible false alarms. And that an

 4

IDS, to be considered effective, would need to have a very high standard of 1/100,000

false alarms per event.

Horne (2015), stressing the continued relevance of Axelsson’s research, illustrates

the base rate fallacy by noting that due to Bayes’ rule that if an IDS has a 99.9% accuracy

rate on a network where 1 in 100,000 inputs, the base rate, comes from a malicious

source, that means that for every 1 true positive alert, the system will generate 99 false

alerts (its positive predictive value).

 Perdisci, Ariu, Fogla, Giacinto, and Lee (2009) conclude that the FPRs for IDSs

must be very low. Sommer and Paxson (2010), examining the imbalance between

research into IDSs based on anomaly detection and their operational deployments, concur

that reducing false positives in anomaly detection for IDS must be a top priority given

that IDS error rates have a very high operational cost, as compared to other domains,

which impedes the adoption of anomaly detection.

Goals

The primary goal of this research was to develop a new approach for an anomaly-

based IDS that can better minimize false positives with the ability to detect indications of

contemporary cyber-attacks while not sacrificing accuracy. This goal has been

demonstrated using a recent and relevant set of comprehensive benchmark data, a

secondary goal, containing both cyber-attack and normal traffic.

However, while virtually all agree that FPRs for IDSs must be low, there is not a

widely used benchmark rate for FPR cited in recent IDS research. Additionally, some

researchers use terms such as false alerts and false alarms interchangeably with false

 5

positives but others have different definitions which can create confusion and invalid

comparisons.

While Axelsson (2000) put forth a high standard for false alarms and

effectiveness, McHugh (2000), in his critique of the evaluation of IDS systems conducted

by Lincoln Labs for the Defense Advanced Research Projects Agency (DARPA) in 1998

and 1999, cited that DARPA had a criterion of 0.1% for false alarm rate. However, many

researchers since then tend to compare their results among different algorithms and with

other studies using the same data sets versus setting an absolute target for FPR. Though,

more recently, Swarnkar and Hubballi (2016) cited 0.6% as an acceptable FPR for their

anomaly-based detection method for Hypertext Transport Protocol (HTTP) cyber-attacks

using a data set of more than one million events.

The primary evaluation measurement for this research was to demonstrate that the

proposed two-stage approach produced a reduction of false positives by at least 10%

compared to just using the first stage. A secondary measurement was to demonstrate an

overall FPR of 0.6% or less. Both evaluation goals were achieved. In addition to

showing improved performance using two stages, the results were also compared to other

algorithms using the same training and testing data sets and to published research.

Relevance and Significance

Despite substantial academic and commercial research and increased spending on

computer and network security, major computer data breaches involving sensitive

personal identity, financial, medical, trade secrets, or national security data continue to

occur. According to Ponemon and Trunkey (2016), the average cost of a data breach had

 6

increased by 29% over the prior two years to $4 Million. Verizon (2016) reported that

out of 2,260 confirmed breaches analyzed from 2015 that attackers take minutes or less to

compromise a system but 80% of the victims did not realize they had been breached for

weeks or longer.

 Furthermore, Cyber-Physical Systems, which fuse network and computer

components with physical components such as actuators and sensors, have become more

commonplace. With the related emergence of the Internet-of-Things (IoT), large

numbers of previously un-networked devices, including mundane consumer devices such

as voice-activated speakers, thermostats, televisions, and even refrigerators, are being

placed on the Internet and can pose a threat. An example is where a refrigerator was used

to send spam email with hypertext links that could install malware if the links were

clicked (Starr, 2014).

Another IoT related incident occurred in 2016 when the Mirai botnet slowed or

stopped major portions of the Internet in the eastern United States. It accomplished that

by merely taking advantage of poor security controls in low-cost IoT devices, such as

surveillance cameras and wireless routers, that were connected to the Internet via high-

speed broadband connections. Mirai, a self-replicating worm, doubled in size every 76

minutes and at its peak controlled around 600,000 devices around the world. It was used

to launch a then record setting Distributed Denial of Service (DDoS) attack using the

bandwidth harnessed (Graff, 2017).

Other trends such as cloud computing, where computing resources are being

increasingly distributed, virtualized, and outsourced, and similar large-scale disruptive

networking technology shifts including Network Function Virtualization and Software

 7

Defined Networks, create new cyber-attack surfaces and challenges (Modi, et al., 2013;

Alsmadi & Xu, 2015). Cyber-Physical Systems include controls for critical systems such

as smart electrical grids hosting nuclear and other power generation plants, oil and gas

pipelines, unmanned aircraft and drones, self-driving automobiles, chemical and other

industrial plants, and healthcare devices. While many confirmed data breaches often

result in many millions of dollars in economic losses, such as those related to credit card

and financial account fraud, Cyber-Physical Systems raise the stakes with potential large-

scale catastrophic consequences to life. Thus, it is increasingly important to secure them

from intrusions, both known and novel (Mitchell & Chen, 2014).

Given the increased stakes, the need for faster and more automated responses to

indications of potential cyber-attacks is critical. Many commercial IDSs and related

systems are capable of blocking traffic in real-time, by source Internet Protocol (IP)

address for example, based on intrusion alerts. Such an automated response is

categorized as an active response vs. a passive one. However, an action based on a false

positive with an automated response could deny resource access to legitimate users or

tasks that could be unacceptable based on the circumstance. An example of such would

be preventing access to an Electronic Medical Records system by an emergency room

doctor. Or more apocalyptically, the scenario from the 1983 movie War Games, where a

computer program attempts to automatically launch nuclear missiles, based on the

mistaken conclusion that the country is under attack, after humans are taken out of the

decision loop. Thus, many organizations prefer a passive response that requires

personnel to investigate each alert. But such an approach could lead to delays resulting in

 8

a data breach or other undesired consequences (Marchetti, Pierazzi, Colajanni, & Guido,

2016).

Many researchers agree that the key to detecting novel threats is through

anomaly-based detection (Tavallaee et al., 2010; Mitchell & Chen, 2014). IDSs are a

mainstay of any defense-in-depth security strategy (Zuech et al., 2015) but many

commercial security infrastructure deployments are still predominately based on known

threat signatures (Bhatt, Manadhata, & Zomlot, 2014). Intrusions evolve continuously

and signature-based detection alone will often fail when presented with indications of

intrusions that are not part of a known signature base (Wu & Banzhaf, 2010).

However, despite a large body of research on anomaly-based IDSs and the great

promise they have shown, operational deployments have been impeded since error rates

have very high operational costs (Wang & Lee, 2001; Sommer & Paxson, 2010). And,

validating false positives can also distract human operators from real attacks (Ho, Lai,

Chen, Wang, & Tai, 2012).

To put the significance of false positive percentages in the context of a real-world

operational network, S. Bhatt et al. (2014) estimated that Hewlett Packard’s corporate

network, which then spanned 166 countries with more than 300,000 employees,

generated between 100 billion to 1 trillion security events daily of which approximately 3

billion were processed by the security infrastructure. The infrastructure included IDSs

feeding into a Security Information and Event Management system along with audit logs

from other network devices. Thus, even a small percentage of false positives can

translate into a large number of events to review. IBM estimated that organizations

spend $1.3 million a year dealing with false positives, wasting 21,000 hours on average,

 9

and proposed more research on advancing Artificial Intelligence as a solution (Barlow,

2017).

According to research from the Information System Security Certification

Consortium (2018), a non-profit organization which specializes in training and

certifications for cybersecurity professionals, the shortage of cybersecurity professionals

is close to three million people globally. They also cite that nearly 60% of roughly 1,500

security professionals surveyed say their companies are at a moderate or extreme risk of

cybersecurity attacks due to this shortage. Cisco (2016) had previously estimated that

there would be a shortage of 2 million cybersecurity professionals globally by 2019,

particularly amongst those monitoring and responding to alerts from IDSs and related

systems in Security Operations Centers. Such staffing shortages further justify the need

for more accurate and automated approaches to intrusion detection and response. While

no credible research purports to completely eliminate false positives in IDS anomaly

detection techniques, improvements to further reduce the rate and need for human

intervention are well-justified.

Barriers and Issues

An anticipated issue prior to conducting this research was to identify a publicly

available and suitable data set that reflects real-world conditions with ample benchmarks

for comparison. Newer data sets exist for various purposes, such as cyber competitions,

but given their recent nature there will generally be a lack of ample published research in

the academic literature for comparison. However, more than a dozen research papers

have been published between 2017 and 2019 for the chosen University of New South

 10

Wales Network Based 2015 (UNSW-NB15) data set (Moustafa & Slay, 2015) which

provided some basis for comparisons as this research evolved.

Assumptions, Limitations, and Delimitations

 An assumption for this research is that the UNSW-NB15 data set is correctly

labeled and reflective of both contemporary attack and normal traffic. Given the goal of

using a contemporary data set, there will have been less academic scrutiny given the

amount of time since the release of that data set as compared to the more traditional, and

dated, ones typically used for intrusion detection research.

 Another anticipated limitation of using a newer data set was that false positives

may be much higher than would have been achieved using the same exact approach as on

one of the more traditional intrusion research data sets. Moustafa and Slay (2016)

illustrated this in repeating five experiments using Naïve Bayes (NB), Decision Tree

(DT), Artificial Neural Network (ANN), Logistic Regression, and Expectation-

Maximization clustering on both the Knowledge Discovery in Databases Cup 1999

(KDD99) (University of California, Irvine, 1999), a classic and widely used intrusion

detection research data set, and the UNSW-NB15 data set. The False Alarm Rate (FAR)

obtained on the UNSW-NB15 data set was higher than when using KDD99 in all five

cases. In the ANN example, KDD99 yielded a FAR of 1.48% while that same

experiment using UNSW-NB15 produced a 21.13% FAR.

 Separately, Khammassi and Krichen (2017) explored feature selection algorithms

and applied the same proposed method to both KDD99 and UNSW-NB15. For KDD99,

they used a subset of 18 features with a 0.105% FAR while the same algorithm for

 11

UNSW-NB15, with a subset of 20 features, provided a FAR of 6.390%. They concluded

that the difference in FAR was due to UNSW-NB15 being more complex than KDD99.

This limitation was mitigated by setting goals as a marked improvement

compared to other experiments using the same data set as opposed to using benchmarks

from experiments performed with outdated data sets. As for delimitations, the scope of

this research focused on network-based intrusion detection as opposed to host-based.

Definition of Terms

Definitions without citations are the local definitions of this research only.

Analysis: attack methods which breach Internet-based applications

such as via ports (e.g., port scans), emails (e.g., spam), or

web scripts (Moustafa, Turnbull, & Choo, 2018)

Attack Traffic: network packets containing an attempt to compromise the

confidentiality, integrity, or availability of a computer

network or host such as through the manipulation of

network packets, protocols, or payloads

Backdoor: an attack technique to bypass normal authentication to

secure unauthorized resource access (Moustafa, Turnbull,

& Choo, 2018)

Classifier: a model designed to predict which target class, or category,

a data element belongs, such as attack or normal traffic

 12

Denial of Service (DoS): an attempt to make host or network resources, such as

memory, processing, and bandwidth, unavailable to

authorized users by overwhelming those resources

(Moustafa, Turnbull, & Choo, 2018)

IDS: a collection of hardware and software resources that can

 detect, analyze, and report indications of intrusions in

computer systems and networks (Inayat et al., 2016)

ELM: a type of classifier derived from neural network models

which does not require its hidden layer to be tuned (Huang,

Zhu, & Siew, 2004)

Exploit: a sequence of instructions that takes advantage of a

vulnerability causing unintentional behavior on a host or

network (Moustafa, Turnbull, & Choo, 2018)

Fuzzer: a program designed to discover weak points in an

application, an operating system, or a network by feeding it

with massive inputting of random data (Moustafa,

Turnbull, & Choo, 2018)

Generic: a technique that works against a block-cipher to cause a

collision without respect to the configuration of the block-

cipher (Moustafa, Turnbull, & Choo, 2018)

HMM: a type of Markov Chain that can be used to model and

 classify series of events (Baum & Petrie, 1966)

Normal Traffic: computer network packets which are not malicious in intent

 13

False Positive (FP): the incorrect classification of a data element as belonging

 to a given class, such as attack traffic for the purposes of

this research, when it actually belongs to another class,

such as normal traffic

Reconnaissance: attacks that are designed to gather information about a

network or hosts to evade security controls; also called

probing (Moustafa, Turnbull, & Choo, 2018)

Shellcode: a small piece of code, often written in machine language,

that is used as a payload to exploit a software vulnerability

(Moustafa, Turnbull, & Choo, 2018)

Situation awareness: perception of elements in time and space, comprehension

 of their meaning, and their projection into the future

 (Endsley, 1988)

Worm: a malware program that replicates itself in order to spread

to other hosts via a network by exploiting a vulnerability

(Moustafa, Turnbull, & Choo, 2018)

List of Acronyms

ANN: Artificial Neural Network

APT: Advanced Persistent Threat

C2: Command and Control

CFS: Correlation Feature Selection

CSV: Comma Separated Values

 14

DARPA: Defense Advanced Research Projects Agency

DDoS: Distributed Denial of Service

DoS: Denial of Service

DNS: Domain Name System

DT: Decision Tree

DR: Detection Rate

ELM: Extreme Learning Machine

FAR: False Alarm Rate

FN: False Negative

FNR: False-Negative Rate

FP: False Positive

FPR: False-Positive Rate

HIDS: Host-based Intrusion Detection System

HMM: Hidden Markov Model

HTTP: Hypertext Transport Protocol

IDS: Intrusion Detection System

IoT: Internet of Things

IP: Internet Protocol

KDD99: Knowledge Discovery in Databases Cup 1999

KNN: K-Nearest Neighbor

MATLAB: Matrix Laboratory

ML: Machine Learning

MLP: Multi-Layer Perceptron

 15

NB: Naïve Bayes

NIDS: Network-based Intrusion Detection System

OS: Operating System

PCA: Principal Component Analysis

SVM: Support Vector Machine

TCP: Transmission Control Protocol

TN: True Negative

TP: True Positive

TPR: True-Positive Rate

UNSW-NB15: University of New South Wales - Network Based 2015

Summary

 This chapter provided an overview of the problem of high rates of false positives

and how they are impeding the adoption of anomaly detection techniques that are needed

to better detect indications of compromise for today’s continuously evolving cyber-

attacks. Several examples are given of the changing cyber landscape to illustrate that the

relevance and significance of this research reaches far beyond merely preventing

financial losses. Life and liberty are now more at risk than ever before. The primary

goal of this research, which was achieved, was to create a new technique to minimize

false positives using promising emerging research into ELM as a classifier, in

conjunction with HMM, in a situation awareness framework. The anticipated primary

challenge, which was overcome, was finding a data set for training and testing that is

indicative of both modern normal and attack traffic patterns, along with a basis for

 16

comparison, versus using one of the more commonly used, and dated, IDS research data

sets prevalent in the literature.

 17

Chapter 2

Review of the Literature

Overview

 To appreciate and comprehend the problem of reducing false positives in

intrusion detection, it is necessary to cover several relevant areas of the literature starting

with IDSs. The history of IDSs, going back to Anderson (1980), and earlier, was briefly

covered in the introduction. This section will focus on their evolution post-Denning

(1987) along with the different types of IDSs that have been researched and deployed.

The review will then focus on how IDSs are evaluated including by measuring FPs and

other metrics. Popular data sets for training and testing that have been used for research

in the literature and the associated data set challenges will also be covered. This will be

followed by a review of the literature of the various techniques that have been used in

machine learning with a focus on the reduction of FPs along with the importance of

feature selection. The review will then cover situation awareness. Different types of

cyber-attacks, often as illustrated by the UNSW-NB15 data set chosen for training and

testing, will also be discussed throughout the section.

Types of IDS

 Many of the most widely deployed IDSs, such as Snort (Roesch,1999) and Bro

(Paxson, 1999), are signature-based. These are often also referred to as misuse-based,

 18

rules-based, knowledge-based, ontology-based, or expert systems. With this type of

IDS, events are compared to predefined rules or patterns that are generalized knowledge

of attacks. Each event observed is matched against fields such as source and destination

IP addresses, ports, transport headers, and payload. In the Snort example, each rule often

has documentation about the potential for false positives and negatives and often the

corrective action that should be taken. Snort users can contribute rules and there are over

20,000 that were developed between 1999 and 2014 (Bhuyan, Bhattacharyya, & Kalita,

2014). However, signature rule writing is highly dependent on the expertise of the writer.

There is latency between the time a new vulnerability or type of cyber-attack is

discovered and the time a new rule is written and implemented which renders signature-

based systems vulnerable to novel attacks.

 According to Inayat et al. (2016), at least 25 other IDSs of note, in addition to

Snort and Bro, had been proposed between 1996 and 2015. Five were characterized as

signature-based, four as anomaly-based, eight as both anomaly and signature-based

(hybrid), and the rest as other.

In addition to classifying IDSs as based on their detection approach by either

signatures or anomalies, IDSs are further classified as either Host-based IDS (HIDS) or

Network-based IDS (NIDS), respectively, depending on the whether they analyze system

logs generated by a host Operating System (OS) or network traffic data based on

communications to and from hosts (Tavallaee et al., 2010; Zuech et al., 2015). Hosts are

sometimes referred to as end-points. An end-point could be a personal computer, server,

mobile phone, Internet connected automobile, printer, voice-activated speaker, or other

networked device.

 19

NIDS can be based on either packet inspection or flow detection (Luh,

Marschalek, Kaiser, Janicke, & Schrittwieser, 2016). Packet detectors analyze

communication packet payloads. Deep Packet Inspection requires significant computing

resources so packet detectors often only analyze a subset of the packet such as HTTP

headers for the case of web traffic. Encryption, in some cases, can thwart the analysis of

certain payload data beyond the packet headers needed for routing or switching. Some

flow-based detection systems analyze communications patterns using attributes such as

source and destination IP addresses, port numbers, state flags, and the number of packets

and amount of data transmitted. Many routers and switches can export flow data using

common formats such as NetFlow.

NIDS generally free up resources by not having processing on each host, may be

able to detect issues that could be obfuscated by log tampering on a compromised host,

and are more OS independent. But they are considered more difficult to configure to

have full coverage within a network. HIDS, on the other hand, benefit by distributing

resources across hosts and use OS-specific rules that might improve detection

performance (Mitchell & Chen, 2014). Often, HIDS and NIDS are both used on the same

network being monitored to provide better defense-in-depth.

IDS Performance Measurements

IDS performance for a binary classifier is typically defined using measurements

based on four variables, which make up a confusion matrix, comparing the classifier’s

predicted output with known labeled actual values (Fawcett, 2006; Mitchell & Chen,

2014). A True Positive (TP) occurs when the predicted output is positive, an indication

 20

of an attack for this research, and the actual instance is positive. A True Negative (TN)

occurs when the predicted output is negative, normal traffic for this research, and the

actual instance is negative. An FP occurs when the predicted output is positive, an attack

for this research, but the actual instance is negative, or normal traffic. A False Negative

(FN) occurs when the predicted output is negative, or normal for this research, but the

actual instance is positive. Various measurements can be calculated from these four

variables, including:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

False	Positive	Rate	(FPR) =
FP

FP + TN
(2)

False	Negative	Rate	(FNR) =
FN

FN + TP
(3)

True	Positive	Rate	(TPR)	or	Detection	Rate	(DR) =
TP

TP + FN
(4)

False	Alarm	Rate	(FAR) =
FPR + FNR

2
(5)

For the purposes of this research, the Moustafa and Slay (2015) definition of False

Alarm Rate (FAR) is used unless otherwise noted. Other researchers often use FAR as

interchangeable with FPR. Thus, it is important to verify the formulas used in different

 21

research papers, that may have the same or similar name or acronym, before comparing

results.

There is often a trade-off between desirable characteristics such as TPR with

undesirable ones such as FPR. A Receiver Operating Characteristic graph (Fawcett,

2006; Bhuyan et al., 2014) can be used to depict how well a given algorithm is

performing. The TPR is graphed on the Y-axis and the FPR on the X-axis. Different

IDS algorithms can be compared on the same graph to show their respective lift from

average detection based on a known test data set. Other related measures, including Area

Under the Receiver Operating Characteristic Curve, have been proposed as a measure of

classifier robustness. Another proposed measure is the geographic mean, G-Mean, which

is the square root of the positive class accuracy times the negative class accuracy (Zong,

Huang, & Chen, 2013).

Data Sets for Training and Testing

 A significant and recurring issue for research in anomaly detection for IDSs is the

availability of data sets for training and testing that reflect current real-world conditions

and continuously evolving intrusion threats (Brown, Cowperthwaite, Hijazi, & Somayaji,

2009; Shiravi, Shiravi, Tavallaee, & Ghorbani, 2012). Some of the earliest IDS datasets

commonly used for research are those produced for IDS evaluations for DARPA by

Lincoln Labs in 1998 (Lippmann et al., 2000) and 1999 (Lippmann, Haines, Fried,

Korba, & Das, 2000). Many more recent studies in IDS use the KDD99 data set

(University of California, Irvine, 1999) which was derived from data originally created

for the DARPA evaluations (Tavallaee et al., 2010). Weller-Fahy, Borghetti, and

 22

Sodemann (2015), argue that the KDD99 intrusion data set remains the only

comprehensive and fully labeled benchmark data set that is widely used by researchers.

Hu, Gao, Wang, Wu, and Maybank (2014) also suggest that the KDD99 is still the most

credible data set for benchmarking IDS results.

However, KDD99 has also been criticized by many, including Tavallaee, Bagheri,

Lu, and Ghorbani (2009), as a poor evaluator of anomaly detection techniques. The

earlier DARPA evaluations, upon which KDD99 was based, were also criticized by

McHugh (2000) for several issues associated with their design and execution. A refined

version of KDD99, Network Security Lab-KDD, or NSL-KDD, which removes some of

the duplicate records from both the training and testing data sets, was created to address

some of the original criticisms of KDD99. Other researchers point out that the

cybersecurity landscape has changed significantly since the creation of the KDD99 data

and that many don’t consider experiments that use older data sets as relevant today

(Sommer & Paxson, 2010).

To address this, Song et al. (2011) developed their own data set since they could

not find what they considered a viable alternative to the KDD99 data set. They used data

collected from a diverse network of honeypots over three years to create a new data set

called Kyoto 2006+. It includes 93 million sessions with 50 million being normal and the

rest being attack. And, it was based on 14 features derived from KDD99 plus 10

additional features such as anonymized IP source address.

Other research has used commercial data sets from large security service

providers. For example, Sundaramurthy, Bhatt, and Eisenbarth (2012), whom were

affiliated with Hewlett Packard, analyzed Intrusion Prevention System data from Hewlett

 23

Packard’s Tipping Point platform which had included over 35 billion alerts collected over

a five-year period from devices located in over 1,000 customer networks worldwide.

However, Zuech et al. (2015) point out that organizations can be reluctant or legally

constrained from sharing such data. The results published from the above data sets were

aggregate statistics and presumably the authors would not be able to share the underlying

data sets from their employer even if anonymized. A study by Coull, Wright, Monrose,

Collins, and Reiter (2007) discusses how similar network trace data can be de-

anonymized which provides a further disincentive for sharing potentially sensitive data.

Dainotti, Pescape, and Claffy (2012), while researching related Internet traffic

classification problems, cite a lack of sharable network packet traces which they believe

is partially due to privacy concerns. Spathoulas and Katsikas (2013b) concur that such a

lack of data sets to test intrusion detection methods are a problem. They also believe that

the problem is further compounded when researchers create new data sets for studies but

do not make them available to others.

Yet, despite the criticism of KDD99 in particular, Azad and Jha (2013) analyzed

75 research papers in intrusion detection from 2000 through 2012 and found that 42%

used the KDD99 data set. Hubballi and Suryanarayanan (2014) cite data sets as an issue

in truly understanding the impact of false positive reduction research. Milenkoski,

Vieira, Kounev, Avritzer, and Payne (2015) also list errors as an issue in publicly

available data traces along with their limited shelf-life due to new attacks. In addition to

DARPA and KDD99, other data sets are available from the Cooperative Association for

Internet Data Analysis, capture the flag and cyber defense competitions such as DefCon,

the Internet Traffic Archive, the Lawrence Berkeley National Lab/International Computer

 24

Science Institute, MAWILab, and the Internet Storm Center (Milenkoski et al., 2015;

Zuech et al., 2015).

 More recently, Moustafa and Slay (2015), also concluded that there was a lack of

a suitable comprehensive data set for evaluation of NIDS research efforts since data sets

such as KDD99 do not reflect modern network traffic. In response, they created a new

data set called UNSW-NB15. It consists of a hybrid of modern real normal activities and

synthesized attack behaviors. The attack traffic was created using the Ixia PerfectStorm

tool in the Cyber Range Lab of the Australian Centre for Cyber Security.

They have made UNSW-NB15 freely available to researchers for academic

purposes. It contains nine categories of attack traffic (fuzzers, analysis, backdoor, DoS,

exploit, generic, reconnaissance, shellcode, & worm) and 49 features. The 49 features

are further divided as: flow, basic, content, time, connection, additional generated, and

labeled features. Two of the 49 features are labels: one for normal or attack traffic and a

second one for the attack traffic type. A full list of these features in included in Appendix

A.

Moustafa and Slay (2016) provided a separate justification of the complexity of

the data set. Moustafa (2017) also gave details of how the derived features were

constructed. A ground truth table giving additional information on each attack including

the category and corresponding Common Vulnerability and Exposures data cross-

reference identifier and description is also available.

Khammassi and Krichen (2017) state that the NIDS research community

considers UNSW-NB15 a new benchmark data set to be used for evaluations of IDSs.

They explored feature selection algorithms and applied the same proposed method to

 25

both KDD99 and UNSW-NB15. They concluded that UNSW-NB15 is more complex

than KDD99 and that further research was needed to improve classification for this new

benchmark data set.

IDS and Machine Learning Techniques

IDS research that is based on anomaly detection often uses Machine Learning

(ML) techniques. Russell and Norvig (2003) define ML as part of the field of Artificial

Intelligence and as the ability to adapt to new circumstances to detect and extrapolate

patterns. Two of the main approaches to ML are supervised and unsupervised learning.

In supervised learning, labeled training data is used to infer a function to predict future

values. In unsupervised learning, the data instances are not labeled. Unsupervised

techniques have more potential applicability, given a lack of sufficiently labeled data, but

assume that normal instances are more prevalent in the test data than abnormal instances.

If that is not true, then those algorithms tend to have higher false positive rates (Bhuyan

et al., 2014). In addition to supervised and unsupervised learning, there is semi-

supervised learning where labeled training instances are only available for the normal

class. Two primary types of supervised and unsupervised learning are classification and

clustering respectively. Numerous ML algorithms have been applied in IDS research

including: ANN, Bayesian statistics such as NB, Gaussian Regression, Support Vector

Machine (SVM), HMM, DTs, and K-Nearest Neighbor (KNN).

Each method has its strengths and weaknesses. For many of the IDS methods

above, algorithms are needed at some stage to optimize – either minimize or maximize –

an objective function (Rai & Tyagi, 2013).

 26

Biologically Inspired Models

Biologically inspired models, in addition to ANN, include the Genetic Algorithm,

Particle Swarm Optimization, Ant Colony Optimization, and Artificial Immune Systems

(Tsai, Hsu, Lin, & Lin, 2009; Bhuyan et al., 2014). Benmessahel, Xie, Chellal, and

Semong (2019) created an IDS based on Locust Swarm Optimization in conjunction with

a Feed-forward Neural Network and achieved a lower FPR than the same approach using

Particle Swarm Optimization & Genetic Algorithm. Igbe (2019) proposed an IDS using

an ensemble of Artificial Immune System techniques including Negative Selection

Algorithm and Dendritic Cell Algorithm that achieved an FPR of 1.34% with a 98.11%

accuracy using a subset of UNSW-NB15 consisting of DoS & normal traffic.

Clustering

Clustering is an unsupervised method that seeks to categorize items, such as

alerts, based on similarity (Weller-Fahy et al., 2015). An example of clustering is k-

means clustering where the data (observations) are split into k categories, or clusters.

Each cluster is identified by its center. The algorithm is highly dependent on the initial

states and can converge quickly to a local versus global optimum, which can lead to

erroneous results (Liu & Yu, 2005). To overcome the local optima problem, researchers

have proposed several techniques such as biologically inspired methods including ANN,

evolutionary algorithms, and swarm intelligence such as Ant Colony and Particle Swarm

Optimization (Rai & Tyagi, 2013).

 27

Similarity and Distance Measures

Weller-Fahy et al. (2015) cite the importance of similarity and distance measures

in network intrusion anomaly detection. They specifically call out measures used during

feature selection, classification, and clustering. They broadly define measures as power

based, such as Euclidean, Manhattan, and Mahalanobis or distribution based, including

Kullback-Leibler distance and entropy.

Entropy is a measure of randomness and has been applied to detecting activities

such as port scanning, DoS, and worms. Bereziński, Jasiul, and Szpyrka (2015) used

entropy as a method of detecting behaviors related to botnets such as Command and

Control (C2). They found that Tsallis and Renyi entropy performed better than Shannon

entropy as measured using FPR and accuracy.

Decision Trees

 DTs are implemented using “if then else” rules. To classify a data sample, they

start with a root node and end with a leaf node. The attributes used to create the tree are

important. Sindhu, Geetha, and Kannan (2012) evaluated several types of DTs including

Decision Stump, C4.5, NB Tree, Random Forest, Random Tree, and Representative Tree

for use as a light-weight IDS. They identified that a suitable subset of features and

removing redundant instances are important to avoid bias in the learning algorithm and

are key factors for achieving better detection accuracy. Shah, Khiyal, and Awan (2015)

categorize DTs as simple but very powerful.

Valero León (2017) used the test and training set referenced in Moustafa and Slay

(2016) to create his models but used the full UNSW-NB15 data set for testing. He

 28

provided confusion matrices for two models. One model was based on a DT and the

other one, for contrast, used Snort (Roesch, 1999), a signature-based system that was

loaded with the latest rules that were available at the time of the experiment. The DT-

based model outperformed Snort by a significant margin.

Boosting

Boosting is a technique that improves a weak classifier, or learner, to achieve a

higher accuracy. Adaptive Boosting (AdaBoost) is the most commonly used form and

was introduced by Freund and Schapire (1997). Another form is LogitBoost, introduced

by Friedman, Hastie, and Tibshirani (2000) to better address the issue of noise and

outliers than AdaBoost. AdaBoost uses an exponential loss function while LogitBoost

uses a linear loss function hence making LogitBoost less sensitive to noise and outliers.

Kamarudin, Maple, Watson, and Safa (2017) created a LogitBoost based IDS in

conjunction with a Random Forest DT. As a motivation, they cited achieving low false

alarm rates with high attack recognition for novel attacks as a major challenge. They

were able to achieve a slightly better performance in terms of DR and accuracy using

LogitBoost as compared to AdaBoost. They concluded that their algorithm provided a

comparable detection accuracy rate with a low false alarm rate. They called a low false

alarm rate, which they defined the same as FPR, as the most crucial property of IDSs.

Tama and Rhee (2019) created an IDS using Gradient Boosted Machine, also

known as a Gradient Boosted Regression Tree. Gradient Boosted Machine was created

to improve the performance of Classification and Regression Tree. Using UNSW-NB15

 29

data, they demonstrated that their approach achieved a lower FPR and a higher accuracy

rate than compared to another type of DT.

Mixture Models

Mixture models are a type of unsupervised learning technique used to identify

subpopulations. Moustafa, Slay, and Creech (2017) created a method they called

Geometric Area Analysis based on Trapezoidal Area Estimation computed from the

parameters of a Beta Mixture Model. They used Principal Component Analysis (PCA)

for reducing the high dimensionality of the data. Citing the inability of conventional

IDSs to detect new intrusive events due to a high FPR, they demonstrated that their

method provided a lower FPR than several other techniques using the NSL-KDD and

UNSW-NB15 data sets.

Moustafa, Creech, and Slay (2017) proposed an Anomaly Detection System based

on Finite Dirichlet Mixture Model with a PCA-based feature reduction. Their approach

yielded a lower FPR than other comparable approaches, such as Multivariate Correlation

Analysis and Triangle Area Nearest Neighbor, using the NSL-KDD and UNSW-NB15

data sets. The other approaches that they used for comparison were based on correlation

and distance measures which usually cannot detect modern attacks that mimic normal

traffic. However, they imply that their approach can detect such attacks due to the

precise boundaries that can detect small differences between normal traffic and attack

vectors.

Moustafa, Adi, Turnbull, and Hu (2018) put forth a new scheme based on a Beta

Mixture Model and HMM which they call Beta Mixture HMM. Using UNSW-NB15

 30

data, they demonstrated that their scheme outperforms Classification and Regression

Tree, KNN, SVM, Random Forest, and Outlier Gaussian Mixture in terms of FPR, DR,

and Accuracy.

Bayesian Approaches

Bayesian networks are a common classifier based on a directed acyclic graph with

nodes representing attributes and arcs representing dependencies. A simplified form is

the NB classifier where all of the attributes are assumed to be independent. Barbara,

Couto, Jajodia, Popyack, and Wu (2001) used NB for their Audit Data Analysis and

Mining platform for classifying cyber-attacks and non-attacks without prior knowledge of

new cyber-attacks. Koc, Mazzuchi, and Sarkani (2012) cite several prior uses of

Bayesian statistics for IDS and present a Hidden NB model that relaxes the NB

conditionally independence assumption for better accuracy than traditional NB models.

Genetic Algorithm

A genetic algorithm is based on Darwin’s evolutionary principle of survival of the

fittest and seeks to optimize a population of candidate solutions based on a fitness

function. Genetic algorithms simulate natural reproduction using cross over and other

techniques similar to gene selection, mutation, and recombination. Crosbie and Spafford

(1995) were one of the first to propose using a genetic algorithm for intrusion detection.

Hoque, Mukit, and Bikas (2012) and others subsequently used genetic algorithms for IDS

research but the results in relation to false positives were not promising compared to

 31

other cited research. A drawback of the genetic algorithm is the amount of time and

computing resources it takes to reach an optimal solution.

Neural Networks

The concept of an ANN, inspired by the function of the human brain, particularly

the interconnection between neurons, has been around since McCulloch and Pitts (1943)

devised a mathematical model for a neuron. ANNs typically consist of layers of nodes,

which contain activation functions, connected by weighted directed links. ANNs use

supervised learning. Labeled data are used to train the ANNs to learn classification

patterns such as intrusion or no intrusion in the case of a binary classifier. Data are

presented to an input layer that often links with one or more hidden layers that then link

to an output layer that provides a result.

Cannady (1998) presented an ANN for misuse detection with network traffic and

concluded that the advantages of that approach included the ability to learn. He listed

disadvantages as the difficulty of obtaining sufficiently large amounts of training data and

the black box nature of neural networks. In addition to the ability to learn, Russell and

Norvig (2003) cite another advantage of ANNs is being able to tolerate noisy inputs.

Wang, Hao, Ma, and Huang (2010) argued that ANNs can improve the

performance of IDSs when compared with other methods but that enhancement is

required. They proposed an approach based on ANN and fuzzy clustering to achieve a

higher detection rate, lower false positive rate, and better stability.

There has been much research into ANNs around optimal network structures,

optimization of weights, training methods such as Back Propagation, and methods to

 32

avoid overfitting and other challenges. There are several different network structures but

Multi-Layer Perceptron (MLP) is the one that is most used in IDS research (Shah et al.,

2015).

Self-Organizing Map

Self-Organizing Map, as described by Kohonen and Somervuo (1998), is a type of

neural network that can map highly dimensional data into a two-dimensional array.

Rhodes, Mahaffey, and Cannady (2000) cite that the first use of a Self-Organizing Map in

misuse detection was described by Cannady in 1998 which involved the output of a

Kohonen map as input to a feed-forward ANN to detect temporally dispersed attacks

(over a period of time by one attacker) and possibly collaborative attacks (multiple

attackers). Self-Organizing Map does not need to learn intrusive behavior but rather it

learns it through characterizing normal activities. Shah et al. (2015), concur that Self-

Organizing Map provides a simple and efficient method to self-categorize inputs for

clustering that offers a higher speed compared with other learning methods.

Kernel Machines

SVM, sometime referred to more generally as kernel machines, research was

begun by Boser, Guyon, and Vapnik (1992). SVM requires labeled training data and

operates as a classifier by creating a hyper-plane to group data into normal or abnormal

classes.

 Perdisci et al. (2009), citing SVMs tendency to have low FPRs, created an IDS

using a multiple SVM voting scheme to detect malicious payloads including polymorphic

 33

shell code. Li et al. (2012) cited good accuracy results when using SVM for IDS with

clustering and Ant Colony Optimization.

 Advantages of SVMs include low FPRs and the ability to work with data that are

not linearly separable by other techniques. However, they tend to be complex to

implement due to the required mapping of the feature space into a higher dimension

which often requires optimization techniques that lead to long training times (Gilmore &

Haydaman, 2016).

Bamakan, Wang, and Shi (2017) created an IDS using a variant of SVM called

Ramp Loss K-Support Vector Classification-Regression which is a multi-class SVM

approach that is well-adapted for skewed and imbalanced data sets, such as attack data

sets used in IDSs. To combat the presence of noise in training data, they introduced a

ramp loss function instead of the hinge loss function usually used in SVMs. The ramp

function helps to depresses outliers. They compared their method to regular K-Support

Vector Classification-Regression and demonstrated, using UNSW-NB15 data, that their

algorithm substantially improved accuracy and reduced FPR.

ELM

ELM, introduced by Huang, Zhu, and Siew (2004) is an emerging technology for

ML. ELM was originally developed from single-hidden-layer feed forward ANNs. ELM

overcomes issues including slow learning speed and poor scalability faced with other

techniques, such as ANN and SVM. The crux of ELM is that the hidden layer need not

be tuned (Huang, Wang, & Lan, 2011). The input biases and weights that connect the

 34

inputs to the hidden layer are chosen randomly while the output weights are calculated

using a Moore-Penrose inverse which results in faster training times.

Numerous variations of ELMs have been proposed. Ding, Xu, and Nie (2014)

outlined the evolution of ELM and discussed eleven different variations that had been

proposed to improve its performance. Huang, Zhou, Ding, and Zhang (2012) proposed

the equality constrained-optimization-based ELM, which integrates with the learning

rules of a variant of SVMs, called least squares SVM, to find a global solution for the

weights of the output layer. They purport ELM tends to have much better generalized

performance for multi-class classification problems at up to a thousand times faster

learning speeds than traditional SVM.

For the basic version of ELM, the number of hidden nodes (neurons) needs to be

determined by the user typically by trial-and-error. Ding et al. (2014) stated that

determining the number of hidden neurons to use for different data sets is an open

research problem. However, Huang, Zhu, and Siew (2006) demonstrated that ELM is

very stable across a wide range of hidden nodes but performance can degrade with too

few or too many neurons.

Huang, Chen, and Siew (2006) proposed a solution for this called Incremental

ELM where hidden neurons are added incremental until a given criteria is met. Huang

and Chen (2008) offered an enhanced version of this called Enhanced Incremental

Extreme Learning Machine. And Wang, Xu, Lee, and Lee (2018) proposed an enhanced

version of Equality Constrained-optimization-based Extreme Learning Machine, called

Construction with Adaptive Increments, where the number of hidden neurons are

 35

determined in an adaptively incremental way and the output weights are derived without

having to be recomputed.

Cheng, Tay, and Huang (2012) applied ELM to the intrusion detection domain

and concluded that the basic ELM model outperforms SVM in training and testing speed

but had slightly lower accuracy using KDD99 data. But, a kernel-based ELM achieved

higher accuracy than an SVM.

Castaño, Fernández-Navarro, and Hervás-Martínez (2013) introduced PCA-ELM.

Their method eliminates the random initialization of the ELM weights and determines

them based on a PCA of the training data. This method transforms the data into a number

of principal components which often better highlights anomalies. They trialed their

method on various non-IDS related data sets and reported positive results.

Zong et al. (2013) introduced a weighted ELM to compensate for complex data

classes, such as in IDSs, where the majority class tends to be favored based on training

data. In many IDS implementations, this class would typically be normal events. They

assigned a weight to each sample to heighten the impact of the minority class while

dampening the majority class. Other techniques were discussed such as over sampling or

under sampling of the testing data but were dismissed. The authors demonstrated their

approach using a variety of non-IDS data sets and were able to influence the balance of

FPR and TPR as shown on a Receiver Operating Characteristic graph. Xia and Hoi

(2013) used Multiple Kernel Boosting with the Multiple Classification Reduced Kernel

ELM (Deng, Zheng, & Zhang, 2013).

Creech and Jiankun (2014) used an ELM approach for a HIDS in conjunction

with a full semantic analysis of system calls. That resulted in higher accuracy and

 36

reduced false positives compared to other techniques including SVM, HMM, MLP, and

KNN. They highlighted the decision engine training speed with ELM but noted it has

slightly higher processing needs.

According to Fossaceca et al. (2015), ELMs are straightforward to implement,

computationally efficient, and have excellent learning performance characteristics. They

implemented an ELM based IDS solution, dubbed MARK-ELM, that they purport

achieves superior detection rates and much lower false alarm rates than other approaches

to intrusion detection. The authors compare ELM to SVM and note that ELM

significantly outperforms SVM in computational speed while being on par with SVM for

accuracy.

 Wang et al. (2018) also applied their ELM-based Construction with Adaptive

Increments solution to different IDS data sets and compared the results to those of MLP

and SVM solutions. They concluded that ELM had faster training times but had mixed

results for other performance measures such as FPR.

Deep Learning Approaches

Another more recent area of research in ML is on deep networks, which are multi-

layer ANNs. Types of deep networks based on Restricted Boltzmann Machine include

Deep Belief Network and Deep Restricted Boltzmann Machine. Types based on Auto-

Encoders include Stacked Auto-Encoders and Stacked De-noising Auto-Encoders.

Kasun, Zhou, Huang, and Vong (2013) concluded deep networks outperform traditional

multi-layer ANNs, SLFNs, and SVMs for big data sets but exhibit slow learning speeds.

Yu, Zhuang, He, and Shi (2015) citing the success of deep learning models and ELM,

 37

created a deep learning ELM named DrELM. They compared both ELM and deep

learning methods including linear ELM, kernel-based ELM using both Gaussian and

Sigmoid kernels, Optimally-Pruned ELM, Deep Restricted Boltzmann Machine, and

Stacked Auto-Encoder. They concluded that their DrELM outperforms linear and kernel-

based ELM and is comparable to other deep learning methods using non-IDS related data

sets.

Tchakoucht and Ezziyyani (2018), stated that Recurrent Neural Networks, a type

of ANN, are one of the most widely used deep learning techniques due to their predictive

ability with sequential (temporal) data. They developed an IDS using a Multilayered

Echo-State Machine based on Reservoir Computing which in turn is based on both ML

and computational neuroscience. Reservoir Computing was introduced as a solution for

Recurrent Neural Network training bottlenecks, from accurate but slow training methods

such as Long Short-Term Memory, that can involve exploding gradient, vanishing

gradient, and slow convergence. Recurrent Neural Networks as a reservoir have been

described as Echo-State Networks. Using an Echo-State Network involves randomly

generating an individual Recurrent Neural Network layer (reservoir) and then only

training the reservoir to output connections. Tchakoucht and Ezziyyani (2018) used

multiple layers of reservoirs based on promising results for other applications. They were

able to show improved performance over select other IDS techniques and suggested

additional research to further improve DR and FPR. They provided comparisons to prior

results using three data sets including UNSW-NB15.

Blanco, Cilla, Malagón, Penas, and Moya (2018) proposed another deep learning

technique, Convolutional Neural Networks, for a multi-class IDS in conjunction with a

 38

genetic algorithm. Convolutional Neural Networks are a type of MLP with a

convolutional step to generate intermediate features to preserve spatial relationships

between inputs before input into an MLP. Convolutional Neural Networks were inspired

by the biology of animal visual cortexes and are typically used for image processing

tasks. They arranged the features of UNSW-NB15 to create a 5x5 pixel image and

optimized the classifier using a genetic algorithm to find a better layout for the input

features. They obtained an accuracy of 98.14% but did not provide an FPR.

Muna, Moustafa, and Sitnikova (2018) proposed an IDS approach using Deep

Auto Encoder with a Deep Feed Forward Neural Network architecture. They tested their

approach against both the NSL-KDD and UNSW-NB15 data sets and concluded that

their proposed approach provided a lower FPR and higher DR than other techniques used

for evaluation.

Vinayakumar et al. (2019) modeled an IDS using a Deep Neural Network. They

compared results to several other algorithms and with varying numbers of layers. While

the results beat some classifiers in terms of FPR, their four-layer Deep Neural Network

had an FPR of 26.4% compared to NB with 2.5% for normal traffic using the UNSW-

NB15 data set.

Markov Models

A Markov model attempts to calculate the likelihood of a system in a given state

based on a sequence of observations. An HMM (Baum & Petrie, 1966) is a Markov

model with unobserved (hidden) states. Hu, Yu, Qiu, and Chen (2009) described HMMs

as a double stochastic process with an upper layer Markov process whose states are not

 39

observable and a lower layer one where outputs are emitted and can be observed. An

HMM requires a five-tuple for input and is written as λ = (A, B, π) in compact notation

where N is the number of states, M is the number of symbols per state, A is the state

transition probability, B is the observation symbol emission probability distribution, and

p is the initial state distribution (Rabiner, 1989; Gilmore & Haydaman, 2016).

Warrender, Forrest, and Pearlmutter (1999), calling HMMs one of the most

powerful data modeling methods in existence, compared an HMM analyzing system calls

as part of a HIDS, with three other methods. They found their HMM gave the best

accuracy on average but at a high computational cost. Other researchers such as Hu et al.

(2009) continued the focus on using system calls with HMM for a HIDS and proposed

improved training methods which reduce training time but at the expense of slightly more

false positives.

Ourston, Matzner, Stump, and Hopkins (2003) used an HMM to model multi-

stage attacks using system calls. Their states consisted of probe, consolidate, exploit, and

compromise. They used a C4.5 DT, an ANN, and an HMM on the same data and

concluded the HMM had the most promise to detect multi-stage attacks. Bhatt, Yano,

and Gustavsson (2014) proposed a framework using the kill chain and concluded that

using an HMM for event correlation for detecting APTs looks promising.

Wright, Monrose, and Masson (2004) used HMMs for determining what network

protocol, such as File Transfer Protocol was being used in a given packet, even if the

payload was encrypted, based solely on packet size and inter-arrival time. They used

network traces provided by George Mason University and DARPA and reported

promising results.

 40

Liang, Wang, Cai, and He (2008) proposed using an HMM for network security

situation awareness based on using network services as states: Domain Name Service

(DNS), World Wide Web, File Transfer Protocol, Network File System, and Mail. They

used normal, attack, compromised, and hacked as observations. While they described the

training and initial set-up of the proposed model, they did not provide any results to

evaluate or any further information on their proposed data set for training and testing.

 Sendi, Dagenais, Jabbarifar, and Couture (2012) used an HMM with other

algorihms to model a specific type of DDoS attack relying on the Sadmind Remote

Administration Tool using the DARPA 2000 data set for training and testing. They used

four states for the HMM: normal, attempt, progress, and compromise. They were able to

perfectly predict this specific attack and reduce false positives. However, while detecting

a very specific attack sequence seems trivial they did highlight the ability of HMMs to

detect multi-stage attacks that might be otherwise missed.

 Zhou et al. (2015) used an HMM to develop a classifier to differentiate real

attacks from normal traffic and non-attack related faults in an industrial control system

environment. They used three states: normal, fault, and attack and focused on three

types of attacks: spoofing, tampering, and DoS. They used a proprietary data set and

were able to minimize false positives while providing fast detection. They highlighted

the ability of HMMs to detect indications of attacks from both a spatial and temporal

view and the importance of infusing domain specific knowledge into the model.

 Chen, Guan, Huang, and Ou (2016) proposed an HMM using three states:

reconnaissance, attack, and stepping-stone. Using IDS records, they reported success

with their HMM to detect on-going multi-state attacks with a precision rate of 93.2%.

 41

They believe HMMs can be used to further reduce the number of suspicious alerts

generated by IDSs through classification; however, they pointed out the importance of

considering different attack strategies in each stage in developing classifiers. They did

not specify a data set that could be used by other researchers.

Liang, Chen, Yan, Zheng, and Zhuo (2017) also proposed using HMMs to model

network security situation awareness with a scaled training method using entropy. They

chose four states: good, probed, attacked, and compromised and used the DARPA 2000

traces as a data set. However, in addition to using an older data set, they did not provide

any measures for false positives. Their primary focus was on the training aspect of the

models.

 HMMs have been used successfully as classifiers within intrusion detection.

However, many researchers have used HMMs as part of a HIDS with a focus on using

system calls as observations. While NIDS and related network classification research

using HMMs has also been promising, many of the studies use older or unspecified data

sets and often focus on a narrow range of specific attack types such as DDoS. But many

researchers agree that HMMs provide a temporal aspect to classification problems in

addition to spatial which is important in detecting indications of multi-stage attacks.

Hybrid Methods

 There are combined learners that include ensemble, fusion-based, and hybrid.

These approaches generally seek to combine several different methods so that the end

result outperforms the individual results. An example of an IDS hybrid that combines

both signature and anomaly-based methods is called EMERALD (Porras & Neumann,

 42

1997). This type of approach has been shown to reduce false alarms and increase the

capability of detecting unknown attacks. Mukkamala, Sung, and Abraham (2005),

demonstrated that an ensemble of classifiers performs better than each algorithm

individually but there is often difficulty in scaling such an approach to large data sets.

Depren, Topallar, Anarim, and Ciliz (2005) proposed a hybrid anomaly and

misuse IDS using Self-Organizing Map for modeling normal behavior. The misuse

portion used a J48 DT to classify various cyber-attacks. They concluded that their hybrid

approach performed better than the individual ones.

Karthick, Hattiwale, and Ravindran (2012) used a hybrid approach with network

traffic to identify malware. They used a NB classifier as a first stage followed by an

HMM as a second stage to identify malicious source IP addresses. The NB passed traffic

in real-time while the HMM was off-line. TCP state flags were used for the HMM states.

The authors looked at several sets of attributes and concluded that for each server they

needed both IP and port addresses to achieve the lowest FPR and highest detection

accuracy. They further concluded that having more states available in the data improved

the accuracy.

Akusok, Miche, Hegedus, Nian, and Lendasse (2014) used a two-stage approach

to identify malware, using data from F-Secure, with the goal of minimizing both false

positives and false negatives. Their first stage was based on KNN clustering but still

yielded a high FPR. They then fed the KNN results into two separate ELMs. The data

flagged as malware was fed into a FP minimized ELM and the traffic flagged as clean

was fed into a FN minimizing ELM. The end result using 18,437 data points was a lower

 43

FPR (2 FPs) with the two-stage approach compared to just using the KNN layer (183

FPs).

Moustafa, Turnbull, and Choo (2018), seeking a solution to better mitigate

malicious events, particularly botnet attacks against protocols used in IoT networks such

as DNS, HTTP, and Message Queue Telemetry Transport, created an ensemble using DT,

NB, ANN, and AdaBoost. Using UNSW-NB15 data, they demonstrated that their

ensemble method had a lower FPR and higher DR compared with each classification

method separately.	

	

Voting Schemes

 Voting schemes, in which the output of several classifiers is combined to reach a

conclusion, are popular in pattern recognition. Woods, Kegelmeyer, and Bowyer (1997)

categorize techniques to combine multiple classifiers as either classifier fusion or

dynamic classifier selection. For fusion, the individual classifiers are run in parallel and

then a scheme to reach a group consensus is applied. For dynamic selection, the goal is

to determine which classifier is likely to be correct. They cite several fusion algorithms

including: majority voting, unanimous consensus, thresholding, heuristic polling,

weighted ranking, and others. They proposed an improved approach to dynamic

selection by using a local accuracy scheme.

Lin, Yacoub, Burns, and Simske (2003) demonstrated that a combination of

classifiers can result in significant accuracy improvement and that voting methods are

simple and effective. They also point out that for many applications that there is often

only a marginal, if any, difference in performance between simple voting schemes and

more advanced combination techniques.

 44

Lin, Lai, Ho, and Tai (2013) believe that to overcome the limitations of a single

IDS, multiple IDSs can be used to more accurately recognize threats. However, the

results of multiple IDSs can often be in conflict. They cite majority voting as a technique

to resolve such conflicts but note that it often leads to inaccurate decisions given that

technique disregards the different domain knowledge of the IDSs in the minority. They

proposed a creditability-based weighted voting scheme to overcome that limitation.

False Alarm Reduction Techniques

Hubballi and Suryanarayanan (2014) cite several reasons for false alarm

generation in IDS including: intrusion activities are sometimes very similar to normal

activities and thus difficult to differentiate, a lack of context data related to the alarm, and

cases where circumstance determine whether an activity is malicious such as a network

scan done by a security administrator versus a hacker. Many IDSs also alarm on attempts

which do not necessarily lead to a compromise. Additionally, an alarm may represent a

stage in a multi-stage attack that may fail in subsequent stages.

 One way to throttle false positives is to adjust the alert threshold. But in existing

systems there is usually a trade-off. Less false positives will also cause the system to

miss attacks. Usually, administrators adjust the level to achieve a balance between the

level of security and risk and the resources available to respond to alerts but that is a time

consuming and knowledge intensive task (Wang & Lee, 2001).

Julisch and Dacier (2002) applied data mining techniques to reduce false

positives. They discovered the cost of finding relevant episode rules outweighed the

benefit but did discover interesting patterns such as that IDS alarms are very homogenous

 45

and repetitive. They concluded that a source host triggering a heterogeneous stream of

alarms is likely an attacker. And that clustering using attribute-oriented induction

produced results that were too general. The authors further suggested that custom made

filtering rules, to automatically discard alarms, or correlation rules, to group alarms, can

help reduce alert volume but that humans should be involved in the analysis to avoid

destroying valuable data.

In a related paper, Julisch (2003) found that a few dozen root causes generally

account for over 90% of alarms and suggested if these were removed, they would allow

operators to concentrate on the remainder. He focused on nine cases including

SYNchronize Flood, Suspicious GET, Host Scan, Fragmented IP, DNS Zone Transfer,

TCP Hijacking, and Code Red. Some of these are still suspicious traffic today but this

list would need to be updated for current threats since Code Red was an artifact of the

time the paper was written.

One of the challenges with IDSs, according to Spathoulas and Katsikas (2010), is

that intrusion methodologies and attack strategies evolve over time with technology.

Large numbers of alerts and false positives are a common problem among almost all

categories of IDSs. While many methods have been used to reduce false positives in

IDSs, research has been evolving to develop effective technologies to classify activity at

an acceptable DR. Spathoulas and Katsikas (2013a) outlined a solution to reduce false

positives by up to 75%. The authors indicate that most false alert reduction research is

focused on post-processing of alerts. A three-part post-processing filter based on their

study of the distribution of false positives in alert sets from Snort was proposed. The first

component, Neighboring Related Alerts, was based on the observation that attacks

 46

produce bursts of alerts at first as attackers scan for victims and vulnerabilities. The

second component, High Alert Frequency, was based on their observation that attacks

produce anomalies in the distribution of alerts. The third component, Usual False

Positive, was based on false positives usually resulting from the same specific causes.

In a subsequent survey of false positive reduction, alert correlations, and

visualization research, Spathoulas and Katsikas (2013b), put forth that while much

research has been done, a complete solution is still missing and that there are many open

issues and ideas to be explored with post-processing. They believe that any solution must

be adaptable to future attacks, be able to work with other methods, and be efficient

regardless of the IDS being used or the system being protected.

Hubballi and Suryanarayanan (2014) conducted a survey of research on false

alarm minimization techniques for signature-based IDSs. They created a taxonomy of

nine different techniques: signature enhancement, stateful signature-based, vulnerability

signature-based, alarm (data) mining, alert correlation, alert verification, flow analysis,

alert prioritization, and hybrid methods. For alarm mining, the techniques were further

classified as clustering, classification, ANN, and frequent pattern mining. For alert

correlations, their categories included: multi-step, knowledge-based, complimentary

evidence, casual relation, fusion-based, attack graph, and rule-based. They reviewed

commercial Security Information and Event Management systems and noticed that the

majority of those systems use rule-based techniques for event correlation. Despite all of

the research to date, Hubballi and Suryanarayanan (2014) concluded that more research is

needed to address the usability of the proposed techniques in real-world scenarios.

 47

Zuech et al. (2015) believe that a more comprehensive approach in monitoring

and correlating security events from many different heterogeneous sources can give a

more holistic view and greater situation awareness of cyber threats. Shittu, Healing,

Ghanea-Hercock, Bloomfield, and Rajarajan (2015) used post-correlation prioritization

based on anomaly detection and clustering to reduce false positives. They grouped

related IDS alerts into meta-alerts. Those with higher outlier values indicating a larger

anomaly were given a higher priority. They showed a false positive reduction of 97% in

one scenario and 16% in another using industry data derived from a Snort system from

2012. The large difference between the two scenarios was attributed to lesser distinct

outliers in the second scenario. The authors concluded that additional research is needed

on real-time incremental outlier detection and clustering given their results were based on

a batch analysis.

Situation Awareness

Endsley (1988) first introduced the concept of situation awareness in the context

of human factors research in the aerospace field. Endsley defined situation awareness as

having three components: the first was perception of elements in time and space, the

second was the comprehension of their meaning, and the third their projection into the

future.

 Bass (1999) applied situation awareness to the field of intrusion detection, calling

it cybersecurity situational awareness, and proposed that the fusion of multiple sensor

data along with context-dependent threat and vulnerability information could form a

 48

model for the next generations of IDS. The field of network security situation awareness

evolved from the work of Bass.

 In applying situation awareness to intrusion detection, Bass (1999) borrowed the

military concept of Observe, Orient, Decide, and Act and multisensory data fusion where

a diverse array of data sources can be employed. He applied this to achieve a higher

cyberspace situation awareness using data fusion for intrusion detection where data

fusion can provide varying levels of data from just being aware of an intrusion up

through analyzing the associated threats and vulnerabilities. His approach included

analyzing data across multiple different device types and data sources concurrently.

Wang, Liu, Lai, and Liang (2007) offered that network security situation awareness seeks

to provide a solution to the high ratio of false positives and associated expensive response

to IDS alerts.

 Hutchins et al. (2011) took a military-inspired kill chain model approach to cyber

situation awareness. They asserted that traditional computer defenses alone such as anti-

virus and IDS are not effective against APTs where the threat actors are often well

resourced, trained, and patient. They proposed an intrusion cyber kill chain that

recognized different phases of an attack, which they defined as: reconnaissance,

weaponization, delivery, exploitation, installation, C2, and actions on objectives. They

determined that host-based IDSs were the best to detect indications of exploitation and

installation while network-based IDSs were the best to detect weaponization and C2.

Indications of reconnaissance may include host and port scanning activities that could be

detected by IDSs. And indications of actions on objectives could include exfiltration that

could likewise use IDSs for detection.

 49

 While substantial research has been done in intrusion detection for alert

correlation, relatively little has been done for data fusion as compared to other domains

such as military applications (Zuech et al., 2015). Other researchers such as Mees and

Debatty (2015) are attempting to further define situation awareness frameworks for cyber

defense. They argue situation awareness needs to be largely automated given the speed

at which cyber-attacks are executed. They also call for more research on methods for

working with data that may be incomplete, uncertain, or erroneous.

The reconnaissance phase of cyber-attacks includes activities such as finding

target information through web crawling. Huang, Shen, Doshi, Thomas, and Duong

(2015) observed that attackers often attempt to obtain information on a network as a first

step in a cyber-attack. Attackers typically do this through a network scan to discover

network topology and host information such as IP addresses. This is typically followed

by port scans to determine host types and what services are running. This would then

inform the weaponization phase using the kill chain model where an exploit vehicle such

as a Portable Document Format file is chosen. This, in turn, leads to a delivery method

such as via email or a web site download. After the exploit is delivered to the host,

exploitation could be in the form of malware which exploits a vulnerability in processing

files, for example, to install malicious code. Some examples of malware include viruses,

Trojan horses, back doors, worms, root kits, scareware, and spyware (Luh et al., 2016).

Once the attacker’s code is active on the host, a C2 channel is often established to

communicate back to the attacker. The attacker can then take actions such as exfiltration

of data.

 50

 Marchetti et al. (2016) proposed a NIDS based approach to identify weak signals

related to data exfiltration and other Advanced Persistent Threat (APT) activities. They

purported that existing security solutions based on pattern matching work well for

common attacks but can often not identify APTs. This is since APTs use unknown (zero-

day) vulnerabilities and seek to hide within normal network traffic. APTs also typically

use only a few internal hosts along with evasion detection techniques such as “low-and-

slow.” APTs may slowly exfiltrate data over long time periods to avoid detection and use

encryption, which often thwarts signature-based IDSs. The authors list five main phases

of an Advanced Persistent Threat including: reconnaissance, compromise, maintaining

access, lateral movement, and data exfiltration which is similar to the Hutchins et al.

(2011) kill chain model. The compromise phase is typically created through a spear

phishing email with a zero-day exploit where a Remote Administration Tool is usually

installed. The tool then initiates contact with a C2 server since connections initialized by

an internal host are often allowed through a firewall and attract less attention. They used

three features of network traffic to identify hosts potentially involved in data exfiltration:

number of megabytes uploaded by internal hosts to external addresses, number of flows

to external hosts, and the number of external IP addresses related to a connection initiated

by the internal host. APTs are sometimes known as Advanced Targeted Attacks (Luh et

al., 2016).

 51

C2: Botnets

Botnets are defined as networks of machines compromised by malware. They are

typically composed of hosts from both institutions and consumers that usually do not

know they are infected. They are often used to propagate spam; perform DDoS attacks;

distribute malware; facilitate software piracy, information harvesting, identify theft,

Bitcoin mining, and extortion; and for manipulating online games, surveys, and web

advertising click fraud. Since botnets are made up of many previously non-malicious

hosts, those hosts are often not initially on lists of malicious IP addresses. A common

defensive strategy is to check incoming IP addresses against a list of known bad actors.

These lists are called black lists, watch lists, or Indicator of Compromise lists. They are

often based on IP addresses, signatures such as a Uniform Resource Locator, a malware

hash code based on Message Digest 5, or other similar algorithms. Botnets also allow

attackers to confuse such defenses by launching attacks from a stream of changing IP

addresses.

Some botnets have included in excess of one million hosts under control of “bot

masters” who often rent out their network to malicious actors on a time-sharing basis for

monetary gain. Botnets were initially developed for legitimate activities. The first ones

used Internet Relay Chat as a C2 channel. The first bot of that type, Eggdrop, was

developed in 1993. Bots were quickly adapted for malicious purposes. Examples of

recent malicious botnet related software includes Zeus, often used for hijacking bank

account credentials, which has more than 3,000 variants and is estimated to have infected

3.6 million hosts. Another botnet, Conficker used a Peer-to-Peer architecture to infect an

estimated 10.5 million hosts in 2009.

 52

Botnets have adapted rapidly and more recent versions, such as Torpig, have

evolved to use techniques such as domain fast flux to take advantage of the DNS protocol

to evade detection via methods such as blacklists. Countermeasure defenses for fast

fluxing include monitoring DNS protocol activity. Once infected, bots or individual

hosts on a botnet exchange messages via an established C2 channel. Such traffic is

usually not high volume and thus avoids detection from many methods. Botnets often

use multiple redundant C2 servers for resiliency in case one is taken out of service.

Anomaly-based methods are considered the main research area for botnets. Detection

includes network traffic anomalies in areas such as latency, traffic volumes, traffic on

unusual ports, and unusual system behavior (Silva, Silva, Pinto, & Salles, 2013). Some

researchers refer to the use of a C2 channel as an “ET Phone Home” protocol where the

host communicates with a botnet controller in a nod to the 1980’s science fiction movie.

Data Preprocessing and Feature Selection

Data preprocessing is an important step in anomaly detection. Such processing

includes data set creation, feature construction, feature reduction or selection, data

transformation (such as converting attributes from nominal to binary and

scaling/normalization), and labeling in the case of supervised learning. Examples of

features for a NIDS could include packet length, destination and source IP and port

addresses, time stamps, and TCP flags.

Feature selection is the process of choosing the best subset of features, sometimes

referred to as attributes or variables, in a given data set. A data set with a large number

of features is termed highly dimensional. Feature selection is often done to alleviate this

 53

“curse of dimensionality” by removing redundant or irrelevant features to reduce the

computational complexity and cost of an algorithm (Davis & Clark, 2011). Another

benefit of feature selection is to better avoid overfitting in supervised training models

(Saeys, Inza, & Larrañaga, 2007). Feature selection affects the resulting classifier

accuracy, including the FPR (Bahrololum, Salahi, & Khaleghi, 2009), so sometimes a

trade-off between computational complexity and accuracy needs to be evaluated.

Feature selection algorithms can be broadly categorized as either filter or wrapper

methods. Wrapper methods use the classification algorithm itself to evaluate features

while filter methods are independent of the classifier used (Karegowda, Manjunath, &

Jayaram, 2010; Hall, 2000). Some refer to a third category of algorithms as embedded

where feature selection is built into the algorithm as in the case of DTs (Saeys et al.,

2007).

Saeys et al. (2007) cite advantages of filter models as being fast, scalable, and

independent of the classifier with the primary disadvantage being they ignore interactions

with the classifier. Since the filter methods are independent of the classifier, these

methods can be used to perform feature selection once for evaluation of multiple

classifiers. They also further categorize filter methods as univariate, meaning that each

feature is considered separately, or multivariate. A disadvantage of univariate methods is

they ignore dependencies among features which can lead to worse classification

performance. However, several multivariate filter techniques have been proposed to

overcome this. Examples of univariate methods include Chi-square, Euclidean distance,

Gain Ratio, and Information Gain. Multivariate methods include Correlation-based

Feature Selection (CFS) and Markov Blanket Filter.

 54

Some filter methods perform feature ranking rather than feature selection. They

are often then combined with search methods such as forward selection, backward

elimination, and best-first (Karegowda et al., 2010).

Advantages of wrapper methods include that they are simple and interact with the

classifier. Disadvantages include classifier dependence, being prone to getting stuck in a

local optimum, and the risk of overfitting. Examples of wrapper methods include genetic

algorithms, simulated annealing, and beam search (Saeys et al., 2007).

Substantial research has been done on feature selection and numerous other

algorithms and variations have been proposed. Alhaidari and Zohdy (2018) proposed a

feature pruning model for HMMs and achieved an FPR improvement from 19.16% to

0.38% by reducing the number of features used from UNSW-NB15 to 16. Another

example of a technique used on intrusion detection data sets is gradual feature removal

(Li et al., 2012).

Summary

 There is ample literature to support the use of machine learning techniques in

anomaly detection for reducing false positives. However, much research is still being

done using older data sets, such as KDD99, that are not indicative of modern normal and

attack traffic. But, according to Hu et al. (2014), KDD99 is still the most credible data

set to benchmark IDS results. Weller-Fahy et al. (2015) also agree that KDD99 remains

the only comprehensive and fully labeled benchmark data set that is widely used by

researchers.

 Thus, the largest gap in the literature is an absence of widely used contemporary

 55

data sets, reflecting recent cyber-attack methods, for training and testing for IDS

research. While Khammassi and Krichen (2017) state that the NIDS research community

considers UNSW-NB15 a new benchmark data set to be used for evaluations of IDSs, it

will likely take several years for researchers to embrace this and for it to be significantly

demonstrated via the literature. Another common gap is that many researchers do not

provide sufficient details to replicate their research.

 56

Chapter 3

Methodology

Overview

The approach of this research uses the three stages, phases, or levels of situation

awareness as defined by Endsley (1988) and as shown in Figure 1 below. The first level,

perception, was accomplished with a network-based (NIDS) anomaly-detection engine

for intrusion detection using an ELM as the classifier. The ELM classifier monitors the

environment by analyzing the attributes of each event record in search of indications of

cyber-attacks. The ELM classifier only considers events occurring at a discrete point in

time as determined by the duration field in each event record.

 The second level, comprehension, was accomplished using HMMs.

Comprehension is about synthesis of information and understanding the bigger picture.

Since the HMMs are trained to evaluate sequences of events over time as opposed to a

single event in time, they provide a more comprehensive view of what is going on in the

monitored network. This also results in a higher level of awareness in recognizing multi-

stage events. Each HMM looks at a specific behavior of a single attribute over time.

The third level, projection, is the decision informed by the perception and

comprehension stages, in space and time, on whether a given alert from the perception

stage should be put forth as an intrusion alert to either a human operator or for automated

actions. Space, for the purposes of this research, is the network space as represented by

 57

IP addresses, ports, protocols, and services. This phase was implemented as the

combined output of the ELM and HMM classifiers using a unanimous voting scheme.

Figure 1: IDS Model with Situation Awareness Level Boundaries

An ELM was chosen as the classifier for the perception phase based on the

positive results as a classifier for IDS (Fossaceca et al., 2015) compared to other methods

such as SVM. While ELM research only goes back to Huang, Zhu, and Siew (2004) with

the first IDS-based ELM research presented by Cheng et al. (2012), ELM has shown its

versatility to minimize false positives (Zong et al., 2013). Singh, Kumar, and Singla

(2015) also implemented an ELM based solution against two different sets of benchmark

data sets (KDD99 and Kyoto) and achieved superior false positive rates for both

compared to other techniques including ANN, NB, and AdaBoost. Fossaceca et al.

(2015), achieved the lowest false positive rates across categories comparing their ELM

 58

implementation to 20 other methods in published papers including NB, SVM, Random

Forest, MLP, J48 DT, K-Means, and Self-Organizing Map.

HMMs were chosen for the comprehension phase given their ability to model

temporal events and based on the promising results from other research. HMMs perform

generally better than decision trees and substantially better than neural nets in detecting

complex multi-stage Internet attacks (Ourston et al., 2003). And, HMMs proved to be

very effective at detecting all types of attacks by acting as an anomaly detector over a set

of IDS alarms providing a low rate of false positives and high rate of alarm reduction

(Treinen & Thurimella, 2009) and for differentiating attacks (Zhou et al., 2015). Other

research has also shown the advantages of using HMMs for modeling systems under

attack (P. Bhatt et al., 2014; Gilmore & Haydaman, 2016).

A combined approach was used since prior research has shown positive results in

reducing false positives using post processing (Spathoulas & Katsikas, 2013b). Hybrid

results have yielded positive results such as using a KNN followed by ELM (Akusok et

al., 2014) and a NB to HMM (Karthick et al., 2012) for malware detection.

The framework was further informed by existing models such as the kill chain

(Hutchins et al., 2011) and mapped to data elements indicative of relevant cyber-attacks.

The attack stages associated with the kill chain are: reconnaissance, delivery, exploit,

install, C2, and exfiltration. But these stages were distilled into a simpler model of

normal, probe, and attack and implemented in HMMs as three states. The HMMs

provide additional context around interactions with a given network in time, for example,

compared to a more traditional IDS approach which is often making a prediction based

on a single event. This view provides better context for situation awareness since attacks

 59

can occur over longer periods of time than considered by some traditional IDSs. APTs in

particular often use a low and slow approach to avoid detection.

The Data Set

This research used the UNSW-NB15 data set (Moustafa & Slay, 2015). This met

the research goal of using a recent and relevant set of comprehensive benchmark data,

containing both cyber-attack and normal traffic. This research used two subsets of data

from UNSW-NB15. Their construction along with related UNSW-NB15 data sets is

discussed below.

The Full 2.54M Data Set

The full UNSW-NB15 data set created by Moustafa and Slay (2015) includes

approximately 2.5 Million records of which just over 14% are representative of cyber-

attack traffic with the rest being normal. It contains nine categories of attack traffic

(fuzzers, analysis, backdoor, DoS, exploit, generic, reconnaissance, shell code, and

worm) and 49 features including two labels with one denoting attack or normal traffic

and the other for the specific attack category. The features are further divided into flow,

basic, content, time, additional generated, and connection features. A complete list of

features is included in Appendix A. This data set is referred to as the Full 2.54M data set

for the purposes of this research.

Moustafa and Slay (2016) validated that UNSW-NB15 is more complex than

KDD99 and thus is a valid benchmark to be used for NIDS evaluations through three

means: statistical analysis, evaluation of feature correlation, and comparison of FAR and

accuracy for five classifiers as compared to KDD99. Khammassi and Krichen (2017)

 60

also stated that the NIDS research community now considers UNSW-NB15 a new

benchmark for evaluations of IDSs.

The Test and Train Data Set

Moustafa and Slay (2016) accomplished this validation through decomposing

UNSW-NB15 (University of New South Wales, 2015) into a smaller subset of training

and test data sets. That subset consists of 257,673 records which were divided roughly

into 60% for training and 40% for testing per the authors (but closer to 68% and 32%

based on actual records). It includes 164,673 attack records and 93,000 normal records.

Several features of the larger Full 2.54M data set were removed from this subset

including source and destination IP addresses and port numbers along with start and end

record times. To differentiate among UNSW-NB15 subsets, this data is referred to as the

Train and Test dataset for the purposes of this research.

The 440K Data Set

Since this research uses HMMs for temporal situation awareness, it is important

that both the training and testing data reflect an ordered sequence of events in time.

Given the UNSW-NB15 provided Train and Test data subset removed needed time stamp

features, a new set of training and testing data was created from the UNSW-NB15 Full

2.54M data set. A total of 440,044 sequential records, sorted by time stamp, were chosen

from the data set and divided into roughly 60% for training (264,026 records) and 40%

for testing (176,018 records). This data set is referred to as the 440K data set for the

purposes of this research.

The 440K data was split using a simple out-of-sample hold out method. That is

the first 60% of the records sequentially were used for training and the last 40% of the

 61

records were held out for testing. Cerqueira, Torgo, and Mozetic (2019), in an evaluation

of performance estimation methods for time series forecasting tasks, state that there is no

settled approach among researchers, but that out-of-sample methods are traditionally used

for time-dependent data. Out-of-sample is in contrast to basic cross-validation which

shuffles records which is not conducive to maintaining temporal order. A key

characteristic of out-of-sample methods is that they always preserve the temporal order

which in turn means the resulting model is never tested on past data.

Cerqueira et al. (2019) also reviewed other methods for time-dependent data such

as cross-validation in a blocked form. They concluded that for real-world time series

data, that approaches which maintain the temporal order are better. In particular, they

recommended out-of-sample using repeated holdout.

To further validate this approach, a simplified repeated holdout method was used

for the 440K data where several sections of the Full 2.54M dataset were evaluated in

relation to maintaining a good mix of normal and attack records. This approach also

better approximates a real-world IDS environment where data is ingested sequentially in

time order.

The DoS Data Set

To provide for additional analysis and comparison to other research, another data

set was created from the UNSW-NB15 Train and Test data set for just normal and DoS

traffic. That data set will be referred to as the DoS data set for the purposes of this

research. While not time-ordered, it was used for benchmarking the ELM portion, which

is not time sensitive, and to evaluate the HMM classifiers and overall methodology in

 62

relation to how it performs with data that is not time-ordered. Table 1 below summarizes

the UNSW-NB15 data sets relevant to this research.

Table 1: UNSW-NB15 Based Data Sets

Feature Selection

As discussed in the literature review section, feature selection is an important step

in the design of classifiers to remove redundant and irrelevant features. This reduces the

computational complexity and the cost of an algorithm (Davis & Clark, 2011) and affects

the resulting classifier accuracy, including the FPR (Bahrololum et al., 2009).

 Given the selection of UNSW-NB15, two feature selection studies for those data

were reviewed. The first (Moustafa & Slay, 2017) was from the data set creators citing

that irrelevant features may cause a higher FAR. They used a hybrid feature selection

technique based on Central Points and Associate Rule Mining. They were able to reduce

the number of features to 11, using the Train and Test data set, which is approximately

25% of the given feature set. The Central Points technique selects the most frequent

values reducing processing time and the Associate Rule Mining helps to remove

irrelevant or noisy features. They pointed out that reducing the number of features to less

than 11 resulted in undesirable results. The second study specific to UNSW-NB15, using

the Train and Test data set, is from Janarthanan and Zargari (2017). They used

Dataset

Abbreviation Description # of Records

of Normal

Records

of Attack

Records

of Training

Records

of Testing

Records Categories

Includes

Time Stamps

Full 2.54M Original Moustafa & Slay (2015) data set 2,540,044 2,218,761 321,283 N/A N/A Normal + 9 Attack Yes

Train and Test

Moustafa & Slay (2016) created training and

testing data set 258,673 93,000 165,673 176,341 82,332 Normal + 9 Attack No

440K

Sequentially time ordered subset derived from the

Full 2.54M records 440,044 351,150 88,894 264,026 176,018 Normal + 9 Attack Yes

DoS

DoS and normal traffic extracted from the Train

and Test subset 109,353 93,000 16,353 68,264 41,089 Normal + DoS No

 63

Information Gain (Kayacik, Zincir-Heywood, & Heywood, 2005) and CFS (Hall, 2000)

algorithms to validate the Moustafa and Slay (2017) study and also provided comparisons

to KDD99. Other intrusion detection research has also used Information Gain to select

relevant features (Kayacik et al., 2005).

 For this research, the appropriate features for both the ELM and HMM classifiers

were evaluated and chosen using Information Gain and CFS respectively. Information

Gain was chosen for the ELM since it is a filter method which is independent from the

classifiers used. Given that one of the evaluation criterions is to compare the results

against other classifiers, Information Gain allows the same attributes to be used for those

other techniques (Saeys et al., 2007). Since Information Gain is a ranking method, a cut-

off or threshold point needed to be determined on where to draw the line to select the

number of attributes. For the first run, the cut-off point was determined using an

informed estimate based on other feature selection studies using UNSW-NB15. An

additional experiment was conducted using backwards feature removal to determine a

cut-off point. Both results were compared.

 For the HMM models, CFS was used. This was done to choose a subset of

features in contrast to the ELM model which used Information Gain. One downside of

Information Gain is it is a univariate method which ignores dependencies among features

(Saeys et al., 2007). CFS, in contrast, is a multivariate method which was created on the

basis that good feature subsets are highly correlated with the class yet uncorrelated to

each other (Hall, 2000). For each feature selected by CFS, an HMM was created. This

was done to create a series of classifiers which were then combined using a voting

scheme. As discussed above and shown in Figure 1, the ELM classifier is focused on a

 64

point in time while the HMM classifiers are focused on temporal patterns. The selection

of CFS provides for classifiers which are highly correlated to the class but uncorrelated to

each other. The feature selection process is depicted in Figure 2 below.

Figure 2: Feature Selection Process

ELM Classifier

 The ELM classifier was built to classify normal and attack traffic using the

UNSW-NB15 data sets shown in Table 1. The basic ELM program (Huang & Zhu,

2004), MATLAB version, was obtained to implement the ELM classifier. MATLAB

was chosen since that is what was used to perform the seminal ELM research (Huang,

Zhu, & Siew, 2004) and many subsequent variations from various researchers have been

made available in MATLAB.

 The required inputs for the program are the file names for the training and testing

data sets, ELM type (regression or classification), the number of hidden neurons, and the

activation function. Supported activation functions include: sigmoidal, sine, hardlim,

 65

triangular basis, and radial basis. The training and testing file input to the ELM program

is in the format of a tab-delimited text file. The first column must contain an integer

label. For binary classification, 0 is used for normal (negative) record and 1 for an attack

(positive) record.

The following preprocessing was done for each data set used for an ELM run.

First, the binary label for attack and normal traffic was moved to be the first column and

the label for attack category was removed. Second, depending on the run, the attributes

not selected by the feature selection process were removed. Third, nominal or categorical

attributes, such as protocol, state, and services for this data set, were converted to binary

attributes as applicable. Fourth, all numeric attributes were normalized to be between -1

and 1 as recommended by Huang and Zhu (2004). Finally, the resulting test and training

data sets were saved as tab-delimited text files.

 In terms of other program parameters, the sigmoid activation function was chosen

based on past experience. For ELM Type, the value was set to 1 for classification. The

program also requires the number of hidden neurons as input. Ding et al. (2014) stated

that determining the number of hidden neurons to use for different data sets is an open

problem for ELM researchers. Others have proposed solutions to this (Huang & Chen,

2008; Wang et al., 2018). However, Huang, Zhu, and Siew (2006) demonstrated that

ELM is very stable across a wide range of hidden nodes but performance can degrade

with too few or too many nodes. For this research, different values were experimented

with and charted.

 66

HMM Architecture

 An HMM requires the specification of five parameters including two model

parameters: N (the number of states) and M (the number of distinct observation symbols

per state) and three probability measures: A (the state transition probability distribution),

B (the observation symbol emission probability distribution), and p (the initial state

distribution). In compact notation form, an HMM is often written as λ = (A, B, π)

(Rabiner, 1989).

 Various values of N (states) have been used for intrusion detection in the

literature. Ourston et al. (2003) distilled a multi-stage attack sequence to four states:

probe, consolidate, exploit, and compromise. Karthick et al. (2012) used TCP state flags

as HMM symbols. Zhou et al. (2015) used three states: normal, fault, and attack.

Hurley, Perdomo, and Perez-Pons (2016) used three states for a NIDS for Software

Defined Networks: expected, unexpected, and somewhat expected. Liang et al. (2017)

chose four states: good, probed, attacked, and compromised. Based on the nine labeled

attack categories plus normal from the UNSW-NB15 data set, this research used:

normal, probe (corresponding to analysis, fuzzers, and reconnaissance instances), and

attack (corresponding to backdoor, DoS, exploit, generic, shell code, and worm

instances). The number of distinct symbols per state, M, was based the results of the

feature selection for the HMMs. The HMM state transition representation is shown in

Figure 3 below.

 67

Figure 3: HMM State Transition Representation

For each HMM classifier, which represents one feature, symbols were selected,

using the letters of the alphabet, to represent each possible feature value or range of

values for the feature. Each symbol was mapped to its state, either normal, probe, or

attack, for each record in the training data.

The probabilities were then determined through training using the Baum-Welch

algorithm (Rabiner, 1989), which is the most commonly used HMM training algorithm

(Holgado, Villagra, & Vazquez, 2017). For execution of the HMMs against the test data,

the emission symbols for each model, as represented by one feature, were translated from

their respective attributes. These symbol streams were then run through the Viterbi

algorithm (Viterbi, 1967; Forney, 1973) to determine the most likely states.

The HMMs were implemented using the machine learning tool kit in MATLAB

(Theodoridis, Pikrakis, Koutroumbas, & Cavouras, 2010). Training was performed using

the hmmestimate and hmmtrain functions. Testing was performed with the hmmviterbi

function.

 68

The Combined Classifier

 The third phase, projection, was the combined output of the HMMs and ELM

providing both a projection in time and space. A unanimous voting scheme was chosen

for the final output. Lin et al. (2003) demonstrated that a combination of classifiers can

result in a significant accuracy improvement and that the use of voting methods to

combine those classifiers are both simple and effective.

A unanimous voting scheme was chosen with the goal of eliminating false

positives. Thus, all of the classifiers must agree on an attack. Other voting schemes such

as majority voting can lead to an inaccurate decision given the knowledge of the minority

classifiers are effectively ignored (Lin, Lai, Ho, & Tai, 2013). More complicated voting

schemes were discounted given prior research that there is only a marginal, if any,

difference in performance between simple voting schemes and more advanced

combination techniques (Lin et al., 2003).

Experiments

Two groups of experiments were conducted and referenced as Experiments A and

B. Experiment A used the 440K Data Set. The 440K Data Set was used to provide the

time ordered data needed to demonstrate the temporal awareness capabilities of the

HMMs.

Experiment B used the DoS data set. This was done for three reasons. The first

was to use the Moustafa & Slay (2016) Test and Train dataset for which they justified the

complexity of the data set and its validity for the evaluation of NIDS research. Although,

many of their findings that are applicable to the Test and Train data set should also be

 69

applicable to the larger 440K Data Set as well. The second was to determine how the

ELM and HMM scheme with situation awareness performed with data that were not

time-ordered. And the third was to provide a more direct comparison to other research.

In particular, Igbe (2019) had shown very good results using an Artificial Immune

System scheme to detect DoS attacks using the UNSW-NB15 Test and Train dataset.

For the ELM models, multiple runs were done since the input biases and weights

that connect the inputs to the hidden layer are chosen randomly for the basic ELM

algorithm. Thus, each run will produce a different result but usually within a range.

Wang and Huang (2005) used a similar process for their ELM research using an average

of 50 simulation runs. For this research, ten runs were used. Additionally, each

experiment also included comparisons to two other classifiers using the same data: an

MLP and an J48 DT.

Feature selection for the ELM, J48 DT, and MLP runs was done using

Information Gain which provides a ranked list of features in order of merit. The method

used to select the features from the ranked list was backwards elimination with a cut-off

point based on an estimate informed by other research which used the UNSW-NB15 data

sets. An alternate to the informed estimate for a cut-off point was performed through an

iterative search for contrast.

The feature selection method for the HMMs was CFS which provided a subset

selection. For each feature selected in the CFS subset, a separate HMM was created.

The number of hidden neurons for the ELM models was initially chosen based on prior

experience. A second evaluation was done to determine an optimal value through

iterative search.

 70

Evaluation Criteria

 The primary evaluation metric was the FPR given the primary goal of this

research was to reduce false positives. This was measured based on the results of running

three algorithms using the same data sets. The algorithms were: ELM alone, HMM

alone, and the combination of ELM with HMM. The goal was to show that the

combination of ELM with HMM produces a lower FPR than ELM alone by more than

10%. Accuracy was also calculated to ensure that was not significantly impacted.

Both experiments show the results of the ELM and HMM classifiers along with

the combined output with the confusion matrix variables TP, FP, TN, and FN in a table.

FPR and Accuracy were also calculated. Results of the J48 DT and MLP were also

shown for the respective runs to provide comparisons.

 As discussed in earlier sections, the decision to not use an older data set such as

KDD99 limited the ability to compare this proposed research to specific FPRs from prior

published studies. However, results from other research using various subsets of the

UNSW-NB15 data set is also shown for contrast.

Computing Resources Used

This research was conducted using a MacBook Pro running MacOS with a 2.6

GHz Intel Core i7 Central Processing Unit, 16 Gigabytes of Random Access Memory,

and a 750 Gigabyte hard drive. The hard drive provided sufficient swap space needed to

support some of the large matrix calculations required of this research.

 71

Summary

 In this section, the research methodology using both ELM and HMMs in a

situation awareness framework was detailed and justified. Feature selection using

information gain and CFS was also chosen and justified. A data set, UNSW-NB15, to

meet the goal of using one indicative of modern normal and attack traffic was also chosen

and justified. The resources used along with evaluation criteria and metrics, including

achieving a lower FPR with the combined classifier compared to the ELM or HMM

classifiers individually were provided.

 72

Chapter 4

Results

This chapter provides the results of the experiments designed to gauge the

effectiveness of using ELM in conjunction with HMM with a situation awareness

framework to reduce false positives. These experiments used subsets of the UNSW-

NB15 data set (Moustafa & Slay, 2015). UNSW-NB15 was chosen to meet the stated

research goal of using a recent and relevant set of comprehensive benchmark data,

containing both cyber-attack and normal traffic.

The first experiment, Experiment A, used the 440K data set which is a time-

ordered subset of the UNSW-NB15 data set. A time-ordered data set was needed to test

the effectiveness of the HMMs per the situation awareness framework.

 The second experiment, Experiment B, used a subset of the separate Train and

Test data set, the DoS data set, that included both DoS attack and normal traffic. The

Train and Test data set was validated as being statistically complex for evaluating

existing and novel techniques for NIDS (Moustafa & Slay, 2016); however, it was not

time-ordered.

Experiment A (Time-Ordered Data)

 Experiment A was repeated twice. Both runs were conducted against the 440K

subset of the UNSW-NB15 data set (Moustafa & Slay, 2015). Both used Information

 73

Gain to select the features for the ELM and CFS to select the features for the HMMs.

The difference between the two runs were in the number of features and the number of

hidden neurons used by the ELM model. For the first run, the number of features

selected for the ELM was determined by a cut-off threshold of 18 that was informed by

other researchers and past experience and the number of hidden neurons was selected at

60 based on past experience. For the second run, a mini-experiment was run to more

optimally determine a number of features, 24, and hidden neurons, 125, to use. The

HMMs remained the same for both runs.

Data Analysis

As discussed in the methodology section, a new data set, named 440K, was

created from the full UNSW-NB15 data sets (Full 2.54M). A total of 440,044 sequential

records, sorted by time stamp, were chosen from the data set and divided into roughly

60% for training (264,026 records) and 40% for testing (176,018 records). The data set

characteristics for normal and attack traffic are shown in Table 2 below and the

distribution of the attack categories is given in Table 3.

Table 2: Distribution of Training and Test Data by Traffic Type (440K Data Set)

Traffic Type Training Testing Total

Normal 214,202 136,948 351,150

Attack 49,824 39,070 88,894

Total 264,026 176,018 440,044

 74

Table 3: Distribution of Training and Test Data by Attack Type (440K Data Set)

Feature Selection

 Two feature selection algorithms, Information Gain (Kayacik et al., 2005) and

CFS (Hall, 2000) were run against the training data set to evaluate all 47 non-labeled

features. The Information Gain ranking of the 47 features is included in Appendix B.

The CFS evaluation returned a subset of only two features: sttl and ct_state_ttl

which are attributes 10 and 37 respectively in Appendix A. Those two features were used

to construct two HMMs.

For Information Gain, a cut-off threshold of the first 18 features with the highest

ranked merit were chosen for the first run. The lower limit for the number of features

was informed by prior feature selection research for UNSW-NB15 and prior experience.

Moustafa and Slay (2017) cautioned that reducing the number of features to less than 11

resulted in undesirable results.

To illustrate a more precise cut-off determination, a mini-experiment was done

with a backwards feature removal technique to determine the cut-off threshold. A model

was run 47 times varying the cut-off threshold from 47 to one. The resulting Accuracy

Attack Type Training Testing Total

Reconnaissance 2,074 1,456 3,530

Exploits 6,901 4,538 11,439

DoS 2,609 2,298 4,907

Generic 34,119 27,759 61,878

Shellcode 227 144 371

Fuzzers 3,168 2,222 5,390

Backdoor 351 315 666

Worms 27 16 43

Analysis 348 322 670

Total 49,824 39,070 88,894

 75

and FPR are shown in figures 4 and 5 respectively below. The highest Accuracy

(0.9886) was achieved at a cut-off at 24 features which corresponded to an FPR of

0.0068.

Figure 4: Accuracy by # of Features (440K Data Set)

Figure 5: FPR by # of Features (440K Data Set)

Effect of Number of ELM Hidden Neurons on Accuracy and FPR

0.9740

0.9760

0.9780

0.9800

0.9820

0.9840

0.9860

0.9880

0.9900

0 5 10 15 20 25 30 35 40 45 50

A
cc

u
ra

cy

of Features

Accuracy by # of Features (440K Data Set)

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0 5 10 15 20 25 30 35 40 45 50

F
P

R

of Features

FPR by # of Features (440K Data Set)

 76

A separate mini-experiment was conducted to gauge the impact of the number of

hidden neurons on Accuracy and FPR. The number of hidden neurons for the ELM

model was varied from one to 160. The results for Accuracy and FPR are shown

respectively in figures 6 and 7 below. The highest Accuracy (0.9823) occurred at 125

nodes which corresponded to an FPR of 0.0170.

Figure 6: Accuracy by # of ELM Hidden Neurons (440K Data Set)

Figure 7: FPR by # of ELM Hidden Neurons (440K Data Set)

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

A
cc

u
ra

cy

Number of Hidden Neurons

Accuracy by # of Hidden Neurons (440K Data Set)

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

F
P

R

Number of Hidden Neurons

FPR by # of Hidden Neurons (440K Data Set)

 77

HMM Construction

 In compact notation, an HMM is notated as λ = (A, B, π) (Rabiner, 1989) where N

is the number of states, M is the number of symbols per state, A is the state transition

probability, B is the observation symbol emission probability distribution, and p is the

initial state distribution.

 Both of the created HMMs share the same three states: normal, probe

(corresponding to the analysis, fuzzers, and reconnaissance categories), and attack

(corresponding to the backdoor, DoS, exploit, generic, shell code, and worm categories).

The probe and attack states combined represent all of the attack traffic. The three states

are represented by N for Normal, P for Probe, and A for Attack.

 For the first HMM (HMM S), the symbols represented all of the possible values

for sttl (attribute 10 in Appendix A) which is source to destination Time to Live. This

feature is an integer with values between 0 and 255. For the data set, there were 11

distinct values (the M variable for the HMM). These were represented by symbols

labeled A through K.

 For the second HMM (HMM C) the symbols represent the possible values for

ct_state_ttl (attribute 37 in Appendix A) which is a derived value based on state and both

destination to source and source to destination Time to Live. This feature is an integer

with values between 0 and 6 and has 5 distinct values (the M variable for the HMM) in

the data set. These were represented by symbols labeled A through E. Since the two

HMMs are separate, there was no conflict with the reuse of the same letters to represent

the symbols.

 78

 The training of each of the HMMs was performed using similar steps using the

training data set. First, the attack category value of each record was translated to the state

value (N, A, or P). Then the corresponding feature (either sttl or ct_state_ttl) was

mapped to their appropriate symbols. The training file with the known states and given

symbols was then used to estimate the initial state distribution (π) and the symbol

emission probability distribution (B) using the MATLAB hmmestimate function, which

is part of the MATLAB machine learning tool kit (Theodoridis, Pikrakis, Koutroumbas,

& Cavouras, 2010). These data were then trained using the Baum-Welch algorithm

(Rabiner, 1989), which is the most commonly used HMM training algorithm (Holgado et

al., 2017), via the MATLAB hmmtrain function. The resulting parameters for the

training of each HMM are included in Appendix C.

 For the execution of the HMMs against the test data, the emission symbols for

each model were translated from their respective feature. These symbol streams were

then run through the Viterbi algorithm (Viterbi, 1967; Forney, 1973) to determine the

most likely states using the MATLAB hmmviterbi function. The results were then output

to a file for each model for further processing with the ELM model.

The ELM Model

The basic ELM program was modified to provide an output file containing a zero

or one predicted value for each row in the test data set for further use in the combination

phase. The ELM model was run multiple times following the process outlined in the

methodology section.

For experiment A, the ELM model was run once using 18 features and 60 hidden

neurons to create a baseline. That model was named ELM1. An additional 10 ELM

 79

models were created and labeled ELM2 to ELM11. Models ELM1 to ELM11 all used 18

features with 60 hidden neurons. A new set of ELM models, ELM12 to ELM21, was

then created using 24 features with 125 hidden neurons.

The Combined Model

 The combined model represents the third situation awareness phase, projection,

and is the combined output of the HMMs and ELM providing both a projection in time

and space. To eliminate false positives, the outputs of the two HMMs and the ELM

classifier were combined using a unanimous voting scheme and resulted in an attack only

if all three agreed. Otherwise, the record would be considered normal.

 Three ELM models where chosen for combination with the HMMs: ELM1,

ELM11, and ELM14. ELM1 was chosen since it was the baseline. ELM11 was chosen

since it had the lowest FPR among for the ELMs created using 18 features with 60 hidden

neurons. ELM14 was chosen since it had the lowest FPR for the ELMs created with 24

features using 125 hidden neurons.

 The combined models were denoted as ELM + HMM followed by the HMMs.

So, ELM11+HMM C&S is the combined output of ELM11, HMM C, and HMM S.

Comparison to Other Classifier Models

 To provide a comparison to other classifiers, the same training and testing data

was used with a J48 DT and an MLP. These are labeled as J48-1 and MLP1 using 18

features and J48-2 and MLP2 using 24 features.

Findings

 80

 For each model, the confusion matrix variables TP, TN, FP, and FN were

calculated along with FPR and Accuracy. The results sorted by highest FPR to lowest

FPR are displayed in Table 4 below.

This shows that the combined model outperformed the individual models and

other classifiers for both the 18 feature (ELM11 + HMM C&S) and 24 feature (ELM14 +

HMM C&S) models. Table 5 provides a summary view of how the results compared to

the primary and secondary goals.

Table 4: Experiment A Results Sorted by Highest to Lowest FPR

Model Features TN FP FN TP Accuracy FPR

ELM1 18 133168 3780 547 38523 0.9754 0.0276

ELM9 18 133307 3641 573 38497 0.9761 0.0266

ELM10 18 133485 3463 749 38321 0.9761 0.0253

MLP1 18 133529 3419 394 38676 0.9783 0.0250

ELM3 18 133742 3206 762 38308 0.9775 0.0234

ELM18 24 133779 3169 450 38620 0.9794 0.0231

ELM12 24 133790 3158 918 38152 0.9768 0.0231

ELM17 24 133805 3143 833 38237 0.9774 0.0230

ELM5 18 133885 3063 1032 38038 0.9767 0.0224

ELM4 18 133898 3050 979 38091 0.9771 0.0223

ELM20 24 133929 3019 791 38279 0.9784 0.0220

ELM16 24 133934 3014 3300 35770 0.9641 0.0220

ELM6 18 134081 2867 827 38243 0.9790 0.0209

ELM13 24 134127 2821 708 38362 0.9800 0.0206

ELM21 24 134129 2819 2895 36175 0.9675 0.0206

ELM7 18 134148 2800 730 38340 0.9799 0.0204

ELM19 24 134184 2764 749 38321 0.9800 0.0202

MLP2 24 134201 2747 761 38309 0.9801 0.0201

ELM8 18 134201 2747 987 38083 0.9788 0.0201

ELM2 18 134302 2646 992 38078 0.9793 0.0193

ELM15 24 134305 2643 799 38271 0.9804 0.0193

HMM S 1 134597 2351 337 38733 0.9847 0.0172

J48-1 18 134776 2172 775 38295 0.9833 0.0159

ELM11 18 134780 2168 761 38309 0.9834 0.0158

ELM14 24 134915 2033 1212 37858 0.9816 0.0148

ELM1 + HMM S 18 134938 2010 856 38214 0.9837 0.0147

HMM C 1 135643 1305 651 38419 0.9889 0.0095

ELM1 + HMM C 18 135767 1181 1045 38025 0.9874 0.0086

ELM1 + HMM C&S 18 135942 1006 1045 38025 0.9883 0.0073

J48-2 24 136014 934 1078 37992 0.9886 0.0068

ELM14 + HMM S 24 136060 888 1498 37572 0.9864 0.0065

ELM11 + HMM S 18 136074 874 1058 38012 0.9890 0.0064

ELM14 + HMM C 24 136527 421 1716 37354 0.9879 0.0031

ELM14 + HMM C&S 24 136528 420 1716 37354 0.9879 0.0031

ELM11 + HMM C 18 136563 385 1359 37711 0.9901 0.0028

ELM11 + HMM C&S 18 136565 383 1359 37711 0.9901 0.0028

 81

Table 5: Summary of Results Compared to Goals for Experiment A

Experiment B (Non-Time Ordered Data)

 Experiment B is similar to Experiment A. The primary difference is that the DoS

data set was used.

Data Analysis

As discussed in the methodology section, a new data set, named DoS, was created

from the UNSW-NB15 Test and Train data set. Table 6 below shows the distribution of

traffic by normal and attack. The Training and Testing split follows the original Test and

Train data set split of roughly 60% for Training and 40% for Testing. The only attack

category included in this data set was DoS.

Table 6: Distribution of DoS Data by Traffic Type (DoS Data Set)

Feature Selection

 The UNSW-NB15 Train and Test data set from which the DoS data set was

derived has less features than the Full 2.45M data set. In particular, the authors removed

features such as source and destination IP address and ports and record start and end time

%

Reduction in

FPR Goal Met

FPR Less

than 0.6% Goal Met

FPR

Difference

vs. MLP Goal Met

FPR

Difference

v. J48 DT Goal Met

Accuracy

Change

Improved/

Reduced

Model

ELM11 + HMM C&S -82.33% Yes 0.28% Yes -88.80% Yes -82.37% Yes 0.69% Improved

ELM14 + HMM C&S -79.34% Yes 0.31% Yes -84.71% Yes -55.03% Yes 0.46% Improved

Primary Goals Secondary Goals

FPR Reduction of 10%

Compared to ELM Alone FPR less than 0.6% FPR vs. MLP FPR v. J48 DT Accuracy v. ELM Alone

Traffic Type Training Testing Total

Normal 56,000 37,000 93,000

Attack 12,264 4,089 16,353

Total 68,264 41,089 109,353

 82

were removed. The list of available features in the Train and Test data set is included in

Appendix D.

The CFS evaluation returned a subset of four features: sttl, proto, dttl, and

ct_dst_sport_ltm which are features 10, 2, 11, and 35 respectively in Appendix D. From

those, 3 HMMs were built: sttl (HMM DS), dttl (HMM DD), and ct_dst_sport_ltm

(HMM DC).

 A similar process was followed as for Experiment A using Information Gain and

CFS. The result of the Information Gain ranking for the DoS data set is shown in

Appendix E. The optimal number of features using a backwards cut-off threshold with

Accuracy as a determination was 11 which had an Accuracy of 0.9855 and an FPR of

0.0071. Graphs of Accuracy by features and FPR respectively for the DoS data set is

shown in figures 8 and 9 below.

Figure 8: Accuracy by # of Features (DoS Data Set)

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

A
cc

u
ra

cy

of Features

Accuracy by # of Features (DoS Data Set)

 83

Figure 9: FPR by # of Features (DoS Data Set)

Effect of Number of ELM Hidden Neurons on Accuracy and FPR

 As with experiment A, to determine an optimal number of hidden neurons for the

ELM, both Accuracy and FPR were evaluated as the number of hidden neurons was

increased from 1 to 160. The highest Accuracy occurred at 144 hidden neurons which

corresponded to an FPR of 0.0006. This is shown in figures 10 and 11 below.

Figure 10: Accuracy by # of ELM Hidden Neurons (DoS Data Set)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

F
P

R

of Features

FPR by # of Features (DoS Data Set)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1
2
9

1
3
3

1
3
7

1
4
1

1
4
5

1
4
9

1
5
3

1
5
7

A
cc

u
ra

cy

Number of Hidden Neurons

Accuracy by Number of Hidden Neurons (DoS)

 84

Figure 11: FPR by # of ELM Hidden Neurons (DoS Data Set)

HMM Construction

 For this experiment, 3 HMMs were built. The same process as outlined in

Experiment A above was used. The three states were represented by N for Normal, P for

Probe, and A for Attack. However, since this experiment only used DoS and Normal

traffic, the only states expected would be N and A.

 For the first HMM (HMM DS), the symbols represented all of the possible values

for sttl (attribute 10 in Appendix D) which is source to destination Time to Live. This

feature is an integer with values between 0 and 255. For the DoS data set, there were 13

distinct values (the M variable for the HMM). These were represented by symbols

labeled A through M.

 For the second HMM (HMM DC) the symbols represent the possible values for

ct_dst_sport_ltm (attribute 35 in Appendix D) which is a derived feature involving the

number of connections between the same destination address and source port. This

feature is an integer. There were 16 unique values for this field (the M variable for the

HMM). These were represented by symbols labeled A through P.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1
2
9

1
3
3

1
3
7

1
4
1

1
4
5

1
4
9

1
5
3

1
5
7

F
P

R

Number of HiddenNeurons

FPR by Number of Hidden Neurons (DoS)

 85

For the third HMM (HMM DD) the symbols represent the possible values for dttl

(attribute 11 in Appendix D) which is the destination to source Time to Live value. This

feature is an integer which can vary from 0 to 255. There were 9 unique values for this

field (the M variable for the HMM). These were represented by symbols labeled A

through I.

As with experiment A, since the HMMs are separate, there was no conflict with

the reuse of the same letters to represent the symbols. The training of each of the three

HMMs was performed using the same steps as outlined for Experiment A above. The

resulting parameters for these HMMs are included in Appendix F.

The ELM Model

For experiment B, the ELM model was run 10 times. The resulting models were

named ELMD1 to ELMD10 with the number of hidden neurons set at 144.

The Combined Model

 The combined model represents the third situation awareness phase, projection,

and is the combined output of the three HMMs and ELM9 providing both a projection in

time and space. To eliminate false positives, the outputs of the three HMMs and the

ELM classifier were combined using a unanimous voting scheme and resulted in an

attack only if all three agreed. Otherwise, the record would be considered normal. The

result is labeled ELMD9 + HMM DS, DD, & DC.

Comparison to Other Models

To provide a comparison to other classifiers, the same training and testing data

was used with a J48 DT and an MLP. These are labeled as J48 D and MLP D.

Findings

 86

For each model, the confusion matrix variables TP, TN, FP, and FN were

calculated along with FPR and Accuracy. The results sorted by highest FPR to lowest

FPR are displayed in Table 7 below. Table 8 provides a summary view of how the

results compared to the primary and secondary goals.

Table 7: Experiment B Results Sorted by Highest to Lowest FPR

Table 8: Summary of Results Compared to Goals for Experiment B

Model TN FP FN TP Accuracy FPR

HMM DD 16932 20068 2 4087 0.5115 0.5424

HMM DS 16932 20068 0 4089 0.5116 0.5424

HMM DC 34677 2323 989 3100 0.9194 0.0628

J48 D 36737 263 332 3757 0.9855 0.0071

ELMD5 36909 91 890 3199 0.9761 0.0025

ELMD8 36916 84 885 3204 0.9764 0.0023

ELMD4 36926 74 887 3202 0.9766 0.0020

ELMD6 36928 72 893 3196 0.9765 0.0019

ELMD2 36936 64 902 3187 0.9765 0.0017

ELMD3 36941 59 900 3189 0.9767 0.0016

ELMD1 36943 57 911 3178 0.9764 0.0015

ELMD7 36943 57 894 3195 0.9769 0.0015

ELMD10 36954 46 890 3199 0.9772 0.0012

ELMD9 36956 44 840 3249 0.9785 0.0012

ELMD9 + HMM DS, DD, & DC 37000 0 1361 2728 0.9669 0.0000

MLP D 37000 0 1235 2854 0.9699 0.0000

%

Reduction in

FPR Goal Met

FPR less

than 0.6% Goal Met

FPR

Difference

vs. MLP Goal Met

FPR

Difference

v. J48 DT Goal Met

Accuracy

Change

Improved/

Reduced

Model

ELMD9 + HMM DC & DD & DS -100.00% Yes 0.00% Yes 0.00% Yes / Tied -100.00% Yes -1.19% Reduced

Primary Goals Secondary Goals

FPR Reduction of 10%

Compared to ELM Alone FPR less than 0.6% FPR vs. MLP FPR v. J48 DT Accuracy v. ELM Alone

 87

Training and Test Time Comparisons

 Table 9 below provides a summary of CPU times for training and testing both the

440K and DoS data sets using the same hardware. ELM outperforms J48 DT, HMM,

and MLP in terms of training time. MLP takes orders of magnitude longer to train than

ELM, J48 DT, or HMM.

Table 9: Training & Testing CPU Time Comparison by Classifier

Comparisons to Other Literature

For additional comparison purposes, Table 10 lists results from 17 research papers

published between 2017 and 2019, including a total of 44 algorithms, that were based on

the UNSW-NB15 data sets. All included FPR and most included Accuracy results. In

some cases, FRP and Accuracy were derived from provided confusion matrices. Care

was taken to review the FPR formula used in each paper, to ensure a valid comparison,

since some researchers referred to FPR as FAR or Fall Out. Additionally, seven of the

key results from Tables 4 and 7 were also replicated in Table 10 for comparison

purposes.

Data Set Attributes Classifier

Training

Time (s)

Testing

Time (s)

24 ELM (average, n=10) 2.95 0.56

24 J48 DT 37.50 0.09

1 HMM (average, n=2) 139.66 0.26

ELM + HMM 282.27 1.08

24 MLP 30213.62 11.91

11 ELM (average, n=10) 0.97 0.19

11 J48 DT 3.14 0.03

1 HMM (average, n=3) 6.09 0.05

ELM + HMM 19.24 0.34

11 MLP 13058.10 4.13

440K

DoS

 88

Table 10: Comparisons to Other Research Using UNSW-NB15 Data Sorted by FPR

Reference UNSW-NB15 Data Set Algorithm FPR Accuracy

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset SVM 0.4164 0.7936

Wang, Xu, Lee, & Lee (2018) Train (50%) & Test Subset MLP 0.4029 0.8161

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset Multinominal NB 0.3800 0.7675

Wang, Xu, Lee, & Lee (2018) Train (50%) & Test Subset C-ELM (CAI) 0.3646 0.8274

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset ANN 0.3611 0.8329

Valero León (2017) Full 2.54M records Snort (signature-based) 0.3066 0.6087

Benmessahel, Xie, Chellal, & Semong (2019) Train & Test Subset ANN w/ Genetic Algorithm 0.2910 0.8644

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset Deep Belief Network 0.2788 0.8602

Vinayakumar, et al. (2019) Train & Test Subset (Normal Traffic) Deep Neural Network 0.2640 0.7970

Wang, Xu, Lee, & Lee (2018) Train (25%) & Test Subset SVM 0.2554 0.8587

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset KNN 0.2519 0.8538

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset RF 0.2315 0.8756

Yang, Zheng, Wu, & Yang (2019) Train & Test Subset Deep Neural Network 0.1901 0.8908

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset Deep Belief Network 0.1715 0.9021

Benmessahel, Xie, Chellal, & Semong (2019) Train & Test Subset ANN w/ Particle Swarm Optimization 0.1478 0.9242

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records KNN 0.1148 0.8664

Benmessahel, Xie, Chellal, & Semong (2019) Train & Test Subset ANN w/ Locust Swarm Optimization 0.0940 0.9542

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records SVM 0.0873 0.9260

Tama & Rhee (2019) Subset 20% Gradient Boosted Machine (hold out) 0.0860 0.9131

Valero León (2017) Full 2.54M records DT 0.0857 0.9228

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records Classification & Regression Tree 0.0851 0.9023

Kamarudin, Maple, Watson, & Safa (2017) Subset 27K records Random Forest DT w/ AdaBoost 0.0830 0.9027

Moustafa, Turnbull, & Choo (2018) DNS Traffic Subset NB 0.0825 0.9117

Kamarudin, Maple, Watson, & Safa (2017) Subset 27K records Random Forest DT w/ LogitBoost 0.0822 0.9033

Muna, Moustafa, & Sitnikova (2018) Train & Test Subset Deep Auto Encoder 0.0820 0.9240

Moustafa, Turnbull, & Choo (2018) DNS Traffic Subset ANN 0.0787 0.9261

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records Random Forest 0.0656 0.9372

Bamakan, Wang, & Shi (2017) Train & Test Subset SVM 0.0612 0.8465

Moustafa, Creech, & Slay (2017) Train & Test Subset Finite Dirichlet Mixture Model 0.0588 0.9430

Moustafa, Turnbull, & Choo (2018) DNS Traffic Subset DT 0.0522 0.9532

Moustafa, Slay, & Creech (2017) Inferred Train & Test Subset Beta Mixture Model 0.0510 0.9280

Tchakoucht & Ezziyyani (2018) Train & Test Subset Recurrent Neural Network 0.0510 --

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records Outlier Gaussian Mixture 0.0472 0.9519

Moustafa, Turnbull, & Choo (2018) HTTP Traffic Subset ANN 0.0426 0.9627

Moustafa, Turnbull, & Choo (2018) HTTP Traffic Subset NB 0.0418 0.9591

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records Beta Mixture HMM 0.0382 0.9632

Moustafa, Turnbull, & Choo (2018) HTTP Traffic Subset DT 0.0343 0.9713

Tama & Rhee (2019) Subset 20% Gradient Boosted Machine (10 fold) 0.0297 0.9508

Moustafa, Turnbull, & Choo (2018) HTTP Traffic Subset Ensemble 0.0258 0.9897

Vinayakumar, et al. (2019) Train & Test Subset (Normal Traffic) NB 0.0250 0.8370

This Research (from Table 4) Subset 440K records MLP1 0.0250 0.9783

Bamakan, Wang, & Shi (2017) Train & Test Subset SVM 0.0246 0.9352

This Research (from Table 4) Subset 440K records MLP2 0.0201 0.9801

This Research (from Table 4) Subset 440K records DT (J48 - 1) 0.0159 0.9833

This Research (from Table 4) Subset 440K records ELM11 0.0158 0.9834

Moustafa, Turnbull, & Choo (2018) DNS Traffic Subset Ensemble 0.0138 0.9954

Igbe (2019) Train & Test (DoS) Artificial Immune System 0.0134 0.9811

This Research (from Table 7) Train & Test (DoS) J48 D 0.0071 0.9855

This Research (from Table 4) Subset 440K records DT (J48 - 2) 0.0068 0.9886

Alhaidari & Zohdy (2018) Training/Testing (80%/20%) HMM 0.0038 0.9641

This Research (from Table 4) Subset 440K records ELM14 + HMM C&S 0.0031 0.9879

This Research (from Table 4) Subset 440K records ELM11 + HMM C&S 0.0028 0.9901

This Research (from Table 7) Train & Test (DoS) ELM9 + HMM DS, DD, &DC 0.0000 0.9669

This Research (from Table 7) Train & Test (DoS) MLP D 0.0000 0.9699

 89

Summary of Results

 The primary evaluation metric for this research was FPR. For Experiment A

(time-ordered data), Tables 4 and 5 demonstrate that the combined model of ELM with

HMMs in a situation awareness framework using a unanimous voting scheme achieved

the goals of an FPR reduction of 10%, an FPR under 0.6%, and a better FPR than either a

J48 DT or MLP classifier using the same data sets. This was achieved for both models

using 18 attributes as well as 24 attributes. However, the difference between 18 and 24

attributes and 60 and 125 hidden neurons was not overly significant as shown in Table 4.

 For experiment B, which was using DoS traffic (non-time ordered), the primary

goals of an FPR reduction of 10% and an FPR under 0.6% were also met. The secondary

goals of a better FPR than either a J48 DT or MLP classifier were achieved for the J48

DT but resulted in a tie for the MLP classifier since both solutions had an FPR of 0%.

With the FPR being 0%, that was a 100% reduction from ELM alone but that resulted in

a slight degraded Accuracy rate. Also, for experiment B, two of the three HMMs had a

perfect and almost perfect TPR but very poor FPR performance. However, due to the

unanimous voting scheme, the very high rates of false positives were cancelled out for

the overall ensemble.

 90

Chapter 5

Conclusions, Summary, Implications, & Recommendations

This research demonstrates that false positives can be better minimized, while

maintaining detection accuracy, by combining ELM and HMMs as classifiers within the

context of a situation awareness framework. This research was performed using the

UNSW-NB15 data set which is more representative of contemporary cyber-attack and

normal network traffic than older data sets typically used in IDS research. It is shown

that this approach provides better results than either HMM or ELM alone and with a

lower FPR than other comparable approaches that also used the UNSW-NB15 data set.

Conclusions

 The overall approach proved effective for both time-ordered and non-time ordered

data but for likely different reasons. For the 440K data set, the two HMMs demonstrated

very good Accuracy rates even as a single attribute classifier. The Accuracy was 0.9889

and 0.9847 for HMMs C and S respectively. The Information Gain merit for those

attributes, from Appendix B, was 0.614 and 0.593 respectively which wouldn’t seem to

support those type of Accuracy results. Thus, the Accuracy is likely due to a boost in

predictive ability due to patterns in the time sequence data associated with each of those

attributes.

 91

 However, for the DoS data set, two of the HMMs, DS and DD, both had poor

Accuracy rates of 0.5424 and very high FPRs. DS was also constructed from the feature

sttl which is the same feature used for HMM S for the 440K data set. For the DoS data

set sttl showed an Information Gain merit of 0.300 (Appendix E). HMM DD was created

from feature dttl, destination Time to Live, and had a merit of 0.316. The overall result

would seem to indicate that there was no temporal pattern to boost the individual

Accuracy. The third HMM, HMM DC, based on feature ct_dst_sport_ltm had a merit of

only 0.165 but performed much better as a single attribute classifier with an Accuracy of

0.9194 as compared to HMMs DS & DD. Overall, the poor HMM individual

performance from the DoS data set as compared to the 440K data set supports evidence

of a temporal pattern in the time-ordered data. Given most real-world IDSs ingest such

time ordered data, this boosts the case for evaluations using time-ordered data sets vs.

those that have been shuffled from techniques such as cross-validation.

 Of other note for feature selection is that sttl showed up in the CFS selection

subsets for both 440K and DoS. This is likely since sttl was noted as being a feature that

has relevance in more than one type of attack (Moustafa & Slay, 2017; Janarthanan &

Zargari, 2017). So, given the 440K data set has nine categories of attack, that makes the

feature more valuable when the task is to detect any attack versus a particular type of

attack.

 So, despite the poor performance of the DoS HMMs, the overall result still ended

up at an FPR of 0%. This highlights one of the benefits of a unanimous voting scheme.

All it takes is one classifier to disagree on an attack to negate incorrect decisions by other

 92

classifiers. HMM DS had a perfect TPR of 100% while HMM DD was virtually at

100%. But the excessive number of FPs significantly hurt both the FPR and the

Accuracy calculations. However, the ELMs had generally low FPs for the DoS data set.

Thus, when combined, there was a perfect FPR at only a slightly reduced Accuracy. It

should be noted that the MLP also had a perfect FPR of 0%. This is likely since the DoS

attacks used to create the data set have more distinctive patterns than other types of attack

and are less complex to model.

 In terms of comparison to other research papers using UNSW-NB15, the

approach in this research compared very favorably to FPR and Accuracy metrics from

other research in Table 10. However, many researchers use different parts of UNSW-

NB15 and sometimes they are not clear on the parts they are using and the attributes

chosen. Thus, the comparisons to other research are indirect but still directional.

 The most direct comparison from the table is for Igbe (2019) who used an

Artificial Intelligence System scheme on UNSW-NB15 Test and Train data set for just

Normal and DoS traffic. Igbe (2019) had achieved an FPR of 0.0134 with an Accuracy

of 0.9811. That compares to the FPR of 0.0000 and an Accuracy of 0.9669 for the ELM

plus HMM solution proposed by this research. So, while this solution achieved a better

FPR, the goal of the research, Igbe (2019) did have a slightly better Accuracy.

 In terms of training time, the results of this research confirm the ELM trains very

quickly. As shown in Table 9, for the DoS data set, the ELM trained in 0.97 seconds of

CPU time. The MLP took 13058.10 CPU seconds on the same hardware. That is one

second to train for the ELM versus more than 3 hours for the MLP. The ELM combined

with the three HMM models took 19.24 seconds to train. The MLP, in this case,

 93

achieved the same 0% FPR as the combined model with a 0.3% increase in Accuracy.

The question is whether that is worth an extra three plus hours of CPU time which, of

course, would be application dependent. For the 440K data set, the MLP took over eight

hours of CPU time compared to just under three seconds for the ELM model. Other

research has shown that ELM needs up to four orders of magnitude in less time to train as

compared to ANNs using Back Propagation (Wang & Huang, 2005). This research

supports that conclusion.

The experiment with the number of hidden neurons to use for ELM confirms that

ELM is very stable across a wide range of hidden nodes but performance can degrade

with too few or too many neurons (Huang, Zhu, and Siew, 2006). As seen in figures six

through nine, the Accuracy of the system rises quickly as neurons are added from zero

but eventually levels off with smaller improvements as more neurons are added. The

FPR results tend to oscillate in a band once the system approaches a steady state as more

neurons are added.

Differences Among Algorithms

 To summarize the difference in algorithm performance in terms of Accuracy and

FPR, the HMMs performed very well on the time-ordered 440K data set as shown in

Table 4. They had better FPRs individually than both MLP models that used 18 and 24

features as well as several of the 18 and 24 feature ELM models. The HMMs performed

much better than would be expected from their information gain merit alone as single

feature classifiers. This was most likely due to their detection of temporal patterns in the

data. This conclusion is further supported by the results of the non-time ordered DoS

Train & Test data set.

 94

 In the DoS case, two of the three HMMs performed poorly as shown in Table 7 as

was anticipated from non-time ordered data. This performance is closer to what would

have been expected for a single feature classifier based on their information gain merit.

However, HMM DC performed relatively well. This is likely since it was a derived

feature involving the number of connections between the same destination address and

source port and that was a good indicator for detecting the type of DoS attacks used in the

data set.

 The J48 DTs had mixed results with generally good performance on the 440K

data set where both the 18 and 24 feature versions had a better FPR than many of the

ELM models, some of the HMM models, and both of the MLP models. However, both

the MLP and all of the ELM models had a lower FPR than the J48 DT for the DoS data

set. And the MLP had one of the best performances on the DoS data set with a 0% FPR.

 Overall, accounting for training time and results, this research supports prior

findings that ELM has shown its versatility to minimize false positives (Zong et al., 2013;

Fossaceca et al., 2015). ELM also had the lowest training times of any of the algorithms

as shown in Table 9 especially when compared to MLPs.

The one constant among algorithms is that the combined model using a

unanimous voting scheme had the best performance (or was tied for best performance)

for FPR. Lin et al. (2003) had previously demonstrated that a combination of classifiers

can result in a significant accuracy improvement.

Feature Selection Anomalies

For feature selection using Information Gain on the 440K data set, two data points

representing features stand out on Figures 4 and 5 which graph the Accuracy and FPR by

 95

number of features respectively. Both have a lower Accuracy and higher FPR than

would be indicated by a trend line. A similar anomaly is seen with the DoS data set for

two feature points as shown in Figures 8 and 9. While inconsequential, since none of the

features in question were chosen for the experiments, the most likely explanation is that

there was a slight variation in distributions between the respective test and training data

that caused some observations to skew which can affect the FPR. This phenomenon was

discussed in the statistical analysis of the UNSW-NB15 data set by Moustafa and Slay

(2016).

Summary

A primary purpose of this research was to extend promising emerging research

into ELM as a classifier, in conjunction with HMMs using a situation awareness

framework, to minimize false positives while maintaining accuracy. That goal was

achieved given the evaluation criteria.

More broadly, the intent was to further the use of ML based anomaly detection

techniques which have shown promise of detecting indications of novel cyber-attacks but

still typically generate more false positives than signature-based methods (Pao et al.,

2015). Incidentally, Valero León (2018), who created an ML based model using UNSW-

NB15 data, used a version of Snort with the then most recent signatures and achieved an

FPR of 30.66% compared to 8.57% with an anomaly-based method, DT, using the same

training and testing data. Hence, in this one instance, a signature-based approach

generated a much higher than expected FPR.

 96

Another research goal was to use a recent and relevant set of comprehensive

benchmark data, containing both cyber-attack and normal traffic. This research used

UNSW-NB15 (Moustafa & Slay, 2015) which achieved that goal. Researchers such as

Sommer and Paxton (2010), pointed out that the cybersecurity landscape has changed

significantly since the creation of the KDD99 data and that they do not consider

experiments that use older data sets such as KDD99 relevant anymore. And more

recently, Khammassi and Krichen (2017) had stated that the NIDS research community

now considers UNSW-NB15 a new benchmark data set to be used for evaluations of

IDSs. However, there is still a gap in the literature on ample published research for

comparison purposes which will likely take some time to close. But given that 17 papers

(as shown in Table 10) published between 2017 through mid-year 2019 provided

comparable results for FPR using UNSW-NB15, this gap is clearly closing.

However, given the needs of different researchers, more than 10 different portions

up to and including the full data set of UNSW-NB15 (as listed in the UNSW-NB15 data

set column) were used in the 17 papers cited. Different research also used different

feature selection methods. But these still provide a better comparison to the literature

than using results from older data sets such as KDD99.

 This research also used the three situation awareness components defined by

Endsley (1988). The first stage, perception, was accomplished with a network-based

(NIDS) anomaly-detection engine for intrusion detection using an ELM as the primary

classifier.

The second stage, comprehension, which achieved the goal of further reducing

false positives and improving accuracy, was accomplished using a post processing

 97

approach and implemented using HMMs. Treinen and Thurimella (2009) stated that

HMMs are very effective at detecting all types of attacks by acting as an anomaly

detector over a set of IDS alarms thus providing a low rate of false positives and high rate

of alarm reduction. The results in Tables 5 and 8 demonstrate that point with significant

reductions in FPR after combining the ELM results with the HMMs used for this

research. The temporal aspect from the HMMs provided better context around

interactions in time compared to a more traditional IDS approach that is just looking at a

single event in space.

The third phase, projection, was a decision informed by the perception and

comprehension stages, in space and time, on whether a given alert from the perception

stage should be put forth to a human operator or an automated action as an intrusion alert.

This was the combined output of the ELM and HMM classifiers.

 An ELM was chosen as a classifier for the perception phase based on the positive

results as a classifier for IDS (Fossaceca et al., 2015). While ELM research only goes

back to Huang, Zhu, and Siew (2004) with the first IDS-based research from Cheng et al.

(2012), ELM has shown its versatility to minimize false positives (Zong et al., 2013).

But given the random initialization, ELM results can vary quite a bit, within a range, as

seen in Tables 4 and 7. To mitigate this, multiple runs can be considered as part of a

training and validation step prior to testing.

A combined approach was also used since prior research had shown positive

results in reducing false positives in IDS using post processing (Spathoulas & Katsikas,

2013b). Other hybrid results had yielded positive results such as using a KNN followed

 98

by ELM (Akusok et al., 2014) and a NB to HMM (Karthick et al., 2012) for malware

detection.

The primary evaluation metric for this research was FPR. Table 5 demonstrated

that the combined classifier did have the lowest or the same FPR including against an

MLP and J48 DT using the same testing and training data. The goal was that the addition

of the HMMs would reduce the FPR by at least 10% compared to the ELM classifier

alone and have an FPR of less than 0.6%. Those goals were exceeded.

This approach is novel as an extension of drawing upon several separate research

results by combining the positive aspects of each one. While there have been various

hybrids using either HMM or ELM for IDS, it is believed this approach was the first to

use a combination of an ELM with multiple HMMs for IDS. It is further unique in its use

of these classifiers in a situation awareness framework for network intrusion detection.

Implications

Given the increased stakes as a result of cyber-attacks, the need for faster and

more automated responses to indications of a potential cyber-attack is critical. Many

commercial IDSs and related systems are capable of blocking traffic in real-time, by

source IP address for example, based on intrusion alerts. However, as discussed, an

action based on a false positive with an automated response could deny resource access to

legitimate users or tasks that could be unacceptable based on the circumstance. Thus,

steps, such as demonstrated by this research, to further reduce false positives will help to

achieve better threat detection and response.

 99

Recommendations

 While this research has highlighted the versatility of ELM and the ability to make

ELM better using situation awareness in conjunction with HMMs, there is ample

opportunity to extend this research to both further reduce FRP and improve accuracy.

One area of additional research would be to evaluate the feature selection process. This

research used both information gain (Kayacik et al., 2005) and CFS (Hall, 2000).

However, other studies that were cited, even those using similar feature selection

methods, have come up with widely varying results using different subsets of UNSW-

NB15. So, further research on feature selection methods would be warranted. Likewise,

a further evaluation of which features produce the best temporal results with HMMs,

beyond the features chosen, would likely provide other interesting insights.

 The choice of testing and training data is another area for study. Different

research has used different portions of the UNSW-NB15 data set. Questions such as the

optimal training and testing data split, how varying the number of records impacts the

results, and how to best choose sequential data for time-series analysis could be further

studied.

 Other researchers, as discussed, had also modified the ELM algorithm itself. For

example, Castaño et al. (2013) introduced PCA-ELM which eliminated the random

initialization of the weights and determined them based on a PCA of the training data.

So, another avenune of further research would be to evaluate variations of the ELM

algorithms and their impact on FPR. Variations of key ELM parameters such as the

optimal number of hidden neurons and the best activation function could also be further

explored.

 100

For the HMM classifiers, experiments could be done to determine if more than

two or three HMM classifiers improve the results. For the third phase of projection, this

research used a unanimous voting scheme where a record was marked as an attack only if

the ELM and the HMM models agreed. Variations on this could also be explored such as

by weighting the results from each model and using discrete thresholds for the ELM and

HMMs instead of binary ones for each model.

Another avenue of inquiry would be to determine how ELM, or a similar

combination with HMMs, could better reduce the FNR while also maintaining Accuracy.

This could help to better ferret out indications of compromise which might not alarm.

Overall, this research provided promising results and has hopefully provided insights for

additional exploration and improvement opportunities.

 101

Appendix A

UNSW-NB15 Features Description for Experiment A (Full 2.54M)

(Moustafa & Slay, 2015)

Table 11: UNSW-NB15 Features Description

No. Name Type Description

Flow Features

1 srcip nominal Source IP address

2 sport integer Source port number

3 dstip nominal Destination IP address

4 dsport integer Destination port number

5 proto nominal Transaction protocol

Basic Features

6 state nominal

Indicates to the state and its dependent protocol, e.g. ACC, CLO, CON, ECO, ECR, FIN, INT, MAS,

PAR, REQ, RST, TST, TXD, URH, URN, and (-) (if not used state)

7 dur Float Record total duration

8 sbytes Integer Source to destination transaction bytes

9 dbytes Integer Destination to source transaction bytes

10 sttl Integer Source to destination time to live value

11 dttl Integer Destination to source time to live value

12 sloss Integer Source packets retransmitted or dropped

13 dloss Integer Destination packets retransmitted or dropped

14 service nominal http, ftp, smtp, ssh, dns, ftp-data ,irc and (-) if not much used service

15 Sload Float Source bits per second

16 Dload Float Destination bits per second

17 Spkts integer Source to destination packet count

18 Dpkts integer Destination to source packet count

Content Features

19 swin integer Source TCP window advertisement value

20 dwin integer Destination TCP window advertisement value

21 stcpb integer Source TCP base sequence number

22 dtcpb integer Destination TCP base sequence number

23 smeansz integer Mean of the flow packet size transmitted by the src

24 dmeansz integer Mean of the flow packet size transmitted by the dst

25 trans_depth integer Represents the pipelined depth into the connection of http request/response transaction

26 res_bdy_len integer Actual uncompressed content size of the data transferred from the serverís http service.

Time Features

27 Sjit Float Source jitter (mSec)

28 Djit Float Destination jitter (mSec)

29 Stime Timestamp record start time

30 Ltime Timestamp record last time

31 Sintpkt Float Source interpacket arrival time (mSec)

32 Dintpkt Float Destination interpacket arrival time (mSec)

33 tcprtt Float TCP connection setup round-trip time, the sum of ísynackí and íackdatí.

34 synack Float TCP connection setup time, the time between the SYN and the SYN_ACK packets.

35 ackdat Float TCP connection setup time, the time between the SYN_ACK and the ACK packets.

Additional Generated Features

36 is_sm_ips_ports Binary

If source (1) and destination (3) IP addresses equal and port numbers (2)(4) equal then, this variable

takes value 1 else 0

37 ct_state_ttl Integer No. for each state (6) according to specific range of values for source/destination time to live (10) (11).

38 ct_flw_http_mthd Integer No. of flows that has methods such as Get and Post in http service.

39 is_ftp_login Binary If the ftp session is accessed by user and password then 1 else 0.

40 ct_ftp_cmd integer No of flows that has a command in ftp session.

 102

No. Name Type Description

Connection Features

41 ct_srv_src integer

No. of connections that contain the same service (14) and source address (1) in 100 connections

according to the last time (26).

42 ct_srv_dst integer

No. of connections that contain the same service (14) and destination address (3) in 100 connections

according to the last time (26).

43 ct_dst_ltm integer

No. of connections of the same destination address (3) in 100 connections according to the last time

(26).

44 ct_src_ ltm integer No. of connections of the same source address (1) in 100 connections according to the last time (26).

45 ct_src_dport_ltm integer

No of connections of the same source address (1) and the destination port (4) in 100 connections

according to the last time (26).

46 ct_dst_sport_ltm integer

No of connections of the same destination address (3) and the source port (2) in 100 connections

according to the last time (26).

47 ct_dst_src_ltm integer

No of connections of the same source (1) and the destination (3) address in in 100 connections

according to the last time (26).

Labelled Features

48 attack_cat nominal

The name of each attack category. In this data set, nine categories: Fuzzers, Analysis, Backdoors, DoS

Exploits, Generic, Reconnaissance, Shellcode and Worms

49 Label binary 0 for normal and 1 for attack records

 103

Appendix B

Information Gain Analysis of UNSW-NB15 Features for Experiment A

Table 12: Experiment A: Information Gain Analysis of UNSW NB-15 Features

Rank Attribute # Attribute Name Merit

1 8 sbytes 0.637

2 3 dstip 0.629

3 1 srcip 0.618

4 37 ct_state_ttl 0.614

5 10 sttl 0.593

6 15 Sload 0.563

7 23 smeansz 0.541

8 11 dttl 0.330

9 9 dbytes 0.329

10 24 dmeansz 0.303

11 7 dur 0.290

12 32 Dintpkt 0.278

13 16 Dload 0.274

14 18 Dpkts 0.261

15 46 ct_dst_sport_ltm 0.258

16 45 ct_src_dport_ltm 0.214

17 33 tcprtt 0.212

18 34 synack 0.209

19 35 ackdat 0.209

20 4 dsport 0.204

21 31 Sintpkt 0.201

22 6 state 0.201

23 43 ct_dst_ltm 0.196

24 2 sport 0.192

25 44 ct_src_ ltm 0.167

26 17 Spkts 0.165

27 27 Sjit 0.161

28 28 Djit 0.160

29 47 ct_dst_src_ltm 0.156

30 42 ct_srv_dst 0.154

31 41 ct_srv_src 0.146

32 13 dloss 0.141

33 12 sloss 0.133

34 5 proto 0.122

35 19 swin 0.083

36 21 stcpb 0.082

37 22 dtcpb 0.082

38 20 dwin 0.082

39 29 Stime 0.081

40 30 Ltime 0.078

41 14 service 0.059

42 26 res_bdy_len 0.031

43 25 trans_depth 0.001

44 36 is_sm_ips_ports 0.000

45 38 ct_flw_http_mthd 0.000

46 40 ct_ftp_cmd 0.000

47 39 is_ftp_login 0.000

 104

Appendix C

HMM Parameters for Experiment A

For HMM S

Initial estimates:

estTR =

 0.9776 0.0070 0.0154
 0.2503 0.2610 0.4887
 0.0769 0.0596 0.8635

estE =

 Columns 1 through 8

 0.0027 0.0011 0.0000 0.7722 0.1919 0.0046 0.0004 0.0028
 0.0021 0 0 0 0 0.0134 0 0
 0.0014 0 0 0 0 0.0737 0 0

 Columns 9 through 11

 0.0000 0.0240 0.0000
 0 0.9843 0.0002
 0 0.9249 0

After Baum-Welch algorithm:

estTR1 =

 0.9703 0.0200 0.0097
 0.4876 0.4560 0.0564
 0.0474 0.0113 0.9413

estE2 =

 Columns 1 through 8

 0.0008 0.0012 0.0000 0.7804 0.1939 0.0022 0.0004 0.0029
 0.0562 0 0 0 0 0.3591 0 0
 0.0000 0 0 0 0 0.0169 0 0

 105

 Columns 9 through 11

 0.0000 0.0181 0.0000

0 0.5843 0.0004
 0 0.9831 0

For HMM C

Initial estimates:

estTRC =

 0.9776 0.0070 0.0154
 0.2503 0.2610 0.4887
 0.0769 0.0596 0.8635

estEC =

 0.9723 0.0174 0.0064 0.0021 0.0018
 0.0030 0.5363 0.4453 0 0.0154
 0.0040 0.1179 0.8735 0.0010 0.0036

After Baum-Welch algorithm:

estTRC1 =

 0.9710 0.0206 0.0084
 0.4577 0.4734 0.0689
 0.0439 0.0138 0.9423

estEC1 =

 0.9812 0.0128 0.0032 0.0023 0.0005
 0.0000 0.8028 0.1434 0 0.0538
 0.0001 0.0399 0.9598 0.0002 0.0001

 106

Appendix D

UNSW-NB15 Features Description for Experiment B (Train and Test)

(Moustafa & Slay, 2015; Moustafa & Slay, 2016)

Table 13: UNSW-NB15 Features Description for the Train and Test Data Set

 107

No. Name Type Description

0 id integer unique id number

1 dur Float Record total duration

2 proto nominal Transaction protocol

3 service nominal http, ftp, smtp, ssh, dns, ftp-data ,irc and (-) if not much used service

4 state nominal

Indicates to the state and its dependent protocol, e.g. ACC, CLO, CON, ECO, ECR,

FIN, INT, MAS, PAR, REQ, RST, TST, TXD, URH, URN, and (-) (if not used state)

5 spkts integer Source to destination packet count

6 dpkts integer Destination to source packet count

7 sbytes Integer Source to destination transaction bytes

8 dbytes Integer Destination to source transaction bytes

9 rate Float rate

10 sttl Integer Source to destination time to live value

11 dttl Integer Destination to source time to live value

12 sload Float Source bits per second

13 dload Float Destination bits per second

14 sloss Integer Source packets retransmitted or dropped

15 dloss Integer Destination packets retransmitted or dropped

16 sintpkt Float Source interpacket arrival time (mSec)

17 dintpkt Float Destination interpacket arrival time (mSec)

18 sjit Float Source jitter (mSec)

19 djit Float Destination jitter (mSec)

20 swin integer Source TCP window advertisement value

21 stcpb integer Source TCP base sequence number

22 dtcpb integer Destination TCP base sequence number

23 dwin integer Destination TCP window advertisement value

24 tcprtt Float TCP connection setup round-trip time, the sum of ísynackí and íackdatí.

25 synack Float TCP connection setup time, the time between the SYN and the SYN_ACK packets.

26 ackdat Float TCP connection setup time, the time between the SYN_ACK and the ACK packets.

27 smean integer Mean of the flow packet size transmitted by the src

28 dmean integer Mean of the flow packet size transmitted by the dst

29 trans_depth integer Represents the pipelined depth into the connection of http request/response transaction

30 response_body_len integer Actual uncompressed content size of the data transferred from the serverís http service.

31 ct_srv_src integer

No. of connections that contain the same service (14) and source address (1) in 100

connections according to the last time (26).

32 ct_state_ttl Integer

No. for each state (6) according to specific range of values for source/destination time

to live (10) (11).

33 ct_dst_ltm integer

No. of connections of the same destination address (3) in 100 connections according to

the last time (26).

34 ct_src_dport_ltm integer

No of connections of the same source address (1) and the destination port (4) in 100

connections according to the last time (26).

35 ct_dst_sport_ltm integer

No of connections of the same destination address (3) and the source port (2) in 100

connections according to the last time (26).

36 ct_dst_src_ltm integer

No of connections of the same source (1) and the destination (3) address in in 100

connections according to the last time (26).

37 is_ftp_login Binary If the ftp session is accessed by user and password then 1 else 0.

38 ct_ftp_cmd integer No of flows that has a command in ftp session.

39 ct_flw_http_mthd Integer No. of flows that has methods such as Get and Post in http service.

40 ct_src_ ltm integer

No. of connections of the same source address (1) in 100 connections according to the

last time (26).

41 ct_srv_dst integer

No. of connections that contain the same service (14) and destination address (3) in 100

connections according to the last time (26).

42 is_sm_ips_ports Binary

If source (1) and destination (3) IP addresses equal and port numbers (2)(4) equal

then, this variable takes value 1 else 0

43 attack_cat nominal

The name of each attack category. In this data set, nine categories: Fuzzers, Analysis,

Backdoors, DoS Exploits, Generic, Reconnaissance, Shellcode and Worms

44 Label binary 0 for normal and 1 for attack records

 108

Appendix E

Information Gain Analysis for Experiment B

Table 14: Experiment B: Information Gain Analysis of UNSW NB-15 Features

Rank Attribute # Attribute Name Merit

1 7 sbytes 0.546

2 27 smean 0.479

3 2 proto 0.453

4 12 sload 0.442

5 8 dbytes 0.356

6 9 rate 0.356

7 1 dur 0.346

8 28 dmean 0.323

9 11 dttl 0.316

10 32 ct_state_ttl 0.305

11 10 sttl 0.300

12 17 dinpkt 0.287

13 13 dload 0.285

14 6 dpkts 0.283

15 4 state 0.244

16 16 sinpkt 0.229

17 25 synack 0.188

18 24 tcprtt 0.188

19 5 spkts 0.183

20 26 ackdat 0.179

21 35 ct_dst_sport_ltm 0.165

22 19 djit 0.164

23 14 sloss 0.157

24 18 sjit 0.154

25 15 dloss 0.152

26 20 swin 0.118

27 21 stcpb 0.111

28 22 dtcpb 0.111

29 23 dwin 0.111

30 34 ct_src_dport_ltm 0.061

31 36 ct_dst_src_ltm 0.055

32 3 service 0.051

33 30 response_body_len 0.038

34 41 ct_srv_dst 0.035

35 31 ct_srv_src 0.031

36 33 ct_dst_ltm 0.026

37 40 ct_src_ltm 0.021

38 42 is_sm_ips_ports 0.012

39 38 ct_ftp_cmd 0.003

40 37 is_ftp_login 0.003

41 39 ct_flw_http_mthd 0.001

42 29 trans_depth 0.000

 109

Appendix F

 HMM Parameters for Experiment B

HMM S

estTRC =

0.9759 0 0.0241
0 0 0
0.1100 0 0.8900

estEC =

 Columns 1 through 9

 0.0511 0.0011 0.0000 0 0.7046 0 0.0001 0.0387 0.0006
 0 0 0 0 0 0 0 0 0
 0.0059 0 0 0 0 0 0 0.1024 0

 Columns 10 through 13

 0.0032 0.0000 0.2005 0.0000
 0 0 0 0
 0 0 0.8909 0.0008

After Baum-Welch Algorithm

estTRC1 =

 0.9999 0 0.0001
 0 1.0000 0
 0.0001 0 0.9999

estEC1 =

 Columns 1 through 9

 0.0035 0.0016 0.0000 0.0001 0.9663 0.0001 0.0001 0.0000 0.0008
 0 0 0 0 0 0 0 0 0

 110

 0.1017 0 0 0 0 0 0 0.1248 0

 Columns 10 through 13

 0.0044 0.0000 0.0231 0.0000
 0 0 0 0
 0 0 0.7732 0.0004

HMM C

estTRC =

 0.9759 0 0.0241
 0 0 0
 0.1100 0 0.8900

estEC =

 Columns 1 through 9

 0.9201 0.0721 0.0035 0.0008 0.0003 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0.4603 0.2644 0.1651 0.0646 0.0192 0.0034 0.0040 0.0098 0.0044

 Columns 10 through 16

 0 0.0003 0.0004 0.0004 0.0007 0.0007 0.0008
 0 0 0 0 0 0 0
 0.0049 0 0 0 0 0 0

After Baum-Welch Algorithm:

estTRC1 =

 0.9924 0 0.0076
 0 1.0000 0
 0.0281 0 0.9719

estEC1 =

 Columns 1 through 9

 111

 0.9712 0.0241 0.0010 0.0003 0.0002 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0.3421 0.4126 0.1495 0.0568 0.0167 0.0029 0.0034 0.0083 0.0037

 Columns 10 through 16

 0 0.0003 0.0004 0.0004 0.0007 0.0007 0.0009
 0 0 0 0 0 0 0
 0.0041 0 0 0 0 0 0

HMM D

estTRC =

 0.9759 0 0.0241
 0 0 0
 0.1100 0 0.8900

estEC =

 0.1205 0.7046 0 0.0000 0 0.0013 0.1736 0 0.0000
 0 0 0 0 0 0 0 0 0
 0.7951 0 0 0 0 0.0181 0.1868 0 0

After Baum-Welch Algorithm

estTRC1 =

 0.9998 0 0.0002
 0 1.0000 0
 0.0002 0 0.9998

estEC1 =

 0.0180 0.9668 0.0001 0.0001 0.0001 0.0017 0.0133 0.0001 0.0001
 0 0 0 0 0 0 0 0 0
 0.5741 0 0 0 0 0.0081 0.4178 0 0

 112

Reference List

Akusok, A., Miche, Y., Hegedus, J., Nian, R., & Lendasse, A. (2014). A two-stage
methodology using K-NN and false-positive minimizing ELM for nominal data
classification. Cognitive Computation, 6(3), 432-445.

Alhaidari, S. & Zohdy, M. (2018). Feature pruning method for hidden markov model-

based anomaly detection: a comparison of performance. Jordanian Journal of

Computers and Information Technology (JJCIT), 4(03).

Alsmadi, I. & Xu, D. (2015). Security of Software Defined Networks: A survey.
 Computers & Security, 53, 79-108.

Anderson, J.P. (1980). Computer Security Threat Monitoring & Surveillance.
 Technical Report, James P. Anderson Co., Fort Washington, Pennsylvania.

Axelsson, S. (2000). The base-rate fallacy and the difficulty of intrusion detection.

ACM Transactions on Information and System Security (TISSEC), 3(3), 186-
 205.

Azad, C. & Jha, V. K. (2013). Data mining in intrusion detection: a comparative study
of methods, types and data sets. International Journal of Information

Technology and Computer Science (IJITCS), 5(8), 75.

Bahrololum, M., Salahi, E., & Khaleghi, M. (2009). Machine learning techniques for

feature reduction in intrusion detection systems: a comparison. IEEE Fourth

 International Conference on Computer Sciences and Convergence Information

 Technology (ICCIT), 1091-1095.

	

	

Barbara, D., Couto, J., Jajodia, S., Popyack, L., & Wu, N. (2001). ADAM: Detecting
intrusions by data mining. Proceedings of the IEEE Workshop on Information

Assurance and Security.

Bamakan, S. M. H., Wang, H., & Shi. Y. (2017). Ramp loss K-Support Vector

Classification-Regression; a robust and sparse multi-class approach to the
intrusion detection problem.		Knowledge-Based Systems, 126, 113–126.

 113

Barlow, C. (2017, March 17). Artificial intelligence makes cybersecurity the ideal
 field for 'new collar' jobs. The Hill. Retrieved from thehill.com

	

	

Bass, T. (1999). Multisensor data fusion for next generation distributed intrusion
 detection systems. Proceeding of the IRIS national symposium on sensor

and data fusion, 99-105.

Baum, L. E. & Petrie, T. (1966). Statistical inference for probabilistic functions of finite
 state Markov chains. The Annals of Mathematical Statistics, 37(6), 1554-1563.

Benmessahel, I., Xie, K., Chellal, M., & Semong, T. (2019). A new evolutionary neural
networks based on intrusion detection systems using locust swarm optimization.
Evolutionary Intelligence, 12(2), 131-146.

Bereziński, P., Jasiul, B., & Szpyrka, M. (2015). An entropy-based network anomaly
 detection method. Entropy, 17(4), 2367-2408.

Bhatt, S., Manadhata, P. K., & Zomlot, L. (2014). The operational role of security

information and event management systems. IEEE Security & Privacy, 12(5),
35-41.

Bhatt, P., Yano, E. T., & Gustavsson, P. (2014). Towards a framework to detect multi-
 stage advanced persistent threats attacks. Paper presented at the Service

 Oriented System Engineering (SOSE), 2014 IEEE 8th International

 Symposium on.

Bhuyan, M.H., Bhattacharyya, D.K., & Kalita, J.K. (2014). Network anomaly
 detection: Methods, systems, and tools. IEEE Communication Surveys &

 Tutorials, 16(1), 303-336.

Blanco, R., Cilla, J. J., Malagón, P., Penas, I., & Moya, J. M. (2018, June). Tuning

CNN Input Layout for IDS with Genetic Algorithms. In International

Conference on Hybrid Artificial Intelligence Systems (pp. 197-209). Springer,
Cham.

 114

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. Proceedings of the fifth annual workshop on Computational

learning theory, 144-152.

Brown, C., Cowperthwaite, A., Hijazi, A., & Somayaji, A. (2009). Analysis of the 1999

 DARPA/Lincoln Laboratory IDS evaluation data with NetADHICT,
 IEEE Symposium on Computational Intelligence for Security and Defense

Applications (CISDA), 1-10.

Cannady, J. (1998). Artificial neural networks for misuse detection. Paper presented
 at the National Information Systems Security conference.

Castaño, A., Fernández-Navarro, F., & Hervás-Martínez, C. (2013). PCA-ELM: A
 robust and pruned extreme learning machine approach based on principal
 component analysis. Neural Processing Letters, 37(3), 377-392.

Cerqueira, V., Torgo, L., & Mozetic, I. (2019). Evaluating time series forecasting

models: An empirical study on performance estimation methods. arXiv preprint

arXiv:1905.11744.

Chen, C. M., Guan, D. J., Huang, Y. Z., & Ou, Y. H. (2016). Anomaly network
 intrusion detection using Hidden Markov model. Int. J. Innov. Comput. Inform.

 Control, 12, 569-580.

Cheng, C., Tay, W. P., & Huang, G.-B. (2012). Extreme learning machines for
 intrusion detection. Paper presented at the Neural Networks (IJCNN), The 2012
 International Joint Conference on.

Cisco (2016, June 14). Cisco launches $10 million global cybersecurity scholarship
 to increase talent pool; Introduces New and Updated Certifications. Retrieved
 from
 https://newsroom.cisco.com/pressreleasecontent?type=webcontent&articleId=1
 772385

Coull, S. E., Wright, C. V., Monrose, F., Collins, M. P., & Reiter, M. K. (2007).
 Playing devil's advocate: Inferring sensitive information from anonymized
 network traces. Network and Distributed System Security (NDSS) Symposium

 of the Internet Society, 7, 35-47.

 115

Creech, G. & Jiankun, H. (2014). A semantic approach to Host-Based Intrusion
 Detection Systems using contiguous and discontiguous system call
 patterns. Computers, IEEE Transactions on, 63(4), 807-819.

Crosbie, M. & Spafford, E. H. (1995). Defending a computer system using autonomous

agents. Retrieved from
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2199&context=cstech

Dainotti, A., Pescape, A., & Claffy, K. C. (2012). Issues and future directions in traffic

classification. Network, IEEE, 26(1), 35-40.

Davis, J. J. & Clark, A. J. (2011). Data preprocessing for anomaly based network
 intrusion detection: A review. Computers & Security, 30(6-7), 353-375.

Deng, W., Zheng, Q., & Zhang, K. (2013). Reduced kernel extreme learning

 machine. Proceedings of the 8th International Conference on Computer

 Recognition Systems CORES 2013, 63-69.

Denning, D. E. & Neumann, P. G. (1985). Requirements and model for IDES—a real-
 time intrusion detection expert system. Document A005, SRI International, 1-
 70.

Denning, D.E. (1987). An intrusion detection model. IEEE Transactions on Software

 Engineering – Special Issue on Computer Security and Privacy, 13(2), 222-232.

Depren, O., Topallar, M., Anarim, E., & Ciliz, M. K. (2005). An intelligent intrusion
 detection system (IDS) for anomaly and misuse detection in computer networks.
 Expert Systems with Applications, 29(4), 713-722.

Ding, S., Xu, X., & Nie, R. (2014). Extreme learning machine and its applications.
 Neural Computing and Applications, 25(3-4), 549-556.

Endsley, M. R. (1988). Design and evaluation for situation awareness enhancement.

Paper presented at the Proceedings of the Human Factors and Ergonomics
Society Annual Meeting.

 116

Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognition Letters,
 27(8), 861-874.

Fernandes, G., Rodrigues, J. J., Carvalho, L. F., Al-Muhtadi, J. F., & Proença, M. L.

(2019). A comprehensive survey on network anomaly detection.
Telecommunication Systems, 70(3), 447-489.

Forney, G. D. (1973). The Viterbi Algorithm. Proceedings of the IEEE, 61(3), 268-278.

Fossaceca, J. M., Mazzuchi, T. A., & Sarkani, S. (2015). MARK-ELM: Application of
 a novel multiple kernel learning framework for improving the robustness of

network intrusion detection. Expert Systems with Applications, 42(8), 4062-
 4080.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a

statistical view of boosting (with discussion and a rejoinder by the authors). The

annals of statistics, 28(2), 337-407.

Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of computer and system

sciences, 55(1), 119-139.

Gilmore, C. & Haydaman, J. (2016). Anomaly detection and machine learning
 methods for network intrusion detection: An industrially focused literature
 review. Proceedings of the International Conference on Security and

 Management (SAM).

Graff, G. M. (2017, December 13). How a dorm room Minecraft scam brought down

the Internet. Wired. Retrieved from wired.com

Hall, M.A. (2000). Correlation-based feature selection of discrete and numeric class

machine learning (Working paper 00/08). Hamilton, New Zealand: University
of Waikato, Department of Computer Science.

Ho, C. Y., Lai, Y. C., Chen, I. W., Wang, F. Y., & Tai, W. H. (2012). Statistical

 117

 analysis of false positives and false negatives from real traffic with
 intrusion detection/prevention systems. IEEE Communications Magazine,
 50(3), 146-154.

Holgado, P., Villagra, V. A., & Vazquez, L. (2017). Real-time multistep attack
prediction based on Hidden Markov Models. IEEE Transactions on

Dependable and Secure Computing.

Hoque, M. S., Mukit, M. A., & Bikas, M. A. N. (2012). An implementation of intrusion
detection system using genetic algorithm. International Journal of Network

Security & Its Applications, 4(2), 109.

Horne, B. (2015). Umbrellas and octopuses. IEEE Security & Privacy, 13(1), 3-5.

Hu, J., Yu, X., Qiu, D., & Chen, H. H. (2009). A simple and efficient Hidden Markov
 Model scheme for host-based anomaly intrusion detection. IEEE Network,
 23(1), 42-47.

Hu, W., Gao, J., Wang, Y., Wu, O., & Maybank, S. (2014). Online AdaBoost-based
 parameterized methods for dynamic distributed network intrusion detection.
 IEEE Transactions on Cybernetics, 44(1), 66-82.

Huang, G. B. & Chen, L. (2008). Enhanced random search based incremental extreme

learning machine. Neurocomputing, 71(16-18), 3460-3468.

Huang, G. B., Chen, L., & Siew, C. K. (2006). Universal approximation using

incremental constructive feedforward networks with random hidden nodes.
IEEE Trans. Neural Networks, 17(4), 879-892.

Huang, G.-B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey.
 International Journal of Machine Learning and Cybernetics, 2(2), 107-122.

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for
regression and multiclass classification. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 42(2), 513-529.

Huang, G.-B. & Zhu, Q.-Y. (2004). Basic ELM Algorithm, MATLAB version

 118

[Software]. Available from
http://www.ntu.edu.sg/home/egbhuang/elm_codes.html

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a new

learning scheme of feedforward neural networks. Proceedings of the IEEE

International Joint Conference on Neural Networks.

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and

applications. Neurocomputing, 70(1-3), 489-501.

Huang, Z., Shen, C.-C., Doshi, S., Thomas, N., & Duong, H. (2015). Cognitive task
 analysis based training for cyber situation awareness, Information Security

 Education Across the Curriculum, 27-40, Springer.

Hubballi, N. & Suryanarayanan, V. (2014). False alarm minimization techniques in

signature-based intrusion detection systems: A survey. Computer

Communications, 49(0), 1-17.

Hurley, T., Perdomo, J. E., & Perez-Pons, A. (2016). HMM-based intrusion detection

system for Software Defined Networking. In Machine Learning and

Applications (ICMLA), 2016 15th IEEE International Conference on, 617-621.
IEEE.

Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-driven computer

network defense informed by analysis of adversary campaigns and intrusion kill
chains. Leading Issues in Information Warfare & Security Research, 1, 80.

Igbe, O. (2019). Artificial immune system based approach to cyber attack detection

(Doctoral dissertation). Available from ProQuest Dissertations & Theses
Global. (2177283169). Retrieved from
http://search.proquest.com.ezproxylocal.library.nova.edu/docview/2177283169?
accountid=6579

Inayat, Z., Gani, A., Anuar, N. B., Khan, M. K., & Anwar, S. (2016). Intrusion
 response systems: Foundations, design, and challenges. Journal of Network and

 Computer Applications, 62, 53-74.

 119

Information System Security Certification Consortium (2018, August). Cybersecurity
Professionals Focus on Developing New Skills as Workforce Gap Widens,
(ISC)2 Cybersecurity Workforce Study, 2018 [PDF document].
Retrieved from
https://www.isc2.org/-/media/7CC1598DE430469195F81017658B15D0.ashx

Janarthanan, T. & Zargari, S. (2017). Feature selection in UNSW-NB15 and
 KDDCUP'99 datasets. In Industrial Electronics (ISIE), 2017 IEEE 26th

 International Symposium on, 1881-1886. IEEE.

Julisch, K. & Dacier, M. (2002). Mining intrusion detection alarms for actionable

knowledge. Proceedings of the eighth ACM SIGKDD international conference

on knowledge discovery and data mining.

Julisch, K. (2003). Clustering intrusion detection alarms to support root cause analysis.
 ACM Transactions on Information and System Security (TISSEC), 6(4), 443-

 471.

Karthick, R. R., Hattiwale, V. P. & Ravindran, B. (2012). Adaptive network intrusion

detection system using a hybrid approach. Paper presented at the 2012 Fourth
International Conference on Communication Systems and Networks
(COMSNETS 2012).

Kamarudin, M. H., Maple, C., Watson, T., & Safa, N. S. (2017). A logitboost-based

algorithm for detecting known and unknown web attacks. IEEE Access, 5,
26190-26200.

Karegowda, A. G., Manjunath, A. S., & Jayaram, M. A. (2010). Comparative study of

attribute selection using gain ratio and correlation based feature selection.
International Journal of Information Technology and Knowledge Management,
2(2), 271-277.

Kasun, L. L. C., Zhou, H., Huang, G. B., & Vong, C. M. (2013). Representational
 learning with ELMs for Big Data. IEEE Intelligent Systems, 28(6), 31-34.

Kayacik, H. G., Zincir-Heywood, A. N., & Heywood, M. I. (2005, October). Selecting
 features for intrusion detection: A feature relevance analysis on KDD 99
 intrusion detection datasets. In Proceedings of the third annual conference on

 120

 privacy, security and trust.

Khammassi, C. & Krichen, S. (2017). A GA-LR wrapper approach for feature
 selection in network intrusion detection. Computers & Security, 70, 255-277.

Koc, L., Mazzuchi, T. A., & Sarkani, S. (2012). A network intrusion detection system

based on a Hidden Naïve Bayes multiclass classifier. Expert Systems with

Applications, 39(18), 13492-13500.

Kohonen, T. & Somervuo, P. (1998). Self-Organizing Maps of symbol strings.
 Neurocomputing, 21(1), 19-30.

Li, Y., Xia, J., Zhang, S., Yan, J., Ai, X., & Dai, K. (2012). An efficient intrusion

detection system based on support vector machines and gradually feature
removal method. Expert Systems with Applications, 39(1), 424-430.

Liang, W., Chen, Z., Yan, X., Zheng, X., & Zhuo, P. (2017). Multiscale entropy-
 based weighted Hidden Markov network security situation prediction model.
 In Internet of Things (ICIOT), 2017 IEEE International Congress on, 97-104.
 IEEE.

Liang, Y., Wang, H. Q., Cai, H. B., & He, Y. J. (2008). A novel stochastic modeling

method for network security situational awareness. In Industrial Electronics

and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on, 2422-2426.
IEEE.

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D., ... &

Zissman, M. A. (2000, January). Evaluating intrusion detection systems: The
1998 DARPA off-line intrusion detection evaluation. In Proceedings DARPA

Information Survivability Conference and Exposition. DISCEX'00 (Vol. 2, pp.
12-26). IEEE.

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. (2000). The 1999

DARPA off-line intrusion detection evaluation. Computer networks, 34(4), 579-
595.

 121

Lin, Y. D., Lai, Y. C., Ho, C. Y., & Tai, W. H. (2013). Creditability-based weighted
voting for reducing false positives and negatives in intrusion detection.
Computers & security, 39, 460-474.

Lin, X., Yacoub, S., Burns, J., & Simske, S. (2003). Performance analysis of pattern
classifier combination by plurality voting. Pattern Recognition Letters, 24(12),
1959-1969.

Liu, H. & Yu, L. (2005). Toward integrating feature selection algorithms for

classification and clustering. IEEE Transactions on Knowledge and Data

Engineering, 17(4), 491-502.

Luh, R., Marschalek, S., Kaiser, M., Janicke, H., & Schrittwieser, S. (2016). Semantics-
 aware detection of targeted attacks: a survey. Journal of Computer Virology and

 Hacking Techniques, 1-39.

Marchetti, M., Pierazzi, F., Colajanni, M., & Guido, A. (2016). Analysis of high
volumes of network traffic for Advanced Persistent Threat detection. Computer

Networks.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in
 nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133.

McHugh, J. (2000). Testing intrusion detection systems: a critique of the 1998 and
 1999 DARPA intrusion detection system evaluations as performed by Lincoln
 Laboratory. ACM Transactions on Information and System Security (TISSEC),

3(4), 262-294.

Mees, W., & Debatty, T. (2015). An attempt at defining cyberdefense situation
awareness in the context of command & control. Military Communications and

Information Systems (ICMCIS), 2015 International Conference on.

Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., & Payne, B. D. (2015).
 Evaluating computer intrusion detection systems: A survey of common
 practices. ACM Computing Surveys (CSUR), 48(1), 12.

Mitchell, R. & Chen, I. (2014). A survey of intrusion detection techniques for Cyber

 122

 Physical Systems. ACM Computing Surveys (CSUR), 46(4), article 55.

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A
 survey of intrusion detection techniques in cloud. Journal of Network and

 Computer Applications, 36(1), 42-57.

Moustafa, N. (2017). Designing an online and reliable statistical anomaly detection

framework for dealing with large high-speed network traffic (Doctoral
dissertation, University of New South Wales, Canberra, Australia). Retrieved
from: https://www.unsw.adfa.edu.au/unsw-canberra-
cyber/cybersecurity/ADFA-NB15-Datasets/

Moustafa, N., Adi, E., Turnbull, B., & Hu, J. (2018). A new threat intelligence scheme

 for safeguarding industry 4.0 systems. IEEE Access, 6, 32910-32924.

Moustafa, N., Creech, G., & Slay, J. (2017). Big data analytics for intrusion detection

system: Statistical decision-making using finite dirichlet mixture models. In
Data analytics and decision support for cybersecurity, 127-156. Springer,
Cham.

Moustafa, N. & Slay, J. (2015). UNSW-NB15: A Comprehensive data set for
 Network Intrusion Detection Systems (UNSW-NB15 network data set). In
 Military Communications and Information Systems Conference (MilCIS), 2015,

 1-6, IEEE.

Moustafa, N. & Slay, J. (2016). The evaluation of network anomaly detection
 systems: Statistical analysis of the UNSW-NB15 data set and the comparison
 with the KDD99 data set. Information Security Journal: A Global Perspective,
 25(1-3), 18-31.

Moustafa, N. & Slay, J. (2017). A hybrid feature selection for network intrusion
 detection systems: Central points. arXiv preprint arXiv:1707.05505.

Moustafa, N., Slay, J., & Creech, G. (2017). Novel geometric area analysis technique

for anomaly detection using trapezoidal area estimation on large-scale networks.
IEEE Transactions on Big Data.

 123

Moustafa, N., Turnbull, B., & Choo, K. K. R. (2018). An ensemble intrusion detection
technique based on proposed statistical flow features for protecting network
traffic of internet of things. IEEE Internet of Things Journal.

Mukkamala, S., Sung, A. H. & Abraham, A. (2005). Intrusion detection using an
 ensemble of intelligent paradigms. Journal of Network and Computer

 Applications, 28(2), 167-182.

Muna, A. H., Moustafa, N., & Sitnikova, E. (2018). Identification of malicious

activities in industrial internet of things based on deep learning models. Journal

of Information Security and Applications, 41, 1-11.

Ourston, D., Matzner, S., Stump, W., & Hopkins, B. (2003). Applications of Hidden

Markov Models to detecting multi-stage network attacks. Paper presented at the
System Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on.

Pao, H. K., Lee, Y. J., & Huang, C. Y. (2015). Statistical learning methods for

information security: fundamentals and case studies. Applied Stochastic Models

in Business and Industry, 31(2), 97-113.

Paxson, V. (1999). Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23), 2435-2463.

Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., & Lee, W. (2009). McPAD: A multiple

classifier system for accurate payload-based anomaly detection. Computer

Networks, 53(6), 864-881.

Ponemon, L. & Trunkey, A. (2016). Key findings from the 2016 cost of
 data breach study: Global analysis [PowerPoint slides]. Retrieved from
 https://www.slideshare.net/ibmsecurity/the-2016-ponemon-cost-of-a-data-
 breach-study

Porras, P. A. & Neumann, P. G. (1997). EMERALD: Event monitoring enabling

response to anomalous live disturbances. Paper presented at the Proceedings of
the 20th National Information Systems Security conference.

 124

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and selected applications
 in speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Rai, D. & Tyagi, K. (2013). Bio-inspired optimization techniques: a critical

comparative study. ACM SIGSOFT Software Engineering Notes, 38(4), 1-7.

Rhodes, B. C., Mahaffey, J. A., & Cannady, J. D. (2000). Multiple self-organizing
 maps for intrusion detection. Proceedings of the 23rd National Information

 Systems Security Conference.

Roesch, M. (1999). Snort: Lightweight Intrusion Detection for Networks. Paper
presented at LISA conference.

Russell, S. J. & Norvig, P. (2003). Artificial intelligence: A modern approach. Upper

Saddle River, N.J: Prentice Hall/Pearson Education.

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in

bioinformatics. Bioinformatics, 23(19), 2507-2517.

Sendi, A. S., Dagenais, M., Jabbarifar, M., & Couture, M. (2012). Real time intrusion

prediction based on optimized alerts with Hidden Markov Model. Journal of

Networks (JNW), 7(2), 311-321.

Shah, A. A., Khiyal, M. S. H., & Awan, M. D. (2015). Analysis of machine learning

techniques for Intrusion Detection System: A Review. International Journal of

Computer Applications, 119(3).

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing

a systematic approach to generate benchmark datasets for intrusion detection.

 Computers & Security, 31(3), 357-374.

Shittu, R., Healing, A., Ghanea-Hercock, R., Bloomfield, R., & Rajarajan, M. (2015).
Intrusion alert prioritisation and attack detection using post-correlation analysis.
Computers & Security, 50(0), 1-15.

Silva, S. S., Silva, R. M., Pinto, R. C., & Salles, R. M. (2013). Botnets: A survey.

 125

Computer Networks, 57(2), 378-403.

Sindhu, S. S. S., Geetha, S., & Kannan, A. (2012). Decision tree based light weight

intrusion detection using a wrapper approach. Expert Systems with

Applications, 39(1), 129-141.

Singh, R., Kumar, H. & Singla, R. K. (2015). An intrusion detection system using
 network traffic profiling and online sequential extreme learning machine.
 Expert Systems with Applications, 42(22), 8609-8624.

Sommer, R. & Paxson, V. (2010). Outside the closed world: On using machine
 learning for network intrusion detection. 2010 IEEE Symposium on Security

 and Privacy (SP), 305-316.

Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., & Nakao, K. (2011). Statistical
analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS
evaluation. Proceedings of the First Workshop on Building Analysis Datasets

and Gathering Experience Returns for Security.

Spathoulas, G. P. & Katsikas, S. K. (2010). Reducing false positives in intrusion
 detection systems. Computers & Security, 29(1), 35-44

Spathoulas, G. & Katsikas, S. (2013a). Enhancing IDS performance through
comprehensive alert post-processing. Computers & Security, 37(0), 176-196.

Spathoulas, G. & Katsikas, S. (2013b). Methods for post-processing of alerts in
 intrusion detection: A survey. International Journal of Information Security

 Science, 2(2), 64-80.

Starr, M. (2014, January 19). Fridge caught sending spam emails in botnet
 attack. Retrieved from https://www.cnet.com/news/fridge-caught-sending-
 spam-emails-in-botnet-attack/

Sundaramurthy, S. C., Bhatt, S., & Eisenbarth, M. R. (2012). Examining intrusion
prevention system events from worldwide networks. Paper presented at the
Proceedings of the 2012 ACM Workshop on Building Analysis Datasets and

Gathering Experience Returns for Security, 5-12.

 126

Swarnkar, M. & Hubballi, N. (2016). OCPAD: One class Naive Bayes classifier for
 payload based anomaly detection. Expert Systems with Applications, 64, 330-
 339.

Tama, B. A. & Rhee, K. H. (2019). An in-depth experimental study of anomaly
detection using gradient boosted machine. Neural Computing and Applications,
31(4), 955-965.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of
 the KDD CUP 99 data set. Proceedings of the Second IEEE Symposium on
 Computational Intelligence for Security and Defense Applications, 1-6.

Tavallaee, M., Stakhanova, N., & Ghorbani, A.A. (2010). Toward credible evaluation
 of anomaly-based intrusion-detection methods. IEEE Transactions on

 Systems, Man, and Cybernetics, 40(5), 516-524.

Tchakoucht, T. A. & Ezziyyani, M. (2018). Multilayered Echo-State Machine: A
novel architecture for efficient intrusion detection. IEEE Access, 6, 72458-
72468.

Theodoridis, S., Pikrakis, A., Koutroumbas, K., & Cavouras, D. (2010). Introduction

to Pattern Recognition: A MATLAB Approach. Academic Press.

Treinen, J. J. & Thurimella, R. (2009). Finding the needle: Suppression of false alarms

in large intrusion detection data sets. Paper presented at the Computational

Science and Engineering 2009 (CSE'09), International Conference on.

Tsai, C. F., Hsu, Y. F., Lin, C. Y., & Lin, W. Y. (2009). Intrusion detection by
machine learning: A review. Expert Systems with Applications, 36(10), 11994-
12000.

University of California Irvine. (1999). KDD Cup 1999 Data [Data file]. Retrieved
 from http://kdd.ics.uci.edu/databases/kddcup99/kddcup99

 127

University of New South Wales. (2015). UNSW-NB15 Data Set [Data files].
 Retrieved from https://www.unsw.adfa.edu.au/unsw-canberra-
 cyber/cybersecurity/ADFA-NB15-Datasets/

Valero León, A. (2017). INsIDES: A new machine learning-based intrusion detection
 system (Bachelor thesis). Retrieved from: http://hdl.handle.net/10230/32875

Verizon. (2016). 2016 data breach investigations report, Verizon Enterprise
 [Webpage]. Retrieved from: http://www.verizonenterprise.com/dbir2016

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., &

Venkatraman, S. (2019). Deep Learning Approach for Intelligent Intrusion
Detection System. IEEE Access, 7, 41525-41550.

 Viterbi, A. (1967). Error bounds for Convolutional Codes and an asymptotically

optimum decoding algorithm. IEEE Transactions on Information Theory,
13(2), 260-269.

Wang, G., Hao, J., Ma, J., & Huang, L. (2010). A new approach to intrusion detection
 using Artificial Neural Networks and fuzzy clustering. Expert Systems with

 Applications, 37(9), 6225-6232.

Wang, D. & Huang, G. B. (2005, July). Protein sequence classification using extreme

learning machine. In Proceedings. 2005 IEEE International Joint Conference

on Neural Networks, 2005. (Vol. 3, pp. 1406-1411). IEEE.

Wang, J. & Lee, I. (2001). Measuring false-positive by automated real-time correlated

hacking behavior analysis, Information Security, 512-535.

Wang, H., Liu, X., Lai, J., & Liang, Y. (2007). Network Security Situation awareness

based on heterogeneous multi-sensor data fusion and neural network. Second

International Multi-Symposiums on Computer and Computational Sciences,
352-359.

Wang, C. R., Xu, R. F., Lee, S. J., & Lee, C. H. (2018). Network intrusion detection
using equality constrained-optimization-based extreme learning machines.
Knowledge-Based Systems, 147, 68-80.

 128

Warrender, C., Forrest, S., & Pearlmutter, B. (1999). Detecting intrusions using
system calls: Alternative data models. Security and Privacy, Proceedings of

the 1999 IEEE Symposium on, 133-144. IEEE.

Weller-Fahy, D. J., Borghetti, B. J., & Sodemann, A. (2015). A survey of distance and

 similarity measures used within network intrusion anomaly detection.

 Communications Surveys & Tutorials, IEEE, 17(1), 70-91.

Woods, K., Kegelmeyer, W. P., & Bowyer, K. (1997). Combination of multiple
classifiers using local accuracy estimates. IEEE transactions on pattern analysis

and machine intelligence, 19(4), 405-410.

Wright, C., Monrose, F., & Masson, G. M. (2004, October). HMM profiles for
network traffic classification. Proceedings of the 2004 ACM workshop on

 Visualization and Data Mining for Computer Security, 9-15. ACM.

Wu, S. X. & Banzhaf, W. (2010). The use of computational intelligence in Intrusion

 Detection Systems: A review. Applied Soft Computing, 10(1), 1-35.

Xia, H. & Hoi, S. C. (2013). MKBoost: A framework of Multiple Kernel Boosting.
 Knowledge and Data Engineering, IEEE Transactions on, 25(7), 1574-1586.

Yost, J.R. (2015). The March of IDES: Early History of Intrusion-Detection Expert
 Systems. IEEE Annals of the History of Computing, 38(4), 42-54.

Yu, W., Zhuang, F., He, Q., & Shi, Z. (2015). Learning deep representations via
 Extreme Learning Machines. Neurocomputing, 149, Part A, 308-315.

Zhou, C., Huang, S., Xiong, N., Yang, S. H., Li, H., Qin, Y., & Li, X. (2015). Design
 and analysis of multimodel-based anomaly Intrusion Detection Systems in

industrial process automation. IEEE Transactions on Systems, Man, and

Cybernetics, 45(10), 1345-1360.

Zong, W., Huang, G.-B., & Chen, Y. (2013). Weighted Extreme Learning Machine for
imbalance learning. Neurocomputing, 101, 229-242.

 129

Zuech, R., Khoshgoftaar, T. M., & Wald, R. (2015). Intrusion detection and big

heterogeneous data: A Survey. Journal of Big Data, 2(1), 1-41.

	Reduction of False Positives in Intrusion Detection Based on Extreme Learning Machine with Situation Awareness
	Share Feedback About This Item
	NSUWorks Citation

	Microsoft Word - Dissertation_Report_Burgio_2020_01_08.docx

