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Protecting computer networks from intrusions is more important than ever for our 
privacy, economy, and national security.  Seemingly a month does not pass without news 
of a major data breach involving sensitive personal identity, financial, medical, trade 
secret, or national security data. Democratic processes can now be potentially 
compromised through breaches of electronic voting systems.  As ever more devices, 
including medical machines, automobiles, and control systems for critical infrastructure 
are increasingly networked, human life is also more at risk from cyber-attacks.  Research 
into Intrusion Detection Systems (IDSs) began several decades ago and IDSs are still a 
mainstay of computer and network protection and continue to evolve.  However, 
detecting previously unseen, or zero-day, threats is still an elusive goal.  Many 
commercial IDS deployments still use misuse detection based on known threat 
signatures.  Systems utilizing anomaly detection have shown great promise to detect 
previously unseen threats in academic research.  But their success has been limited in 
large part due to the excessive number of false positives that they produce.   
 
This research demonstrates that false positives can be better minimized, while 
maintaining detection accuracy, by combining Extreme Learning Machine (ELM) and 
Hidden Markov Models (HMM) as classifiers within the context of a situation awareness 
framework.  This research was performed using the University of New South Wales - 
Network Based 2015 (UNSW-NB15) data set which is more representative of 
contemporary cyber-attack and normal network traffic than older data sets typically used 
in IDS research.  It is shown that this approach provides better results than either HMM 
or ELM alone and with a lower False Positive Rate (FPR) than other comparable 
approaches that also used the UNSW-NB15 data set. 
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Chapter 1 

 

Introduction 

 
 

 

Background 

Intrusion Detection Systems (IDSs) are a collection of hardware and software 

resources that can detect, analyze, and report indications of intrusions in computer 

systems and networks.  Extending from IDS research, there are Intrusion Prevention 

Systems and Intrusion Response Systems focused on the prevention and response aspects 

of intrusions respectively (Inayat, Gani, Anuar, Khan, & Anwar, 2016).  Some IDSs can 

be used in-line to both detect indications of and prevent intrusions in near real-time and 

are sometimes referred to as Intrusion Detection and Prevention Systems.  In other cases, 

these systems can communicate with other security devices such as firewalls, which 

monitor and control network traffic into and out of a protected network, to automatically 

implement blocking rules in response to detection. 

Research into IDSs began several decades ago with a key paper on computer 

threat monitoring and surveillance, based on mainframe audit logs, by Anderson (1980).  

The concept of intrusion detection analysis existed prior to Anderson’s report but 

typically just consisted of system administrators manually scanning audit logs for 

anomalies.  Yost (2015) reported that Clyde began work in 1977 on a limited scope 

commercial IDS, named Control, but that effort was not considered as influential or 

comprehensive as Anderson’s analysis. 
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Initially, intrusion detection was focused on after-the-fact batch analysis of audit 

records until Denning and Neumann (1985) proposed requirements and a model for the 

real-time Intrusion Detection Expert System with the goal of being able to detect most 

intrusions while making it extremely difficult to avoid detection.  In a follow-on seminal 

paper, Denning (1987) went on to further the research into this field.   

IDSs are characterized as either focused on misuse detection, based on known 

attack patterns or signatures, or anomaly detection, based on deviations in behavior from 

normal.  Misuse detection has been preferred in commercial environments due to a higher 

level of accuracy since it is grounded in known attacks.  Academic research has favored 

anomaly detection based on its higher potential to recognize novel attacks (Tavallaee, 

Stakhanova, & Ghorbani, 2010; Mitchell & Chen, 2014). 

Substantial research has been done in anomaly detection across many domains 

including intrusion detection.  Azad and Jha (2013), in a survey covering 75 research 

papers, list over a dozen different data mining techniques that have been applied to 

intrusion detection.   

Other recent research using a variation of neural networks known as Extreme 

Learning Machine (ELM), first introduced by Huang, Zhu, and Siew (2004), has been 

applied to intrusion detection with promising results for reducing false positives while 

providing good generalized performance with extremely fast learning speeds (Creech & 

Jiankun, 2014; Fossaceca, Mazzuchi, & Sarkani, 2015).  Baum and Petrie (1966) 

originated Hidden Markov Models (HMMs), a type of Markov chain, which model 

sequences of potential events.  HMMs have been applied to several domains including 

speech and handwriting recognition and more recently to modeling cyber-attacks. 
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Endsley (1988) first introduced the concept of situation awareness in the context 

of human factors research.  She defined situation awareness as consisting of perception of 

elements in time and space, comprehension of their meaning, and their projection into the 

future.  Hutchins, Cloppert, and Amin (2011) subsequently took a military-inspired 

approach to cyber situation awareness, using a “kill chain,” citing the need to better 

detect indications of multistage attacks including Advanced Persistent Threats (APTs).   

 

 

Problem Statement 

 

 Existing anomaly detection techniques for IDSs have a high False Positive Rate 

(FPR) (Zuech, Khoshgoftaar, & Wald, 2015; Fernandes, Rodrigues, Carvalho, Al-

Muhtadi, & Proença, 2019).  Anomaly based methods, which show promise of detecting 

indications of novel cyber-attacks, still typically generate more false positives than 

signature-based methods which tend to have more false negatives (Pao, Lee, & Huang, 

2015).  While substantial research has been conducted on IDSs in general, detection 

uncertainty still exists (Inayat et al., 2016).  Contributing to this uncertainty is the growth 

in network sizes and the increasing complexity and variability of attacks.  This, in turn, 

has significantly complicated the ability of IDSs to produce accurate alerts (Spathoulas & 

Katsikas, 2013a).  

 Axelsson (2000) in his widely cited paper on the base rate fallacy called false 

alerts the biggest issue in IDS effectiveness.  Based on Bayesian statistics, he argues that 

the false alarm rate should be measured in relation to how many intrusions one would 

expect to detect rather than the maximum number of possible false alarms.  And that an 
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IDS, to be considered effective, would need to have a very high standard of 1/100,000 

false alarms per event. 

Horne (2015), stressing the continued relevance of Axelsson’s research, illustrates 

the base rate fallacy by noting that due to Bayes’ rule that if an IDS has a 99.9% accuracy 

rate on a network where 1 in 100,000 inputs, the base rate, comes from a malicious 

source, that means that for every 1 true positive alert, the system will generate 99 false 

alerts (its positive predictive value).    

 Perdisci, Ariu, Fogla, Giacinto, and Lee (2009) conclude that the FPRs for IDSs 

must be very low.  Sommer and Paxson (2010), examining the imbalance between 

research into IDSs based on anomaly detection and their operational deployments, concur 

that reducing false positives in anomaly detection for IDS must be a top priority given 

that IDS error rates have a very high operational cost, as compared to other domains, 

which impedes the adoption of anomaly detection. 

 

Goals 

 

The primary goal of this research was to develop a new approach for an anomaly-

based IDS that can better minimize false positives with the ability to detect indications of 

contemporary cyber-attacks while not sacrificing accuracy.  This goal has been 

demonstrated using a recent and relevant set of comprehensive benchmark data, a 

secondary goal, containing both cyber-attack and normal traffic.   

However, while virtually all agree that FPRs for IDSs must be low, there is not a 

widely used benchmark rate for FPR cited in recent IDS research.  Additionally, some 

researchers use terms such as false alerts and false alarms interchangeably with false 
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positives but others have different definitions which can create confusion and invalid 

comparisons. 

While Axelsson (2000) put forth a high standard for false alarms and 

effectiveness, McHugh (2000), in his critique of the evaluation of IDS systems conducted 

by Lincoln Labs for the Defense Advanced Research Projects Agency (DARPA) in 1998 

and 1999, cited that DARPA had a criterion of 0.1% for false alarm rate.  However, many 

researchers since then tend to compare their results among different algorithms and with 

other studies using the same data sets versus setting an absolute target for FPR.  Though, 

more recently, Swarnkar and Hubballi (2016) cited 0.6% as an acceptable FPR for their 

anomaly-based detection method for Hypertext Transport Protocol (HTTP) cyber-attacks 

using a data set of more than one million events.   

The primary evaluation measurement for this research was to demonstrate that the 

proposed two-stage approach produced a reduction of false positives by at least 10% 

compared to just using the first stage.  A secondary measurement was to demonstrate an 

overall FPR of 0.6% or less.  Both evaluation goals were achieved.  In addition to 

showing improved performance using two stages, the results were also compared to other 

algorithms using the same training and testing data sets and to published research.   

 

Relevance and Significance 

 
Despite substantial academic and commercial research and increased spending on 

computer and network security, major computer data breaches involving sensitive 

personal identity, financial, medical, trade secrets, or national security data continue to 

occur.  According to Ponemon and Trunkey (2016), the average cost of a data breach had 
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increased by 29% over the prior two years to $4 Million.  Verizon (2016) reported that 

out of 2,260 confirmed breaches analyzed from 2015 that attackers take minutes or less to 

compromise a system but 80% of the victims did not realize they had been breached for 

weeks or longer.   

 Furthermore, Cyber-Physical Systems, which fuse network and computer 

components with physical components such as actuators and sensors, have become more 

commonplace.  With the related emergence of the Internet-of-Things (IoT), large 

numbers of previously un-networked devices, including mundane consumer devices such 

as voice-activated speakers, thermostats, televisions, and even refrigerators, are being 

placed on the Internet and can pose a threat.  An example is where a refrigerator was used 

to send spam email with hypertext links that could install malware if the links were 

clicked (Starr, 2014).   

Another IoT related incident occurred in 2016 when the Mirai botnet slowed or 

stopped major portions of the Internet in the eastern United States.  It accomplished that 

by merely taking advantage of poor security controls in low-cost IoT devices, such as 

surveillance cameras and wireless routers, that were connected to the Internet via high-

speed broadband connections.  Mirai, a self-replicating worm, doubled in size every 76 

minutes and at its peak controlled around 600,000 devices around the world.  It was used 

to launch a then record setting Distributed Denial of Service (DDoS) attack using the 

bandwidth harnessed (Graff, 2017). 

Other trends such as cloud computing, where computing resources are being 

increasingly distributed, virtualized, and outsourced, and similar large-scale disruptive 

networking technology shifts including Network Function Virtualization and Software 
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Defined Networks, create new cyber-attack surfaces and challenges (Modi, et al., 2013; 

Alsmadi & Xu, 2015).  Cyber-Physical Systems include controls for critical systems such 

as smart electrical grids hosting nuclear and other power generation plants, oil and gas 

pipelines, unmanned aircraft and drones, self-driving automobiles, chemical and other 

industrial plants, and healthcare devices.   While many confirmed data breaches often 

result in many millions of dollars in economic losses, such as those related to credit card 

and financial account fraud, Cyber-Physical Systems raise the stakes with potential large-

scale catastrophic consequences to life.  Thus, it is increasingly important to secure them 

from intrusions, both known and novel (Mitchell & Chen, 2014).   

Given the increased stakes, the need for faster and more automated responses to 

indications of potential cyber-attacks is critical.  Many commercial IDSs and related 

systems are capable of blocking traffic in real-time, by source Internet Protocol (IP) 

address for example, based on intrusion alerts.  Such an automated response is 

categorized as an active response vs. a passive one.   However, an action based on a false 

positive with an automated response could deny resource access to legitimate users or 

tasks that could be unacceptable based on the circumstance.  An example of such would 

be preventing access to an Electronic Medical Records system by an emergency room 

doctor.  Or more apocalyptically, the scenario from the 1983 movie War Games, where a 

computer program attempts to automatically launch nuclear missiles, based on the 

mistaken conclusion that the country is under attack, after humans are taken out of the 

decision loop.  Thus, many organizations prefer a passive response that requires 

personnel to investigate each alert.  But such an approach could lead to delays resulting in 
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a data breach or other undesired consequences (Marchetti, Pierazzi, Colajanni, & Guido, 

2016).    

Many researchers agree that the key to detecting novel threats is through 

anomaly-based detection (Tavallaee et al., 2010; Mitchell & Chen, 2014).  IDSs are a 

mainstay of any defense-in-depth security strategy (Zuech et al., 2015) but many 

commercial security infrastructure deployments are still predominately based on known 

threat signatures (Bhatt, Manadhata, & Zomlot, 2014).  Intrusions evolve continuously 

and signature-based detection alone will often fail when presented with indications of 

intrusions that are not part of a known signature base (Wu & Banzhaf, 2010).   

However, despite a large body of research on anomaly-based IDSs and the great 

promise they have shown, operational deployments have been impeded since error rates 

have very high operational costs (Wang & Lee, 2001; Sommer & Paxson, 2010).  And, 

validating false positives can also distract human operators from real attacks (Ho, Lai, 

Chen, Wang, & Tai, 2012).  

To put the significance of false positive percentages in the context of a real-world 

operational network, S. Bhatt et al. (2014) estimated that Hewlett Packard’s corporate 

network, which then spanned 166 countries with more than 300,000 employees, 

generated between 100 billion to 1 trillion security events daily of which approximately 3 

billion were processed by the security infrastructure.  The infrastructure included IDSs 

feeding into a Security Information and Event Management system along with audit logs 

from other network devices.  Thus, even a small percentage of false positives can 

translate into a large number of events to review.  IBM estimated that organizations 

spend $1.3 million a year dealing with false positives, wasting 21,000 hours on average, 
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and proposed more research on advancing Artificial Intelligence as a solution (Barlow, 

2017).   

According to research from the Information System Security Certification 

Consortium (2018), a non-profit organization which specializes in training and 

certifications for cybersecurity professionals, the shortage of cybersecurity professionals 

is close to three million people globally.  They also cite that nearly 60% of roughly 1,500 

security professionals surveyed say their companies are at a moderate or extreme risk of 

cybersecurity attacks due to this shortage.  Cisco (2016) had previously estimated that 

there would be a shortage of 2 million cybersecurity professionals globally by 2019, 

particularly amongst those monitoring and responding to alerts from IDSs and related 

systems in Security Operations Centers.  Such staffing shortages further justify the need 

for more accurate and automated approaches to intrusion detection and response.  While 

no credible research purports to completely eliminate false positives in IDS anomaly 

detection techniques, improvements to further reduce the rate and need for human 

intervention are well-justified.  

 

Barriers and Issues 

An anticipated issue prior to conducting this research was to identify a publicly 

available and suitable data set that reflects real-world conditions with ample benchmarks 

for comparison.   Newer data sets exist for various purposes, such as cyber competitions, 

but given their recent nature there will generally be a lack of ample published research in 

the academic literature for comparison.  However, more than a dozen research papers 

have been published between 2017 and 2019 for the chosen University of New South 
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Wales Network Based 2015 (UNSW-NB15) data set (Moustafa & Slay, 2015) which 

provided some basis for comparisons as this research evolved.   

 

Assumptions, Limitations, and Delimitations 

 An assumption for this research is that the UNSW-NB15 data set is correctly 

labeled and reflective of both contemporary attack and normal traffic.  Given the goal of 

using a contemporary data set, there will have been less academic scrutiny given the 

amount of time since the release of that data set as compared to the more traditional, and 

dated, ones typically used for intrusion detection research.  

 Another anticipated limitation of using a newer data set was that false positives 

may be much higher than would have been achieved using the same exact approach as on 

one of the more traditional intrusion research data sets.  Moustafa and Slay (2016) 

illustrated this in repeating five experiments using Naïve Bayes (NB), Decision Tree 

(DT), Artificial Neural Network (ANN), Logistic Regression, and Expectation-

Maximization clustering on both the Knowledge Discovery in Databases Cup 1999 

(KDD99) (University of California, Irvine, 1999), a classic and widely used intrusion 

detection research data set, and the UNSW-NB15 data set.  The False Alarm Rate (FAR) 

obtained on the UNSW-NB15 data set was higher than when using KDD99 in all five 

cases.  In the ANN example, KDD99 yielded a FAR of 1.48% while that same 

experiment using UNSW-NB15 produced a 21.13% FAR.  

 Separately, Khammassi and Krichen (2017) explored feature selection algorithms 

and applied the same proposed method to both KDD99 and UNSW-NB15.  For KDD99, 

they used a subset of 18 features with a 0.105% FAR while the same algorithm for 
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UNSW-NB15, with a subset of 20 features, provided a FAR of 6.390%.  They concluded 

that the difference in FAR was due to UNSW-NB15 being more complex than KDD99. 

This limitation was mitigated by setting goals as a marked improvement 

compared to other experiments using the same data set as opposed to using benchmarks 

from experiments performed with outdated data sets.  As for delimitations, the scope of 

this research focused on network-based intrusion detection as opposed to host-based. 

 

Definition of Terms 

Definitions without citations are the local definitions of this research only. 

 

Analysis: attack methods which breach Internet-based applications 

such as via ports (e.g., port scans), emails (e.g., spam), or 

web scripts (Moustafa, Turnbull, & Choo, 2018) 

Attack Traffic:   network packets containing an attempt to compromise the 

confidentiality, integrity, or availability of a computer 

network or host such as through the manipulation of 

network packets, protocols, or payloads  

Backdoor: an attack technique to bypass normal authentication to 

secure unauthorized resource access (Moustafa, Turnbull, 

& Choo, 2018)  

Classifier:   a model designed to predict which target class, or category, 

a data element belongs, such as attack or normal traffic 
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Denial of Service (DoS): an attempt to make host or network resources, such as 

memory, processing, and bandwidth, unavailable to 

authorized users by overwhelming those resources 

(Moustafa, Turnbull, & Choo, 2018) 

IDS:      a collection of hardware and software resources that can  

   detect,  analyze, and report indications of intrusions in  

computer systems and networks (Inayat et al., 2016) 

ELM:   a type of classifier derived from neural network models 

which does not require its hidden layer to be tuned (Huang, 

Zhu, & Siew, 2004) 

Exploit: a sequence of instructions that takes advantage of a 

vulnerability causing unintentional behavior on a host or 

network (Moustafa, Turnbull, & Choo, 2018) 

Fuzzer: a program designed to discover weak points in an 

application, an operating system, or a network by feeding it 

with massive inputting of random data (Moustafa, 

Turnbull, & Choo, 2018) 

Generic:   a technique that works against a block-cipher to cause a  

collision without respect to the configuration of the block-

cipher (Moustafa, Turnbull, & Choo, 2018) 

HMM:     a type of Markov Chain that can be used to model and  

    classify series of events (Baum & Petrie, 1966) 

Normal Traffic: computer network packets which are not malicious in intent 
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False Positive (FP):  the incorrect classification of a data element as belonging   

   to a given class, such as attack traffic for the purposes of  

this research, when it actually belongs to another class, 

such as normal traffic  

Reconnaissance:  attacks that are designed to gather information about a  

network or hosts to evade security controls; also called 

probing (Moustafa, Turnbull, & Choo, 2018) 

Shellcode:   a small piece of code, often written in machine language,  

that is used as a payload to exploit a software vulnerability 

(Moustafa, Turnbull, & Choo, 2018) 

Situation awareness:    perception of elements in time and space, comprehension  

    of their meaning, and their projection into the future  

    (Endsley, 1988) 

Worm:    a malware program that replicates itself in order to spread  

to other hosts via a network by exploiting a vulnerability 

(Moustafa, Turnbull, & Choo, 2018) 

     

List of Acronyms 

 
ANN:   Artificial Neural Network 

APT:   Advanced Persistent Threat  

C2:   Command and Control 

CFS:   Correlation Feature Selection 

CSV:   Comma Separated Values 
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DARPA:  Defense Advanced Research Projects Agency 

DDoS:   Distributed Denial of Service 

DoS:   Denial of Service 

DNS:   Domain Name System 

DT:   Decision Tree 

DR:   Detection Rate 

ELM:   Extreme Learning Machine 

FAR:   False Alarm Rate 

FN:   False Negative 

FNR:   False-Negative Rate 

FP:   False Positive 

FPR:   False-Positive Rate 

HIDS:   Host-based Intrusion Detection System 

HMM:   Hidden Markov Model 

HTTP:   Hypertext Transport Protocol 

IDS:   Intrusion Detection System 

IoT:   Internet of Things 

IP:   Internet Protocol 

KDD99:  Knowledge Discovery in Databases Cup 1999 

KNN:   K-Nearest Neighbor 

MATLAB:  Matrix Laboratory 

ML:   Machine Learning 

MLP:   Multi-Layer Perceptron 
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NB:   Naïve Bayes 

NIDS:   Network-based Intrusion Detection System   

OS:   Operating System 

PCA:   Principal Component Analysis 

SVM:   Support Vector Machine 

TCP:   Transmission Control Protocol 

TN:   True Negative 

TP:   True Positive 

TPR:   True-Positive Rate 

UNSW-NB15:  University of New South Wales - Network Based 2015 

 

Summary 

 This chapter provided an overview of the problem of high rates of false positives 

and how they are impeding the adoption of anomaly detection techniques that are needed 

to better detect indications of compromise for today’s continuously evolving cyber-

attacks.  Several examples are given of the changing cyber landscape to illustrate that the 

relevance and significance of this research reaches far beyond merely preventing 

financial losses.  Life and liberty are now more at risk than ever before.  The primary 

goal of this research, which was achieved, was to create a new technique to minimize 

false positives using promising emerging research into ELM as a classifier, in 

conjunction with HMM, in a situation awareness framework.  The anticipated primary 

challenge, which was overcome, was finding a data set for training and testing that is 

indicative of both modern normal and attack traffic patterns, along with a basis for 
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comparison, versus using one of the more commonly used, and dated, IDS research data 

sets prevalent in the literature.  
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Chapter 2 

Review of the Literature 

 

Overview 

 To appreciate and comprehend the problem of reducing false positives in 

intrusion detection, it is necessary to cover several relevant areas of the literature starting 

with IDSs.  The history of IDSs, going back to Anderson (1980), and earlier, was briefly 

covered in the introduction.  This section will focus on their evolution post-Denning 

(1987) along with the different types of IDSs that have been researched and deployed.  

The review will then focus on how IDSs are evaluated including by measuring FPs and 

other metrics.   Popular data sets for training and testing that have been used for research 

in the literature and the associated data set challenges will also be covered.  This will be 

followed by a review of the literature of the various techniques that have been used in 

machine learning with a focus on the reduction of FPs along with the importance of 

feature selection.  The review will then cover situation awareness.  Different types of 

cyber-attacks, often as illustrated by the UNSW-NB15 data set chosen for training and 

testing, will also be discussed throughout the section. 

 

Types of IDS 

 Many of the most widely deployed IDSs, such as Snort (Roesch,1999) and Bro 

(Paxson, 1999), are signature-based.  These are often also referred to as misuse-based, 
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rules-based, knowledge-based, ontology-based, or expert systems.   With this type of 

IDS, events are compared to predefined rules or patterns that are generalized knowledge 

of attacks.  Each event observed is matched against fields such as source and destination 

IP addresses, ports, transport headers, and payload.  In the Snort example, each rule often 

has documentation about the potential for false positives and negatives and often the 

corrective action that should be taken.  Snort users can contribute rules and there are over 

20,000 that were developed between 1999 and 2014 (Bhuyan, Bhattacharyya, & Kalita, 

2014).  However, signature rule writing is highly dependent on the expertise of the writer.  

There is latency between the time a new vulnerability or type of cyber-attack is 

discovered and the time a new rule is written and implemented which renders signature-

based systems vulnerable to novel attacks. 

 According to Inayat et al. (2016), at least 25 other IDSs of note, in addition to 

Snort and Bro, had been proposed between 1996 and 2015.   Five were characterized as 

signature-based, four as anomaly-based, eight as both anomaly and signature-based 

(hybrid), and the rest as other.  

In addition to classifying IDSs as based on their detection approach by either 

signatures or anomalies, IDSs are further classified as either Host-based IDS (HIDS) or 

Network-based IDS (NIDS), respectively, depending on the whether they analyze system 

logs generated by a host Operating System (OS) or network traffic data based on 

communications to and from hosts (Tavallaee et al., 2010; Zuech et al., 2015).   Hosts are 

sometimes referred to as end-points.  An end-point could be a personal computer, server, 

mobile phone, Internet connected automobile, printer, voice-activated speaker, or other 

networked device.   
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NIDS can be based on either packet inspection or flow detection (Luh, 

Marschalek, Kaiser, Janicke, & Schrittwieser, 2016).  Packet detectors analyze 

communication packet payloads.  Deep Packet Inspection requires significant computing 

resources so packet detectors often only analyze a subset of the packet such as HTTP 

headers for the case of web traffic.  Encryption, in some cases, can thwart the analysis of 

certain payload data beyond the packet headers needed for routing or switching.  Some 

flow-based detection systems analyze communications patterns using attributes such as 

source and destination IP addresses, port numbers, state flags, and the number of packets 

and amount of data transmitted.  Many routers and switches can export flow data using 

common formats such as NetFlow.   

NIDS generally free up resources by not having processing on each host, may be 

able to detect issues that could be obfuscated by log tampering on a compromised host, 

and are more OS independent.   But they are considered more difficult to configure to 

have full coverage within a network.  HIDS, on the other hand, benefit by distributing 

resources across hosts and use OS-specific rules that might improve detection 

performance (Mitchell & Chen, 2014).  Often, HIDS and NIDS are both used on the same 

network being monitored to provide better defense-in-depth. 

   

IDS Performance Measurements 

IDS performance for a binary classifier is typically defined using measurements 

based on four variables, which make up a confusion matrix, comparing the classifier’s 

predicted output with known labeled actual values (Fawcett, 2006; Mitchell & Chen, 

2014).  A True Positive (TP) occurs when the predicted output is positive, an indication 
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of an attack for this research, and the actual instance is positive.  A True Negative (TN) 

occurs when the predicted output is negative, normal traffic for this research, and the 

actual instance is negative.  An FP occurs when the predicted output is positive, an attack 

for this research, but the actual instance is negative, or normal traffic.  A False Negative 

(FN) occurs when the predicted output is negative, or normal for this research, but the 

actual instance is positive.  Various measurements can be calculated from these four 

variables, including: 

 

Accuracy =
TP + TN

TP + FP + TN + FN
(1) 

  

False	Positive	Rate	(FPR) =
FP

FP + TN
(2) 

 

False	Negative	Rate	(FNR) =
FN

FN + TP
(3) 

  

True	Positive	Rate	(TPR)	or	Detection	Rate	(DR) =
TP

TP + FN
(4) 

 

False	Alarm	Rate	(FAR) =
FPR + FNR

2
(5) 

   

For the purposes of this research, the Moustafa and Slay (2015) definition of False 

Alarm Rate (FAR) is used unless otherwise noted.  Other researchers often use FAR as 

interchangeable with FPR.  Thus, it is important to verify the formulas used in different 
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research papers, that may have the same or similar name or acronym, before comparing 

results. 

There is often a trade-off between desirable characteristics such as TPR with 

undesirable ones such as FPR.  A Receiver Operating Characteristic graph (Fawcett, 

2006; Bhuyan et al., 2014) can be used to depict how well a given algorithm is 

performing.  The TPR is graphed on the Y-axis and the FPR on the X-axis.  Different 

IDS algorithms can be compared on the same graph to show their respective lift from 

average detection based on a known test data set.  Other related measures, including Area 

Under the Receiver Operating Characteristic Curve, have been proposed as a measure of 

classifier robustness.  Another proposed measure is the geographic mean, G-Mean, which 

is the square root of the positive class accuracy times the negative class accuracy (Zong, 

Huang, & Chen, 2013).  

 

Data Sets for Training and Testing 

 A significant and recurring issue for research in anomaly detection for IDSs is the 

availability of data sets for training and testing that reflect current real-world conditions 

and continuously evolving intrusion threats (Brown, Cowperthwaite, Hijazi, & Somayaji, 

2009; Shiravi, Shiravi, Tavallaee, & Ghorbani, 2012).  Some of the earliest IDS datasets 

commonly used for research are those produced for IDS evaluations for DARPA by 

Lincoln Labs in 1998 (Lippmann et al., 2000) and 1999 (Lippmann, Haines, Fried, 

Korba, & Das, 2000).  Many more recent studies in IDS use the KDD99 data set 

(University of California, Irvine, 1999) which was derived from data originally created 

for the DARPA evaluations (Tavallaee et al., 2010).   Weller-Fahy, Borghetti, and 
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Sodemann (2015), argue that the KDD99 intrusion data set remains the only 

comprehensive and fully labeled benchmark data set that is widely used by researchers.  

Hu, Gao, Wang, Wu, and Maybank (2014) also suggest that the KDD99 is still the most 

credible data set for benchmarking IDS results.   

However, KDD99 has also been criticized by many, including Tavallaee, Bagheri, 

Lu, and Ghorbani (2009), as a poor evaluator of anomaly detection techniques.  The 

earlier DARPA evaluations, upon which KDD99 was based, were also criticized by 

McHugh (2000) for several issues associated with their design and execution.  A refined 

version of KDD99, Network Security Lab-KDD, or NSL-KDD, which removes some of 

the duplicate records from both the training and testing data sets, was created to address 

some of the original criticisms of KDD99.  Other researchers point out that the 

cybersecurity landscape has changed significantly since the creation of the KDD99 data 

and that many don’t consider experiments that use older data sets as relevant today 

(Sommer & Paxson, 2010).  

To address this, Song et al. (2011) developed their own data set since they could 

not find what they considered a viable alternative to the KDD99 data set.   They used data 

collected from a diverse network of honeypots over three years to create a new data set 

called Kyoto 2006+.  It includes 93 million sessions with 50 million being normal and the 

rest being attack.  And, it was based on 14 features derived from KDD99 plus 10 

additional features such as anonymized IP source address.  

Other research has used commercial data sets from large security service 

providers.  For example, Sundaramurthy, Bhatt, and Eisenbarth (2012), whom were 

affiliated with Hewlett Packard, analyzed Intrusion Prevention System data from Hewlett 
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Packard’s Tipping Point platform which had included over 35 billion alerts collected over 

a five-year period from devices located in over 1,000 customer networks worldwide.  

However, Zuech et al. (2015) point out that organizations can be reluctant or legally 

constrained from sharing such data.  The results published from the above data sets were 

aggregate statistics and presumably the authors would not be able to share the underlying 

data sets from their employer even if anonymized.  A study by Coull, Wright, Monrose, 

Collins, and Reiter (2007) discusses how similar network trace data can be de-

anonymized which provides a further disincentive for sharing potentially sensitive data.  

Dainotti, Pescape, and Claffy (2012), while researching related Internet traffic 

classification problems, cite a lack of sharable network packet traces which they believe 

is partially due to privacy concerns.  Spathoulas and Katsikas (2013b) concur that such a 

lack of data sets to test intrusion detection methods are a problem.  They also believe that 

the problem is further compounded when researchers create new data sets for studies but 

do not make them available to others. 

Yet, despite the criticism of KDD99 in particular, Azad and Jha (2013) analyzed 

75 research papers in intrusion detection from 2000 through 2012 and found that 42% 

used the KDD99 data set.  Hubballi and Suryanarayanan (2014) cite data sets as an issue 

in truly understanding the impact of false positive reduction research.  Milenkoski, 

Vieira, Kounev, Avritzer, and Payne (2015) also list errors as an issue in publicly 

available data traces along with their limited shelf-life due to new attacks.   In addition to 

DARPA and KDD99, other data sets are available from the Cooperative Association for 

Internet Data Analysis, capture the flag and cyber defense competitions such as DefCon, 

the Internet Traffic Archive, the Lawrence Berkeley National Lab/International Computer 
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Science Institute, MAWILab, and the Internet Storm Center (Milenkoski et al., 2015; 

Zuech et al., 2015). 

 More recently, Moustafa and Slay (2015), also concluded that there was a lack of 

a suitable comprehensive data set for evaluation of NIDS research efforts since data sets 

such as KDD99 do not reflect modern network traffic.  In response, they created a new 

data set called UNSW-NB15.  It consists of a hybrid of modern real normal activities and 

synthesized attack behaviors.  The attack traffic was created using the Ixia PerfectStorm 

tool in the Cyber Range Lab of the Australian Centre for Cyber Security.   

They have made UNSW-NB15 freely available to researchers for academic 

purposes.  It contains nine categories of attack traffic (fuzzers, analysis, backdoor, DoS, 

exploit, generic, reconnaissance, shellcode, & worm) and 49 features.  The 49 features 

are further divided as:  flow, basic, content, time, connection, additional generated, and 

labeled features.   Two of the 49 features are labels:  one for normal or attack traffic and a 

second one for the attack traffic type.  A full list of these features in included in Appendix 

A.   

Moustafa and Slay (2016) provided a separate justification of the complexity of 

the data set.   Moustafa (2017) also gave details of how the derived features were 

constructed.  A ground truth table giving additional information on each attack including 

the category and corresponding Common Vulnerability and Exposures data cross-

reference identifier and description is also available.   

Khammassi and Krichen (2017) state that the NIDS research community 

considers UNSW-NB15 a new benchmark data set to be used for evaluations of IDSs.  

They explored feature selection algorithms and applied the same proposed method to 
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both KDD99 and UNSW-NB15.  They concluded that UNSW-NB15 is more complex 

than KDD99 and that further research was needed to improve classification for this new 

benchmark data set. 

 

IDS and Machine Learning Techniques 

IDS research that is based on anomaly detection often uses Machine Learning 

(ML) techniques.  Russell and Norvig (2003) define ML as part of the field of Artificial 

Intelligence and as the ability to adapt to new circumstances to detect and extrapolate 

patterns.   Two of the main approaches to ML are supervised and unsupervised learning.  

In supervised learning, labeled training data is used to infer a function to predict future 

values.  In unsupervised learning, the data instances are not labeled.  Unsupervised 

techniques have more potential applicability, given a lack of sufficiently labeled data, but 

assume that normal instances are more prevalent in the test data than abnormal instances.  

If that is not true, then those algorithms tend to have higher false positive rates (Bhuyan 

et al., 2014).  In addition to supervised and unsupervised learning, there is semi-

supervised learning where labeled training instances are only available for the normal 

class.  Two primary types of supervised and unsupervised learning are classification and 

clustering respectively.  Numerous ML algorithms have been applied in IDS research 

including:  ANN, Bayesian statistics such as NB, Gaussian Regression, Support Vector 

Machine (SVM), HMM, DTs, and K-Nearest Neighbor (KNN).   

Each method has its strengths and weaknesses.  For many of the IDS methods 

above, algorithms are needed at some stage to optimize – either minimize or maximize – 

an objective function (Rai & Tyagi, 2013).  
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Biologically Inspired Models 

Biologically inspired models, in addition to ANN, include the Genetic Algorithm, 

Particle Swarm Optimization, Ant Colony Optimization, and Artificial Immune Systems 

(Tsai, Hsu, Lin, & Lin, 2009; Bhuyan et al., 2014).  Benmessahel, Xie, Chellal, and 

Semong (2019) created an IDS based on Locust Swarm Optimization in conjunction with 

a Feed-forward Neural Network and achieved a lower FPR than the same approach using 

Particle Swarm Optimization & Genetic Algorithm.  Igbe (2019) proposed an IDS using 

an ensemble of Artificial Immune System techniques including Negative Selection 

Algorithm and Dendritic Cell Algorithm that achieved an FPR of 1.34% with a 98.11% 

accuracy using a subset of UNSW-NB15 consisting of DoS & normal traffic. 

 

Clustering 

Clustering is an unsupervised method that seeks to categorize items, such as 

alerts, based on similarity (Weller-Fahy et al., 2015).  An example of clustering is k-

means clustering where the data (observations) are split into k categories, or clusters.  

Each cluster is identified by its center.  The algorithm is highly dependent on the initial 

states and can converge quickly to a local versus global optimum, which can lead to 

erroneous results (Liu & Yu, 2005).  To overcome the local optima problem, researchers 

have proposed several techniques such as biologically inspired methods including ANN, 

evolutionary algorithms, and swarm intelligence such as Ant Colony and Particle Swarm 

Optimization (Rai & Tyagi, 2013).  
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Similarity and Distance Measures 

Weller-Fahy et al. (2015) cite the importance of similarity and distance measures 

in network intrusion anomaly detection.  They specifically call out measures used during 

feature selection, classification, and clustering.   They broadly define measures as power 

based, such as Euclidean, Manhattan, and Mahalanobis or distribution based, including 

Kullback-Leibler distance and entropy. 

Entropy is a measure of randomness and has been applied to detecting activities 

such as port scanning, DoS, and worms.  Bereziński, Jasiul, and Szpyrka (2015) used 

entropy as a method of detecting behaviors related to botnets such as Command and 

Control (C2).  They found that Tsallis and Renyi entropy performed better than Shannon 

entropy as measured using FPR and accuracy.  

 

Decision Trees 

 DTs are implemented using “if then else” rules.  To classify a data sample, they 

start with a root node and end with a leaf node.   The attributes used to create the tree are 

important.  Sindhu, Geetha, and Kannan (2012) evaluated several types of DTs including 

Decision Stump, C4.5, NB Tree, Random Forest, Random Tree, and Representative Tree 

for use as a light-weight IDS.   They identified that a suitable subset of features and 

removing redundant instances are important to avoid bias in the learning algorithm and 

are key factors for achieving better detection accuracy.   Shah, Khiyal, and Awan (2015) 

categorize DTs as simple but very powerful.     

Valero León (2017) used the test and training set referenced in Moustafa and Slay 

(2016) to create his models but used the full UNSW-NB15 data set for testing.  He 
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provided confusion matrices for two models.  One model was based on a DT and the 

other one, for contrast, used Snort (Roesch, 1999), a signature-based system that was 

loaded with the latest rules that were available at the time of the experiment.  The DT-

based model outperformed Snort by a significant margin. 

 

Boosting 

Boosting is a technique that improves a weak classifier, or learner, to achieve a 

higher accuracy.  Adaptive Boosting (AdaBoost) is the most commonly used form and 

was introduced by Freund and Schapire (1997).  Another form is LogitBoost, introduced 

by Friedman, Hastie, and Tibshirani (2000) to better address the issue of noise and 

outliers than AdaBoost.  AdaBoost uses an exponential loss function while LogitBoost 

uses a linear loss function hence making LogitBoost less sensitive to noise and outliers.  

Kamarudin, Maple, Watson, and Safa (2017) created a LogitBoost based IDS in 

conjunction with a Random Forest DT.  As a motivation, they cited achieving low false 

alarm rates with high attack recognition for novel attacks as a major challenge.   They 

were able to achieve a slightly better performance in terms of DR and accuracy using 

LogitBoost as compared to AdaBoost.  They concluded that their algorithm provided a 

comparable detection accuracy rate with a low false alarm rate.  They called a low false 

alarm rate, which they defined the same as FPR, as the most crucial property of IDSs. 

Tama and Rhee (2019) created an IDS using Gradient Boosted Machine, also 

known as a Gradient Boosted Regression Tree.  Gradient Boosted Machine was created 

to improve the performance of Classification and Regression Tree.  Using UNSW-NB15 
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data, they demonstrated that their approach achieved a lower FPR and a higher accuracy 

rate than compared to another type of DT. 

 

Mixture Models 

Mixture models are a type of unsupervised learning technique used to identify 

subpopulations.  Moustafa, Slay, and Creech (2017) created a method they called 

Geometric Area Analysis based on Trapezoidal Area Estimation computed from the 

parameters of a Beta Mixture Model.  They used Principal Component Analysis (PCA) 

for reducing the high dimensionality of the data.  Citing the inability of conventional 

IDSs to detect new intrusive events due to a high FPR, they demonstrated that their 

method provided a lower FPR than several other techniques using the NSL-KDD and 

UNSW-NB15 data sets. 

Moustafa, Creech, and Slay (2017) proposed an Anomaly Detection System based 

on Finite Dirichlet Mixture Model with a PCA-based feature reduction.  Their approach 

yielded a lower FPR than other comparable approaches, such as Multivariate Correlation 

Analysis and Triangle Area Nearest Neighbor, using the NSL-KDD and UNSW-NB15 

data sets.  The other approaches that they used for comparison were based on correlation 

and distance measures which usually cannot detect modern attacks that mimic normal 

traffic.  However, they imply that their approach can detect such attacks due to the 

precise boundaries that can detect small differences between normal traffic and attack 

vectors.   

Moustafa, Adi, Turnbull, and Hu (2018) put forth a new scheme based on a Beta 

Mixture Model and HMM which they call Beta Mixture HMM.  Using UNSW-NB15 
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data, they demonstrated that their scheme outperforms Classification and Regression 

Tree, KNN, SVM, Random Forest, and Outlier Gaussian Mixture in terms of FPR, DR, 

and Accuracy. 

 

Bayesian Approaches 

Bayesian networks are a common classifier based on a directed acyclic graph with 

nodes representing attributes and arcs representing dependencies.  A simplified form is 

the NB classifier where all of the attributes are assumed to be independent.  Barbara, 

Couto, Jajodia, Popyack, and Wu (2001) used NB for their Audit Data Analysis and 

Mining platform for classifying cyber-attacks and non-attacks without prior knowledge of 

new cyber-attacks.  Koc, Mazzuchi, and Sarkani (2012) cite several prior uses of 

Bayesian statistics for IDS and present a Hidden NB model that relaxes the NB 

conditionally independence assumption for better accuracy than traditional NB models. 

 

Genetic Algorithm 

A genetic algorithm is based on Darwin’s evolutionary principle of survival of the 

fittest and seeks to optimize a population of candidate solutions based on a fitness 

function.  Genetic algorithms simulate natural reproduction using cross over and other 

techniques similar to gene selection, mutation, and recombination.  Crosbie and Spafford 

(1995) were one of the first to propose using a genetic algorithm for intrusion detection.   

Hoque, Mukit, and Bikas (2012) and others subsequently used genetic algorithms for IDS 

research but the results in relation to false positives were not promising compared to 
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other cited research.  A drawback of the genetic algorithm is the amount of time and 

computing resources it takes to reach an optimal solution.  

 

Neural Networks 

The concept of an ANN, inspired by the function of the human brain, particularly 

the interconnection between neurons, has been around since McCulloch and Pitts (1943) 

devised a mathematical model for a neuron.  ANNs typically consist of layers of nodes, 

which contain activation functions, connected by weighted directed links.  ANNs use 

supervised learning.  Labeled data are used to train the ANNs to learn classification 

patterns such as intrusion or no intrusion in the case of a binary classifier.  Data are 

presented to an input layer that often links with one or more hidden layers that then link 

to an output layer that provides a result.   

Cannady (1998) presented an ANN for misuse detection with network traffic and 

concluded that the advantages of that approach included the ability to learn.   He listed 

disadvantages as the difficulty of obtaining sufficiently large amounts of training data and 

the black box nature of neural networks.  In addition to the ability to learn, Russell and 

Norvig (2003) cite another advantage of ANNs is being able to tolerate noisy inputs. 

Wang, Hao, Ma, and Huang (2010) argued that ANNs can improve the 

performance of IDSs when compared with other methods but that enhancement is 

required.  They proposed an approach based on ANN and fuzzy clustering to achieve a 

higher detection rate, lower false positive rate, and better stability. 

There has been much research into ANNs around optimal network structures, 

optimization of weights, training methods such as Back Propagation, and methods to 
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avoid overfitting and other challenges.  There are several different network structures but 

Multi-Layer Perceptron (MLP) is the one that is most used in IDS research (Shah et al., 

2015).   

 

Self-Organizing Map 

Self-Organizing Map, as described by Kohonen and Somervuo (1998), is a type of 

neural network that can map highly dimensional data into a two-dimensional array.  

Rhodes, Mahaffey, and Cannady (2000) cite that the first use of a Self-Organizing Map in 

misuse detection was described by Cannady in 1998 which involved the output of a 

Kohonen map as input to a feed-forward ANN to detect temporally dispersed attacks 

(over a period of time by one attacker) and possibly collaborative attacks (multiple 

attackers).  Self-Organizing Map does not need to learn intrusive behavior but rather it 

learns it through characterizing normal activities.  Shah et al. (2015), concur that Self-

Organizing Map provides a simple and efficient method to self-categorize inputs for 

clustering that offers a higher speed compared with other learning methods.   

 

Kernel Machines 

SVM, sometime referred to more generally as kernel machines, research was 

begun by Boser, Guyon, and Vapnik (1992).  SVM requires labeled training data and 

operates as a classifier by creating a hyper-plane to group data into normal or abnormal 

classes.  

 Perdisci et al. (2009), citing SVMs tendency to have low FPRs, created an IDS 

using a multiple SVM voting scheme to detect malicious payloads including polymorphic 
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shell code.  Li et al. (2012) cited good accuracy results when using SVM for IDS with 

clustering and Ant Colony Optimization.   

 Advantages of SVMs include low FPRs and the ability to work with data that are 

not linearly separable by other techniques.  However, they tend to be complex to 

implement due to the required mapping of the feature space into a higher dimension 

which often requires optimization techniques that lead to long training times (Gilmore & 

Haydaman, 2016).   

Bamakan, Wang, and Shi (2017) created an IDS using a variant of SVM called 

Ramp Loss K-Support Vector Classification-Regression which is a multi-class SVM 

approach that is well-adapted for skewed and imbalanced data sets, such as attack data 

sets used in IDSs.  To combat the presence of noise in training data, they introduced a 

ramp loss function instead of the hinge loss function usually used in SVMs.  The ramp 

function helps to depresses outliers.  They compared their method to regular K-Support 

Vector Classification-Regression and demonstrated, using UNSW-NB15 data, that their 

algorithm substantially improved accuracy and reduced FPR. 

 

ELM  

ELM, introduced by Huang, Zhu, and Siew (2004) is an emerging technology for 

ML.  ELM was originally developed from single-hidden-layer feed forward ANNs.  ELM 

overcomes issues including slow learning speed and poor scalability faced with other 

techniques, such as ANN and SVM.   The crux of ELM is that the hidden layer need not 

be tuned (Huang, Wang, & Lan, 2011).  The input biases and weights that connect the 
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inputs to the hidden layer are chosen randomly while the output weights are calculated 

using a Moore-Penrose inverse which results in faster training times.   

Numerous variations of ELMs have been proposed.  Ding, Xu, and Nie (2014) 

outlined the evolution of ELM and discussed eleven different variations that had been 

proposed to improve its performance.  Huang, Zhou, Ding, and Zhang (2012) proposed 

the equality constrained-optimization-based ELM, which integrates with the learning 

rules of a variant of SVMs, called least squares SVM, to find a global solution for the 

weights of the output layer.  They purport ELM tends to have much better generalized 

performance for multi-class classification problems at up to a thousand times faster 

learning speeds than traditional SVM. 

For the basic version of ELM, the number of hidden nodes (neurons) needs to be 

determined by the user typically by trial-and-error.  Ding et al. (2014) stated that 

determining the number of hidden neurons to use for different data sets is an open 

research problem.  However, Huang, Zhu, and Siew (2006) demonstrated that ELM is 

very stable across a wide range of hidden nodes but performance can degrade with too 

few or too many neurons. 

Huang, Chen, and Siew (2006) proposed a solution for this called Incremental 

ELM where hidden neurons are added incremental until a given criteria is met.  Huang 

and Chen (2008) offered an enhanced version of this called Enhanced Incremental 

Extreme Learning Machine.  And Wang, Xu, Lee, and Lee (2018) proposed an enhanced 

version of Equality Constrained-optimization-based Extreme Learning Machine, called 

Construction with Adaptive Increments, where the number of hidden neurons are 
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determined in an adaptively incremental way and the output weights are derived without 

having to be recomputed. 

Cheng, Tay, and Huang (2012) applied ELM to the intrusion detection domain 

and concluded that the basic ELM model outperforms SVM in training and testing speed 

but had slightly lower accuracy using KDD99 data.   But, a kernel-based ELM achieved 

higher accuracy than an SVM.    

Castaño, Fernández-Navarro, and Hervás-Martínez (2013) introduced PCA-ELM.   

Their method eliminates the random initialization of the ELM weights and determines 

them based on a PCA of the training data.  This method transforms the data into a number 

of principal components which often better highlights anomalies.  They trialed their 

method on various non-IDS related data sets and reported positive results. 

Zong et al. (2013) introduced a weighted ELM to compensate for complex data 

classes, such as in IDSs, where the majority class tends to be favored based on training 

data.  In many IDS implementations, this class would typically be normal events.  They 

assigned a weight to each sample to heighten the impact of the minority class while 

dampening the majority class.  Other techniques were discussed such as over sampling or 

under sampling of the testing data but were dismissed.  The authors demonstrated their 

approach using a variety of non-IDS data sets and were able to influence the balance of 

FPR and TPR as shown on a Receiver Operating Characteristic graph.  Xia and Hoi 

(2013) used Multiple Kernel Boosting with the Multiple Classification Reduced Kernel 

ELM (Deng, Zheng, & Zhang, 2013).   

Creech and Jiankun (2014) used an ELM approach for a HIDS in conjunction 

with a full semantic analysis of system calls.   That resulted in higher accuracy and 
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reduced false positives compared to other techniques including SVM, HMM, MLP, and 

KNN.  They highlighted the decision engine training speed with ELM but noted it has 

slightly higher processing needs. 

According to Fossaceca et al. (2015), ELMs are straightforward to implement, 

computationally efficient, and have excellent learning performance characteristics.  They 

implemented an ELM based IDS solution, dubbed MARK-ELM, that they purport 

achieves superior detection rates and much lower false alarm rates than other approaches 

to intrusion detection.  The authors compare ELM to SVM and note that ELM 

significantly outperforms SVM in computational speed while being on par with SVM for 

accuracy. 

 Wang et al. (2018) also applied their ELM-based Construction with Adaptive 

Increments solution to different IDS data sets and compared the results to those of MLP 

and SVM solutions.  They concluded that ELM had faster training times but had mixed 

results for other performance measures such as FPR. 

 

Deep Learning Approaches 

Another more recent area of research in ML is on deep networks, which are multi-

layer ANNs.  Types of deep networks based on Restricted Boltzmann Machine include 

Deep Belief Network and Deep Restricted Boltzmann Machine.  Types based on Auto-

Encoders include Stacked Auto-Encoders and Stacked De-noising Auto-Encoders.  

Kasun, Zhou, Huang, and Vong (2013) concluded deep networks outperform traditional 

multi-layer ANNs, SLFNs, and SVMs for big data sets but exhibit slow learning speeds.  

Yu, Zhuang, He, and Shi (2015) citing the success of deep learning models and ELM, 
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created a deep learning ELM named DrELM.  They compared both ELM and deep 

learning methods including linear ELM, kernel-based ELM using both Gaussian and 

Sigmoid kernels, Optimally-Pruned ELM, Deep Restricted Boltzmann Machine, and 

Stacked Auto-Encoder.  They concluded that their DrELM outperforms linear and kernel-

based ELM and is comparable to other deep learning methods using non-IDS related data 

sets. 

Tchakoucht and Ezziyyani (2018), stated that Recurrent Neural Networks, a type 

of ANN, are one of the most widely used deep learning techniques due to their predictive 

ability with sequential (temporal) data.  They developed an IDS using a Multilayered 

Echo-State Machine based on Reservoir Computing which in turn is based on both ML 

and computational neuroscience.  Reservoir Computing was introduced as a solution for 

Recurrent Neural Network training bottlenecks, from accurate but slow training methods 

such as Long Short-Term Memory, that can involve exploding gradient, vanishing 

gradient, and slow convergence.  Recurrent Neural Networks as a reservoir have been 

described as Echo-State Networks.  Using an Echo-State Network involves randomly 

generating an individual Recurrent Neural Network layer (reservoir) and then only 

training the reservoir to output connections.  Tchakoucht and Ezziyyani (2018) used 

multiple layers of reservoirs based on promising results for other applications.  They were 

able to show improved performance over select other IDS techniques and suggested 

additional research to further improve DR and FPR.  They provided comparisons to prior 

results using three data sets including UNSW-NB15. 

Blanco, Cilla, Malagón, Penas, and Moya (2018) proposed another deep learning 

technique, Convolutional Neural Networks, for a multi-class IDS in conjunction with a 
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genetic algorithm.  Convolutional Neural Networks are a type of MLP with a 

convolutional step to generate intermediate features to preserve spatial relationships 

between inputs before input into an MLP.  Convolutional Neural Networks were inspired 

by the biology of animal visual cortexes and are typically used for image processing 

tasks.  They arranged the features of UNSW-NB15 to create a 5x5 pixel image and 

optimized the classifier using a genetic algorithm to find a better layout for the input 

features.  They obtained an accuracy of 98.14% but did not provide an FPR. 

Muna, Moustafa, and Sitnikova (2018) proposed an IDS approach using Deep 

Auto Encoder with a Deep Feed Forward Neural Network architecture.   They tested their 

approach against both the NSL-KDD and UNSW-NB15 data sets and concluded that 

their proposed approach provided a lower FPR and higher DR than other techniques used 

for evaluation. 

Vinayakumar et al. (2019) modeled an IDS using a Deep Neural Network.  They 

compared results to several other algorithms and with varying numbers of layers.  While 

the results beat some classifiers in terms of FPR, their four-layer Deep Neural Network 

had an FPR of 26.4% compared to NB with 2.5% for normal traffic using the UNSW-

NB15 data set. 

 

Markov Models 

A Markov model attempts to calculate the likelihood of a system in a given state 

based on a sequence of observations.  An HMM (Baum & Petrie, 1966) is a Markov 

model with unobserved (hidden) states.  Hu, Yu, Qiu, and Chen (2009) described HMMs 

as a double stochastic process with an upper layer Markov process whose states are not 
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observable and a lower layer one where outputs are emitted and can be observed.  An 

HMM requires a five-tuple for input and is written as λ = (A, B, π) in compact notation 

where N is the number of states, M is the number of symbols per state, A is the state 

transition probability, B is the observation symbol emission probability distribution, and 

p is the initial state distribution (Rabiner, 1989; Gilmore & Haydaman, 2016).   

Warrender, Forrest, and Pearlmutter (1999), calling HMMs one of the most 

powerful data modeling methods in existence, compared an HMM analyzing system calls 

as part of a HIDS, with three other methods.  They found their HMM gave the best 

accuracy on average but at a high computational cost.  Other researchers such as Hu et al. 

(2009) continued the focus on using system calls with HMM for a HIDS and proposed 

improved training methods which reduce training time but at the expense of slightly more 

false positives. 

Ourston, Matzner, Stump, and Hopkins (2003) used an HMM to model multi-

stage attacks using system calls.  Their states consisted of probe, consolidate, exploit, and 

compromise.  They used a C4.5 DT, an ANN, and an HMM on the same data and 

concluded the HMM had the most promise to detect multi-stage attacks.  Bhatt, Yano, 

and Gustavsson (2014) proposed a framework using the kill chain and concluded that 

using an HMM for event correlation for detecting APTs looks promising.  

Wright, Monrose, and Masson (2004) used HMMs for determining what network 

protocol, such as File Transfer Protocol was being used in a given packet, even if the 

payload was encrypted, based solely on packet size and inter-arrival time.  They used 

network traces provided by George Mason University and DARPA and reported 

promising results. 
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Liang, Wang, Cai, and He (2008) proposed using an HMM for network security 

situation awareness based on using network services as states:  Domain Name Service 

(DNS), World Wide Web, File Transfer Protocol, Network File System, and Mail.  They 

used normal, attack, compromised, and hacked as observations.  While they described the 

training and initial set-up of the proposed model, they did not provide any results to 

evaluate or any further information on their proposed data set for training and testing. 

 Sendi, Dagenais, Jabbarifar, and Couture (2012) used an HMM with other 

algorihms to model a specific type of DDoS attack relying on the Sadmind Remote 

Administration Tool using the DARPA 2000 data set for training and testing.  They used 

four states for the HMM:  normal, attempt, progress, and compromise.  They were able to 

perfectly predict this specific attack and reduce false positives.  However, while detecting 

a very specific attack sequence seems trivial they did highlight the ability of HMMs to 

detect multi-stage attacks that might be otherwise missed. 

 Zhou et al. (2015) used an HMM to develop a classifier to differentiate real 

attacks from normal traffic and non-attack related faults in an industrial control system 

environment.  They used three states:  normal, fault, and attack and focused on three 

types of attacks:  spoofing, tampering, and DoS.  They used a proprietary data set and 

were able to minimize false positives while providing fast detection.  They highlighted 

the ability of HMMs to detect indications of attacks from both a spatial and temporal 

view and the importance of infusing domain specific knowledge into the model.   

 Chen, Guan, Huang, and Ou (2016) proposed an HMM using three states:  

reconnaissance, attack, and stepping-stone.  Using IDS records, they reported success 

with their HMM to detect on-going multi-state attacks with a precision rate of 93.2%.  
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They believe HMMs can be used to further reduce the number of suspicious alerts 

generated by IDSs through classification; however, they pointed out the importance of 

considering different attack strategies in each stage in developing classifiers.  They did 

not specify a data set that could be used by other researchers.  

Liang, Chen, Yan, Zheng, and Zhuo (2017) also proposed using HMMs to model 

network security situation awareness with a scaled training method using entropy.  They 

chose four states:  good, probed, attacked, and compromised and used the DARPA 2000 

traces as a data set.  However, in addition to using an older data set, they did not provide 

any measures for false positives.  Their primary focus was on the training aspect of the 

models. 

 HMMs have been used successfully as classifiers within intrusion detection.  

However, many researchers have used HMMs as part of a HIDS with a focus on using 

system calls as observations.  While NIDS and related network classification research 

using HMMs has also been promising, many of the studies use older or unspecified data 

sets and often focus on a narrow range of specific attack types such as DDoS.  But many 

researchers agree that HMMs provide a temporal aspect to classification problems in 

addition to spatial which is important in detecting indications of multi-stage attacks. 

 

Hybrid Methods 

 There are combined learners that include ensemble, fusion-based, and hybrid.  

These approaches generally seek to combine several different methods so that the end 

result outperforms the individual results.  An example of an IDS hybrid that combines 

both signature and anomaly-based methods is called EMERALD (Porras & Neumann, 
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1997).  This type of approach has been shown to reduce false alarms and increase the 

capability of detecting unknown attacks.  Mukkamala, Sung, and Abraham (2005), 

demonstrated that an ensemble of classifiers performs better than each algorithm 

individually but there is often difficulty in scaling such an approach to large data sets. 

Depren, Topallar, Anarim, and Ciliz (2005) proposed a hybrid anomaly and 

misuse IDS using Self-Organizing Map for modeling normal behavior.   The misuse 

portion used a J48 DT to classify various cyber-attacks.  They concluded that their hybrid 

approach performed better than the individual ones. 

Karthick, Hattiwale, and Ravindran (2012) used a hybrid approach with network 

traffic to identify malware.  They used a NB classifier as a first stage followed by an 

HMM as a second stage to identify malicious source IP addresses. The NB passed traffic 

in real-time while the HMM was off-line.  TCP state flags were used for the HMM states.  

The authors looked at several sets of attributes and concluded that for each server they 

needed both IP and port addresses to achieve the lowest FPR and highest detection 

accuracy.  They further concluded that having more states available in the data improved 

the accuracy.  

Akusok, Miche, Hegedus, Nian, and Lendasse (2014) used a two-stage approach 

to identify malware, using data from F-Secure, with the goal of minimizing both false 

positives and false negatives.  Their first stage was based on KNN clustering but still 

yielded a high FPR.  They then fed the KNN results into two separate ELMs.  The data 

flagged as malware was fed into a FP minimized ELM and the traffic flagged as clean 

was fed into a FN minimizing ELM.  The end result using 18,437 data points was a lower 
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FPR (2 FPs) with the two-stage approach compared to just using the KNN layer (183 

FPs). 

Moustafa, Turnbull, and Choo (2018), seeking a solution to better mitigate 

malicious events, particularly botnet attacks against protocols used in IoT networks such 

as DNS, HTTP, and Message Queue Telemetry Transport, created an ensemble using DT, 

NB, ANN, and AdaBoost.  Using UNSW-NB15 data, they demonstrated that their 

ensemble method had a lower FPR and higher DR compared with each classification 

method separately.	

	

Voting Schemes 

 Voting schemes, in which the output of several classifiers is combined to reach a 

conclusion, are popular in pattern recognition.  Woods, Kegelmeyer, and Bowyer (1997) 

categorize techniques to combine multiple classifiers as either classifier fusion or 

dynamic classifier selection.  For fusion, the individual classifiers are run in parallel and 

then a scheme to reach a group consensus is applied.  For dynamic selection, the goal is 

to determine which classifier is likely to be correct.  They cite several fusion algorithms 

including:  majority voting, unanimous consensus, thresholding, heuristic polling, 

weighted ranking, and others.  They proposed an improved approach to dynamic 

selection by using a local accuracy scheme. 

Lin, Yacoub, Burns, and Simske (2003) demonstrated that a combination of 

classifiers can result in significant accuracy improvement and that voting methods are 

simple and effective.  They also point out that for many applications that there is often 

only a marginal, if any, difference in performance between simple voting schemes and 

more advanced combination techniques.   
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Lin, Lai, Ho, and Tai (2013) believe that to overcome the limitations of a single 

IDS, multiple IDSs can be used to more accurately recognize threats.  However, the 

results of multiple IDSs can often be in conflict.  They cite majority voting as a technique 

to resolve such conflicts but note that it often leads to inaccurate decisions given that 

technique disregards the different domain knowledge of the IDSs in the minority.  They 

proposed a creditability-based weighted voting scheme to overcome that limitation. 

 

False Alarm Reduction Techniques 

Hubballi and Suryanarayanan (2014) cite several reasons for false alarm 

generation in IDS including:  intrusion activities are sometimes very similar to normal 

activities and thus difficult to differentiate, a lack of context data related to the alarm, and 

cases where circumstance determine whether an activity is malicious such as a network 

scan done by a security administrator versus a hacker.  Many IDSs also alarm on attempts 

which do not necessarily lead to a compromise.  Additionally, an alarm may represent a 

stage in a multi-stage attack that may fail in subsequent stages. 

 One way to throttle false positives is to adjust the alert threshold.  But in existing 

systems there is usually a trade-off.  Less false positives will also cause the system to 

miss attacks.  Usually, administrators adjust the level to achieve a balance between the 

level of security and risk and the resources available to respond to alerts but that is a time 

consuming and knowledge intensive task (Wang & Lee, 2001).  

Julisch and Dacier (2002) applied data mining techniques to reduce false 

positives.  They discovered the cost of finding relevant episode rules outweighed the 

benefit but did discover interesting patterns such as that IDS alarms are very homogenous 
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and repetitive.  They concluded that a source host triggering a heterogeneous stream of 

alarms is likely an attacker.  And that clustering using attribute-oriented induction 

produced results that were too general.  The authors further suggested that custom made 

filtering rules, to automatically discard alarms, or correlation rules, to group alarms, can 

help reduce alert volume but that humans should be involved in the analysis to avoid 

destroying valuable data. 

In a related paper, Julisch (2003) found that a few dozen root causes generally 

account for over 90% of alarms and suggested if these were removed, they would allow 

operators to concentrate on the remainder.  He focused on nine cases including 

SYNchronize Flood, Suspicious GET, Host Scan, Fragmented IP, DNS Zone Transfer, 

TCP Hijacking, and Code Red.  Some of these are still suspicious traffic today but this 

list would need to be updated for current threats since Code Red was an artifact of the 

time the paper was written.  

One of the challenges with IDSs, according to Spathoulas and Katsikas (2010), is 

that intrusion methodologies and attack strategies evolve over time with technology.  

Large numbers of alerts and false positives are a common problem among almost all 

categories of IDSs.  While many methods have been used to reduce false positives in 

IDSs, research has been evolving to develop effective technologies to classify activity at 

an acceptable DR.  Spathoulas and Katsikas (2013a) outlined a solution to reduce false 

positives by up to 75%.  The authors indicate that most false alert reduction research is 

focused on post-processing of alerts.  A three-part post-processing filter based on their 

study of the distribution of false positives in alert sets from Snort was proposed.  The first 

component, Neighboring Related Alerts, was based on the observation that attacks 
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produce bursts of alerts at first as attackers scan for victims and vulnerabilities.  The 

second component, High Alert Frequency, was based on their observation that attacks 

produce anomalies in the distribution of alerts.  The third component, Usual False 

Positive, was based on false positives usually resulting from the same specific causes. 

In a subsequent survey of false positive reduction, alert correlations, and 

visualization research, Spathoulas and Katsikas (2013b), put forth that while much 

research has been done, a complete solution is still missing and that there are many open 

issues and ideas to be explored with post-processing.  They believe that any solution must 

be adaptable to future attacks, be able to work with other methods, and be efficient 

regardless of the IDS being used or the system being protected.  

Hubballi and Suryanarayanan (2014) conducted a survey of research on false 

alarm minimization techniques for signature-based IDSs.  They created a taxonomy of 

nine different techniques:  signature enhancement, stateful signature-based, vulnerability 

signature-based, alarm (data) mining, alert correlation, alert verification, flow analysis, 

alert prioritization, and hybrid methods.  For alarm mining, the techniques were further 

classified as clustering, classification, ANN, and frequent pattern mining.  For alert 

correlations, their categories included:  multi-step, knowledge-based, complimentary 

evidence, casual relation, fusion-based, attack graph, and rule-based.  They reviewed 

commercial Security Information and Event Management systems and noticed that the 

majority of those systems use rule-based techniques for event correlation.  Despite all of 

the research to date, Hubballi and Suryanarayanan (2014) concluded that more research is 

needed to address the usability of the proposed techniques in real-world scenarios.    
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Zuech et al. (2015) believe that a more comprehensive approach in monitoring 

and correlating security events from many different heterogeneous sources can give a 

more holistic view and greater situation awareness of cyber threats.  Shittu, Healing, 

Ghanea-Hercock, Bloomfield, and Rajarajan (2015) used post-correlation prioritization 

based on anomaly detection and clustering to reduce false positives.  They grouped 

related IDS alerts into meta-alerts.  Those with higher outlier values indicating a larger 

anomaly were given a higher priority.  They showed a false positive reduction of 97% in 

one scenario and 16% in another using industry data derived from a Snort system from 

2012.  The large difference between the two scenarios was attributed to lesser distinct 

outliers in the second scenario.  The authors concluded that additional research is needed 

on real-time incremental outlier detection and clustering given their results were based on 

a batch analysis. 

 

Situation Awareness 

Endsley (1988) first introduced the concept of situation awareness in the context 

of human factors research in the aerospace field.  Endsley defined situation awareness as 

having three components:  the first was perception of elements in time and space, the 

second was the comprehension of their meaning, and the third their projection into the 

future.  

 Bass (1999) applied situation awareness to the field of intrusion detection, calling 

it cybersecurity situational awareness, and proposed that the fusion of multiple sensor 

data along with context-dependent threat and vulnerability information could form a 
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model for the next generations of IDS.  The field of network security situation awareness 

evolved from the work of Bass.   

 In applying situation awareness to intrusion detection, Bass (1999) borrowed the 

military concept of Observe, Orient, Decide, and Act and multisensory data fusion where 

a diverse array of data sources can be employed.  He applied this to achieve a higher 

cyberspace situation awareness using data fusion for intrusion detection where data 

fusion can provide varying levels of data from just being aware of an intrusion up 

through analyzing the associated threats and vulnerabilities.  His approach included 

analyzing data across multiple different device types and data sources concurrently. 

Wang, Liu, Lai, and Liang (2007) offered that network security situation awareness seeks 

to provide a solution to the high ratio of false positives and associated expensive response 

to IDS alerts. 

 Hutchins et al. (2011) took a military-inspired kill chain model approach to cyber 

situation awareness.  They asserted that traditional computer defenses alone such as anti-

virus and IDS are not effective against APTs where the threat actors are often well 

resourced, trained, and patient.  They proposed an intrusion cyber kill chain that 

recognized different phases of an attack, which they defined as:  reconnaissance, 

weaponization, delivery, exploitation, installation, C2, and actions on objectives.   They 

determined that host-based IDSs were the best to detect indications of exploitation and 

installation while network-based IDSs were the best to detect weaponization and C2.  

Indications of reconnaissance may include host and port scanning activities that could be 

detected by IDSs.  And indications of actions on objectives could include exfiltration that 

could likewise use IDSs for detection. 
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 While substantial research has been done in intrusion detection for alert 

correlation, relatively little has been done for data fusion as compared to other domains 

such as military applications (Zuech et al., 2015).   Other researchers such as Mees and 

Debatty (2015) are attempting to further define situation awareness frameworks for cyber 

defense.   They argue situation awareness needs to be largely automated given the speed 

at which cyber-attacks are executed.  They also call for more research on methods for 

working with data that may be incomplete, uncertain, or erroneous. 

The reconnaissance phase of cyber-attacks includes activities such as finding 

target information through web crawling.  Huang, Shen, Doshi, Thomas, and Duong 

(2015) observed that attackers often attempt to obtain information on a network as a first 

step in a cyber-attack.  Attackers typically do this through a network scan to discover 

network topology and host information such as IP addresses.  This is typically followed 

by port scans to determine host types and what services are running.  This would then 

inform the weaponization phase using the kill chain model where an exploit vehicle such 

as a Portable Document Format file is chosen.  This, in turn, leads to a delivery method 

such as via email or a web site download.  After the exploit is delivered to the host, 

exploitation could be in the form of malware which exploits a vulnerability in processing 

files, for example, to install malicious code.  Some examples of malware include viruses, 

Trojan horses, back doors, worms, root kits, scareware, and spyware (Luh et al., 2016).  

Once the attacker’s code is active on the host, a C2 channel is often established to 

communicate back to the attacker.  The attacker can then take actions such as exfiltration 

of data. 
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 Marchetti et al. (2016) proposed a NIDS based approach to identify weak signals 

related to data exfiltration and other Advanced Persistent Threat (APT) activities.  They 

purported that existing security solutions based on pattern matching work well for 

common attacks but can often not identify APTs.  This is since APTs use unknown (zero-

day) vulnerabilities and seek to hide within normal network traffic.  APTs also typically 

use only a few internal hosts along with evasion detection techniques such as “low-and-

slow.”  APTs may slowly exfiltrate data over long time periods to avoid detection and use 

encryption, which often thwarts signature-based IDSs.  The authors list five main phases 

of an Advanced Persistent Threat including:  reconnaissance, compromise, maintaining 

access, lateral movement, and data exfiltration which is similar to the Hutchins et al. 

(2011) kill chain model.  The compromise phase is typically created through a spear 

phishing email with a zero-day exploit where a Remote Administration Tool is usually 

installed.  The tool then initiates contact with a C2 server since connections initialized by 

an internal host are often allowed through a firewall and attract less attention.  They used 

three features of network traffic to identify hosts potentially involved in data exfiltration:  

number of megabytes uploaded by internal hosts to external addresses, number of flows 

to external hosts, and the number of external IP addresses related to a connection initiated 

by the internal host.  APTs are sometimes known as Advanced Targeted Attacks (Luh et 

al., 2016). 
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C2:  Botnets 

Botnets are defined as networks of machines compromised by malware.  They are 

typically composed of hosts from both institutions and consumers that usually do not 

know they are infected.  They are often used to propagate spam; perform DDoS attacks; 

distribute malware; facilitate software piracy, information harvesting, identify theft, 

Bitcoin mining, and extortion; and for manipulating online games, surveys, and web 

advertising click fraud.  Since botnets are made up of many previously non-malicious 

hosts, those hosts are often not initially on lists of malicious IP addresses.   A common 

defensive strategy is to check incoming IP addresses against a list of known bad actors.  

These lists are called black lists, watch lists, or Indicator of Compromise lists.   They are 

often based on IP addresses, signatures such as a Uniform Resource Locator, a malware 

hash code based on Message Digest 5, or other similar algorithms.  Botnets also allow 

attackers to confuse such defenses by launching attacks from a stream of changing IP 

addresses. 

Some botnets have included in excess of one million hosts under control of “bot 

masters” who often rent out their network to malicious actors on a time-sharing basis for 

monetary gain.  Botnets were initially developed for legitimate activities.  The first ones 

used Internet Relay Chat as a C2 channel.  The first bot of that type, Eggdrop, was 

developed in 1993.  Bots were quickly adapted for malicious purposes.  Examples of 

recent malicious botnet related software includes Zeus, often used for hijacking bank 

account credentials, which has more than 3,000 variants and is estimated to have infected 

3.6 million hosts.  Another botnet, Conficker used a Peer-to-Peer architecture to infect an 

estimated 10.5 million hosts in 2009.   
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Botnets have adapted rapidly and more recent versions, such as Torpig, have 

evolved to use techniques such as domain fast flux to take advantage of the DNS protocol 

to evade detection via methods such as blacklists.  Countermeasure defenses for fast 

fluxing include monitoring DNS protocol activity.  Once infected, bots or individual 

hosts on a botnet exchange messages via an established C2 channel.   Such traffic is 

usually not high volume and thus avoids detection from many methods.  Botnets often 

use multiple redundant C2 servers for resiliency in case one is taken out of service.  

Anomaly-based methods are considered the main research area for botnets.  Detection 

includes network traffic anomalies in areas such as latency, traffic volumes, traffic on 

unusual ports, and unusual system behavior (Silva, Silva, Pinto, & Salles, 2013).  Some 

researchers refer to the use of a C2 channel as an “ET Phone Home” protocol where the 

host communicates with a botnet controller in a nod to the 1980’s science fiction movie. 

 

Data Preprocessing and Feature Selection 

Data preprocessing is an important step in anomaly detection.  Such processing 

includes data set creation, feature construction, feature reduction or selection, data 

transformation (such as converting attributes from nominal to binary and 

scaling/normalization), and labeling in the case of supervised learning.  Examples of 

features for a NIDS could include packet length, destination and source IP and port 

addresses, time stamps, and TCP flags.   

Feature selection is the process of choosing the best subset of features, sometimes 

referred to as attributes or variables, in a given data set.   A data set with a large number 

of features is termed highly dimensional.  Feature selection is often done to alleviate this 
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“curse of dimensionality” by removing redundant or irrelevant features to reduce the 

computational complexity and cost of an algorithm (Davis & Clark, 2011).  Another 

benefit of feature selection is to better avoid overfitting in supervised training models 

(Saeys, Inza, & Larrañaga, 2007).  Feature selection affects the resulting classifier 

accuracy, including the FPR (Bahrololum, Salahi, & Khaleghi, 2009), so sometimes a 

trade-off between computational complexity and accuracy needs to be evaluated.    

Feature selection algorithms can be broadly categorized as either filter or wrapper 

methods.  Wrapper methods use the classification algorithm itself to evaluate features 

while filter methods are independent of the classifier used (Karegowda, Manjunath, & 

Jayaram, 2010; Hall, 2000).  Some refer to a third category of algorithms as embedded 

where feature selection is built into the algorithm as in the case of DTs (Saeys et al., 

2007). 

Saeys et al. (2007) cite advantages of filter models as being fast, scalable, and 

independent of the classifier with the primary disadvantage being they ignore interactions 

with the classifier.  Since the filter methods are independent of the classifier, these 

methods can be used to perform feature selection once for evaluation of multiple 

classifiers.  They also further categorize filter methods as univariate, meaning that each 

feature is considered separately, or multivariate.  A disadvantage of univariate methods is 

they ignore dependencies among features which can lead to worse classification 

performance.  However, several multivariate filter techniques have been proposed to 

overcome this.  Examples of univariate methods include Chi-square, Euclidean distance, 

Gain Ratio, and Information Gain.  Multivariate methods include Correlation-based 

Feature Selection (CFS) and Markov Blanket Filter. 
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Some filter methods perform feature ranking rather than feature selection.  They 

are often then combined with search methods such as forward selection, backward 

elimination, and best-first (Karegowda et al., 2010). 

Advantages of wrapper methods include that they are simple and interact with the 

classifier.  Disadvantages include classifier dependence, being prone to getting stuck in a 

local optimum, and the risk of overfitting.  Examples of wrapper methods include genetic 

algorithms, simulated annealing, and beam search (Saeys et al., 2007). 

Substantial research has been done on feature selection and numerous other 

algorithms and variations have been proposed.   Alhaidari and Zohdy (2018) proposed a 

feature pruning model for HMMs and achieved an FPR improvement from 19.16% to 

0.38% by reducing the number of features used from UNSW-NB15 to 16.  Another 

example of a technique used on intrusion detection data sets is gradual feature removal 

(Li et al., 2012).   

 

Summary 

 There is ample literature to support the use of machine learning techniques in 

anomaly detection for reducing false positives.  However, much research is still being 

done using older data sets, such as KDD99, that are not indicative of modern normal and 

attack traffic.  But, according to Hu et al. (2014), KDD99 is still the most credible data 

set to benchmark IDS results.  Weller-Fahy et al. (2015) also agree that KDD99 remains 

the only comprehensive and fully labeled benchmark data set that is widely used by 

researchers.   

 Thus, the largest gap in the literature is an absence of widely used contemporary 
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data sets, reflecting recent cyber-attack methods, for training and testing for IDS 

research.  While Khammassi and Krichen (2017) state that the NIDS research community 

considers UNSW-NB15 a new benchmark data set to be used for evaluations of IDSs, it 

will likely take several years for researchers to embrace this and for it to be significantly 

demonstrated via the literature.  Another common gap is that many researchers do not 

provide sufficient details to replicate their research. 
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Chapter 3 

Methodology 

 
 
Overview 

 

The approach of this research uses the three stages, phases, or levels of situation 

awareness as defined by Endsley (1988) and as shown in Figure 1 below.  The first level, 

perception, was accomplished with a network-based (NIDS) anomaly-detection engine 

for intrusion detection using an ELM as the classifier.  The ELM classifier monitors the 

environment by analyzing the attributes of each event record in search of indications of 

cyber-attacks.  The ELM classifier only considers events occurring at a discrete point in 

time as determined by the duration field in each event record. 

 The second level, comprehension, was accomplished using HMMs.  

Comprehension is about synthesis of information and understanding the bigger picture.  

Since the HMMs are trained to evaluate sequences of events over time as opposed to a 

single event in time, they provide a more comprehensive view of what is going on in the 

monitored network.  This also results in a higher level of awareness in recognizing multi-

stage events.  Each HMM looks at a specific behavior of a single attribute over time. 

The third level, projection, is the decision informed by the perception and 

comprehension stages, in space and time, on whether a given alert from the perception 

stage should be put forth as an intrusion alert to either a human operator or for automated 

actions.  Space, for the purposes of this research, is the network space as represented by 
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IP addresses, ports, protocols, and services.  This phase was implemented as the 

combined output of the ELM and HMM classifiers using a unanimous voting scheme. 

 

Figure 1:  IDS Model with Situation Awareness Level Boundaries 

 

An ELM was chosen as the classifier for the perception phase based on the 

positive results as a classifier for IDS (Fossaceca et al., 2015) compared to other methods 

such as SVM.  While ELM research only goes back to Huang, Zhu, and Siew (2004) with 

the first IDS-based ELM research presented by Cheng et al. (2012), ELM has shown its 

versatility to minimize false positives (Zong et al., 2013).  Singh, Kumar, and Singla 

(2015) also implemented an ELM based solution against two different sets of benchmark 

data sets (KDD99 and Kyoto) and achieved superior false positive rates for both 

compared to other techniques including ANN, NB, and AdaBoost.  Fossaceca et al. 

(2015), achieved the lowest false positive rates across categories comparing their ELM 
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implementation to 20 other methods in published papers including NB, SVM, Random 

Forest, MLP, J48 DT, K-Means, and Self-Organizing Map. 

HMMs were chosen for the comprehension phase given their ability to model 

temporal events and based on the promising results from other research.  HMMs perform 

generally better than decision trees and substantially better than neural nets in detecting 

complex multi-stage Internet attacks (Ourston et al., 2003).  And, HMMs proved to be 

very effective at detecting all types of attacks by acting as an anomaly detector over a set 

of IDS alarms providing a low rate of false positives and high rate of alarm reduction 

(Treinen & Thurimella, 2009) and for differentiating attacks (Zhou et al., 2015).  Other 

research has also shown the advantages of using HMMs for modeling systems under 

attack (P. Bhatt et al., 2014; Gilmore & Haydaman, 2016).   

A combined approach was used since prior research has shown positive results in 

reducing false positives using post processing (Spathoulas & Katsikas, 2013b).  Hybrid 

results have yielded positive results such as using a KNN followed by ELM (Akusok et 

al., 2014) and a NB to HMM (Karthick et al., 2012) for malware detection.   

The framework was further informed by existing models such as the kill chain 

(Hutchins et al., 2011) and mapped to data elements indicative of relevant cyber-attacks.  

The attack stages associated with the kill chain are:  reconnaissance, delivery, exploit, 

install, C2, and exfiltration.  But these stages were distilled into a simpler model of 

normal, probe, and attack and implemented in HMMs as three states.  The HMMs 

provide additional context around interactions with a given network in time, for example, 

compared to a more traditional IDS approach which is often making a prediction based 

on a single event. This view provides better context for situation awareness since attacks 
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can occur over longer periods of time than considered by some traditional IDSs.  APTs in 

particular often use a low and slow approach to avoid detection. 

   

The Data Set 

 

This research used the UNSW-NB15 data set (Moustafa & Slay, 2015).  This met 

the research goal of using a recent and relevant set of comprehensive benchmark data, 

containing both cyber-attack and normal traffic.   This research used two subsets of data 

from UNSW-NB15.  Their construction along with related UNSW-NB15 data sets is 

discussed below. 

The Full 2.54M Data Set  

The full UNSW-NB15 data set created by Moustafa and Slay (2015) includes 

approximately 2.5 Million records of which just over 14% are representative of cyber-

attack traffic with the rest being normal.  It contains nine categories of attack traffic 

(fuzzers, analysis, backdoor, DoS, exploit, generic, reconnaissance, shell code, and 

worm) and 49 features including two labels with one denoting attack or normal traffic 

and the other for the specific attack category.  The features are further divided into flow, 

basic, content, time, additional generated, and connection features.  A complete list of 

features is included in Appendix A.  This data set is referred to as the Full 2.54M data set 

for the purposes of this research. 

Moustafa and Slay (2016) validated that UNSW-NB15 is more complex than 

KDD99 and thus is a valid benchmark to be used for NIDS evaluations through three 

means:  statistical analysis, evaluation of feature correlation, and comparison of FAR and 

accuracy for five classifiers as compared to KDD99.  Khammassi and Krichen (2017) 
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also stated that the NIDS research community now considers UNSW-NB15 a new 

benchmark for evaluations of IDSs.   

The Test and Train Data Set 

Moustafa and Slay (2016) accomplished this validation through decomposing 

UNSW-NB15 (University of New South Wales, 2015) into a smaller subset of training 

and test data sets.  That subset consists of 257,673 records which were divided roughly 

into 60% for training and 40% for testing per the authors (but closer to 68% and 32% 

based on actual records).  It includes 164,673 attack records and 93,000 normal records.  

Several features of the larger Full 2.54M data set were removed from this subset 

including source and destination IP addresses and port numbers along with start and end 

record times.  To differentiate among UNSW-NB15 subsets, this data is referred to as the 

Train and Test dataset for the purposes of this research. 

The 440K Data Set 

Since this research uses HMMs for temporal situation awareness, it is important 

that both the training and testing data reflect an ordered sequence of events in time.  

Given the UNSW-NB15 provided Train and Test data subset removed needed time stamp 

features, a new set of training and testing data was created from the UNSW-NB15 Full 

2.54M data set.  A total of 440,044 sequential records, sorted by time stamp, were chosen 

from the data set and divided into roughly 60% for training (264,026 records) and 40% 

for testing (176,018 records).  This data set is referred to as the 440K data set for the 

purposes of this research. 

The 440K data was split using a simple out-of-sample hold out method.  That is 

the first 60% of the records sequentially were used for training and the last 40% of the 
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records were held out for testing.  Cerqueira, Torgo, and Mozetic (2019), in an evaluation 

of performance estimation methods for time series forecasting tasks, state that there is no 

settled approach among researchers, but that out-of-sample methods are traditionally used 

for time-dependent data.  Out-of-sample is in contrast to basic cross-validation which 

shuffles records which is not conducive to maintaining temporal order.  A key 

characteristic of out-of-sample methods is that they always preserve the temporal order 

which in turn means the resulting model is never tested on past data.   

Cerqueira et al. (2019) also reviewed other methods for time-dependent data such 

as cross-validation in a blocked form.  They concluded that for real-world time series 

data, that approaches which maintain the temporal order are better.  In particular, they 

recommended out-of-sample using repeated holdout. 

To further validate this approach, a simplified repeated holdout method was used 

for the 440K data where several sections of the Full 2.54M dataset were evaluated in 

relation to maintaining a good mix of normal and attack records.  This approach also 

better approximates a real-world IDS environment where data is ingested sequentially in 

time order. 

The DoS Data Set 

To provide for additional analysis and comparison to other research, another data 

set was created from the UNSW-NB15 Train and Test data set for just normal and DoS 

traffic.  That data set will be referred to as the DoS data set for the purposes of this 

research.  While not time-ordered, it was used for benchmarking the ELM portion, which 

is not time sensitive, and to evaluate the HMM classifiers and overall methodology in 
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relation to how it performs with data that is not time-ordered.  Table 1 below summarizes 

the UNSW-NB15 data sets relevant to this research. 

 

Table 1:  UNSW-NB15 Based Data Sets  
 

 
 
 
Feature Selection 

 
As discussed in the literature review section, feature selection is an important step 

in the design of classifiers to remove redundant and irrelevant features.  This reduces the 

computational complexity and the cost of an algorithm (Davis & Clark, 2011) and affects 

the resulting classifier accuracy, including the FPR (Bahrololum et al., 2009).  

 Given the selection of UNSW-NB15, two feature selection studies for those data 

were reviewed.  The first (Moustafa & Slay, 2017) was from the data set creators citing 

that irrelevant features may cause a higher FAR.  They used a hybrid feature selection 

technique based on Central Points and Associate Rule Mining.  They were able to reduce 

the number of features to 11, using the Train and Test data set, which is approximately 

25% of the given feature set.  The Central Points technique selects the most frequent 

values reducing processing time and the Associate Rule Mining helps to remove 

irrelevant or noisy features.  They pointed out that reducing the number of features to less 

than 11 resulted in undesirable results.  The second study specific to UNSW-NB15, using 

the Train and Test data set, is from Janarthanan and Zargari (2017).  They used 

Dataset 

Abbreviation Description # of Records

# of Normal 

Records

# of Attack 

Records

# of Training 

Records

# of Testing 

Records Categories

Includes 

Time Stamps

Full 2.54M Original Moustafa & Slay (2015) data set 2,540,044   2,218,761   321,283      N/A N/A Normal + 9 Attack Yes

Train and Test

Moustafa & Slay (2016) created training and 

testing data set 258,673      93,000        165,673      176,341       82,332          Normal + 9 Attack No

440K

Sequentially time ordered subset derived from the 

Full 2.54M records 440,044      351,150      88,894        264,026       176,018        Normal + 9 Attack Yes

DoS

DoS and normal traffic extracted from the Train 

and Test subset 109,353      93,000        16,353        68,264         41,089          Normal + DoS No
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Information Gain (Kayacik, Zincir-Heywood, & Heywood, 2005) and CFS (Hall, 2000) 

algorithms to validate the Moustafa and Slay (2017) study and also provided comparisons 

to KDD99.  Other intrusion detection research has also used Information Gain to select 

relevant features (Kayacik et al., 2005). 

 For this research, the appropriate features for both the ELM and HMM classifiers 

were evaluated and chosen using Information Gain and CFS respectively.  Information 

Gain was chosen for the ELM since it is a filter method which is independent from the 

classifiers used.  Given that one of the evaluation criterions is to compare the results 

against other classifiers, Information Gain allows the same attributes to be used for those 

other techniques (Saeys et al., 2007).  Since Information Gain is a ranking method, a cut-

off or threshold point needed to be determined on where to draw the line to select the 

number of attributes.  For the first run, the cut-off point was determined using an 

informed estimate based on other feature selection studies using UNSW-NB15.  An 

additional experiment was conducted using backwards feature removal to determine a 

cut-off point.  Both results were compared. 

 For the HMM models, CFS was used.  This was done to choose a subset of 

features in contrast to the ELM model which used Information Gain.  One downside of 

Information Gain is it is a univariate method which ignores dependencies among features 

(Saeys et al., 2007).  CFS, in contrast, is a multivariate method which was created on the 

basis that good feature subsets are highly correlated with the class yet uncorrelated to 

each other (Hall, 2000).  For each feature selected by CFS, an HMM was created.  This 

was done to create a series of classifiers which were then combined using a voting 

scheme.  As discussed above and shown in Figure 1, the ELM classifier is focused on a 
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point in time while the HMM classifiers are focused on temporal patterns.  The selection 

of CFS provides for classifiers which are highly correlated to the class but uncorrelated to 

each other.  The feature selection process is depicted in Figure 2 below. 

Figure 2:  Feature Selection Process 

 

ELM Classifier 

 

 The ELM classifier was built to classify normal and attack traffic using the 

UNSW-NB15 data sets shown in Table 1.  The basic ELM program (Huang & Zhu, 

2004), MATLAB version, was obtained to implement the ELM classifier.  MATLAB 

was chosen since that is what was used to perform the seminal ELM research (Huang, 

Zhu, & Siew, 2004) and many subsequent variations from various researchers have been 

made available in MATLAB.  

 The required inputs for the program are the file names for the training and testing 

data sets, ELM type (regression or classification), the number of hidden neurons, and the 

activation function.  Supported activation functions include:  sigmoidal, sine, hardlim, 
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triangular basis, and radial basis.  The training and testing file input to the ELM program 

is in the format of a tab-delimited text file.  The first column must contain an integer 

label.  For binary classification, 0 is used for normal (negative) record and 1 for an attack 

(positive) record.   

The following preprocessing was done for each data set used for an ELM run.  

First, the binary label for attack and normal traffic was moved to be the first column and 

the label for attack category was removed.  Second, depending on the run, the attributes 

not selected by the feature selection process were removed.  Third, nominal or categorical 

attributes, such as protocol, state, and services for this data set, were converted to binary 

attributes as applicable.  Fourth, all numeric attributes were normalized to be between -1 

and 1 as recommended by Huang and Zhu (2004).  Finally, the resulting test and training 

data sets were saved as tab-delimited text files. 

 In terms of other program parameters, the sigmoid activation function was chosen 

based on past experience.  For ELM Type, the value was set to 1 for classification.  The 

program also requires the number of hidden neurons as input.  Ding et al. (2014) stated 

that determining the number of hidden neurons to use for different data sets is an open 

problem for ELM researchers.  Others have proposed solutions to this (Huang & Chen, 

2008; Wang et al., 2018).  However, Huang, Zhu, and Siew (2006) demonstrated that 

ELM is very stable across a wide range of hidden nodes but performance can degrade 

with too few or too many nodes.  For this research, different values were experimented 

with and charted. 
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HMM Architecture 

 

 An HMM requires the specification of five parameters including two model 

parameters:  N (the number of states) and M (the number of distinct observation symbols 

per state) and three probability measures:  A (the state transition probability distribution), 

B (the observation symbol emission probability distribution), and p (the initial state 

distribution).  In compact notation form, an HMM is often written as λ = (A, B, π) 

(Rabiner, 1989). 

 Various values of N (states) have been used for intrusion detection in the 

literature.  Ourston et al. (2003) distilled a multi-stage attack sequence to four states:  

probe, consolidate, exploit, and compromise.  Karthick et al. (2012) used TCP state flags 

as HMM symbols.  Zhou et al. (2015) used three states:  normal, fault, and attack.  

Hurley, Perdomo, and Perez-Pons (2016) used three states for a NIDS for Software 

Defined Networks:  expected, unexpected, and somewhat expected.  Liang et al. (2017) 

chose four states:  good, probed, attacked, and compromised.  Based on the nine labeled 

attack categories plus normal from the UNSW-NB15 data set, this research used:  

normal, probe (corresponding to analysis, fuzzers, and reconnaissance instances), and 

attack (corresponding to backdoor, DoS, exploit, generic, shell code, and worm 

instances).  The number of distinct symbols per state, M, was based the results of the 

feature selection for the HMMs.  The HMM state transition representation is shown in 

Figure 3 below. 
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Figure 3:  HMM State Transition Representation 

 

For each HMM classifier, which represents one feature, symbols were selected, 

using the letters of the alphabet, to represent each possible feature value or range of 

values for the feature.  Each symbol was mapped to its state, either normal, probe, or 

attack, for each record in the training data. 

The probabilities were then determined through training using the Baum-Welch 

algorithm (Rabiner, 1989), which is the most commonly used HMM training algorithm 

(Holgado, Villagra, & Vazquez, 2017).  For execution of the HMMs against the test data, 

the emission symbols for each model, as represented by one feature, were translated from 

their respective attributes.  These symbol streams were then run through the Viterbi 

algorithm (Viterbi, 1967; Forney, 1973) to determine the most likely states. 

The HMMs were implemented using the machine learning tool kit in MATLAB 

(Theodoridis, Pikrakis, Koutroumbas, & Cavouras, 2010).  Training was performed using 

the hmmestimate and hmmtrain functions.  Testing was performed with the hmmviterbi 

function.   
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The Combined Classifier 

 

 The third phase, projection, was the combined output of the HMMs and ELM 

providing both a projection in time and space.  A unanimous voting scheme was chosen 

for the final output.  Lin et al. (2003) demonstrated that a combination of classifiers can 

result in a significant accuracy improvement and that the use of voting methods to 

combine those classifiers are both simple and effective.   

A unanimous voting scheme was chosen with the goal of eliminating false 

positives.  Thus, all of the classifiers must agree on an attack.  Other voting schemes such 

as majority voting can lead to an inaccurate decision given the knowledge of the minority 

classifiers are effectively ignored (Lin, Lai, Ho, & Tai, 2013).  More complicated voting 

schemes were discounted given prior research that there is only a marginal, if any, 

difference in performance between simple voting schemes and more advanced 

combination techniques (Lin et al., 2003). 

 

Experiments  

 

Two groups of experiments were conducted and referenced as Experiments A and 

B.  Experiment A used the 440K Data Set.  The 440K Data Set was used to provide the 

time ordered data needed to demonstrate the temporal awareness capabilities of the 

HMMs.   

Experiment B used the DoS data set.  This was done for three reasons.  The first 

was to use the Moustafa & Slay (2016) Test and Train dataset for which they justified the 

complexity of the data set and its validity for the evaluation of NIDS research.  Although, 

many of their findings that are applicable to the Test and Train data set should also be 
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applicable to the larger 440K Data Set as well.  The second was to determine how the 

ELM and HMM scheme with situation awareness performed with data that were not 

time-ordered.  And the third was to provide a more direct comparison to other research.  

In particular, Igbe (2019) had shown very good results using an Artificial Immune 

System scheme to detect DoS attacks using the UNSW-NB15 Test and Train dataset. 

For the ELM models, multiple runs were done since the input biases and weights 

that connect the inputs to the hidden layer are chosen randomly for the basic ELM 

algorithm.  Thus, each run will produce a different result but usually within a range.  

Wang and Huang (2005) used a similar process for their ELM research using an average 

of 50 simulation runs.  For this research, ten runs were used.  Additionally, each 

experiment also included comparisons to two other classifiers using the same data:  an 

MLP and an J48 DT. 

Feature selection for the ELM, J48 DT, and MLP runs was done using 

Information Gain which provides a ranked list of features in order of merit.  The method 

used to select the features from the ranked list was backwards elimination with a cut-off 

point based on an estimate informed by other research which used the UNSW-NB15 data 

sets.  An alternate to the informed estimate for a cut-off point was performed through an 

iterative search for contrast. 

The feature selection method for the HMMs was CFS which provided a subset 

selection.  For each feature selected in the CFS subset, a separate HMM was created.  

The number of hidden neurons for the ELM models was initially chosen based on prior 

experience.  A second evaluation was done to determine an optimal value through 

iterative search. 
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Evaluation Criteria 

 

 The primary evaluation metric was the FPR given the primary goal of this 

research was to reduce false positives.  This was measured based on the results of running 

three algorithms using the same data sets.  The algorithms were:  ELM alone, HMM 

alone, and the combination of ELM with HMM.  The goal was to show that the 

combination of ELM with HMM produces a lower FPR than ELM alone by more than 

10%.  Accuracy was also calculated to ensure that was not significantly impacted. 

Both experiments show the results of the ELM and HMM classifiers along with 

the combined output with the confusion matrix variables TP, FP, TN, and FN in a table.  

FPR and Accuracy were also calculated.  Results of the J48 DT and MLP were also 

shown for the respective runs to provide comparisons. 

 As discussed in earlier sections, the decision to not use an older data set such as 

KDD99 limited the ability to compare this proposed research to specific FPRs from prior 

published studies.  However, results from other research using various subsets of the 

UNSW-NB15 data set is also shown for contrast.  

 

 

Computing Resources Used 

 

This research was conducted using a MacBook Pro running MacOS with a 2.6 

GHz Intel Core i7 Central Processing Unit, 16 Gigabytes of Random Access Memory, 

and a 750 Gigabyte hard drive.  The hard drive provided sufficient swap space needed to 

support some of the large matrix calculations required of this research. 
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Summary 

 In this section, the research methodology using both ELM and HMMs in a 

situation awareness framework was detailed and justified.  Feature selection using 

information gain and CFS was also chosen and justified.  A data set, UNSW-NB15, to 

meet the goal of using one indicative of modern normal and attack traffic was also chosen 

and justified.  The resources used along with evaluation criteria and metrics, including 

achieving a lower FPR with the combined classifier compared to the ELM or HMM 

classifiers individually were provided. 
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Chapter 4 
 

Results 

 

This chapter provides the results of the experiments designed to gauge the 

effectiveness of using ELM in conjunction with HMM with a situation awareness 

framework to reduce false positives.  These experiments used subsets of the UNSW-

NB15 data set (Moustafa & Slay, 2015).  UNSW-NB15 was chosen to meet the stated 

research goal of using a recent and relevant set of comprehensive benchmark data, 

containing both cyber-attack and normal traffic. 

The first experiment, Experiment A, used the 440K data set which is a time-

ordered subset of the UNSW-NB15 data set.  A time-ordered data set was needed to test 

the effectiveness of the HMMs per the situation awareness framework. 

 The second experiment, Experiment B, used a subset of the separate Train and 

Test data set, the DoS data set, that included both DoS attack and normal traffic.  The 

Train and Test data set was validated as being statistically complex for evaluating 

existing and novel techniques for NIDS (Moustafa & Slay, 2016); however, it was not 

time-ordered.   

   

Experiment A (Time-Ordered Data) 

 

 Experiment A was repeated twice.  Both runs were conducted against the 440K 

subset of the UNSW-NB15 data set (Moustafa & Slay, 2015).  Both used Information 
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Gain to select the features for the ELM and CFS to select the features for the HMMs.  

The difference between the two runs were in the number of features and the number of 

hidden neurons used by the ELM model.  For the first run, the number of features 

selected for the ELM was determined by a cut-off threshold of 18 that was informed by 

other researchers and past experience and the number of hidden neurons was selected at 

60 based on past experience.  For the second run, a mini-experiment was run to more 

optimally determine a number of features, 24, and hidden neurons, 125, to use.  The 

HMMs remained the same for both runs. 

 

Data Analysis 

 

As discussed in the methodology section, a new data set, named 440K, was 

created from the full UNSW-NB15 data sets (Full 2.54M).  A total of 440,044 sequential 

records, sorted by time stamp, were chosen from the data set and divided into roughly 

60% for training (264,026 records) and 40% for testing (176,018 records).  The data set 

characteristics for normal and attack traffic are shown in Table 2 below and the 

distribution of the attack categories is given in Table 3.  

 

Table 2:  Distribution of Training and Test Data by Traffic Type (440K Data Set) 

 

 

 

 

Traffic Type Training Testing Total

Normal 214,202          136,948          351,150          

Attack 49,824            39,070            88,894            

Total 264,026          176,018          440,044          
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Table 3:  Distribution of Training and Test Data by Attack Type (440K Data Set) 

 

Feature Selection 

 Two feature selection algorithms, Information Gain (Kayacik et al., 2005) and 

CFS (Hall, 2000) were run against the training data set to evaluate all 47 non-labeled 

features.  The Information Gain ranking of the 47 features is included in Appendix B. 

The CFS evaluation returned a subset of only two features:  sttl and ct_state_ttl 

which are attributes 10 and 37 respectively in Appendix A.  Those two features were used 

to construct two HMMs.  

For Information Gain, a cut-off threshold of the first 18 features with the highest 

ranked merit were chosen for the first run.  The lower limit for the number of features 

was informed by prior feature selection research for UNSW-NB15 and prior experience.  

Moustafa and Slay (2017) cautioned that reducing the number of features to less than 11 

resulted in undesirable results.   

To illustrate a more precise cut-off determination, a mini-experiment was done 

with a backwards feature removal technique to determine the cut-off threshold.  A model 

was run 47 times varying the cut-off threshold from 47 to one.  The resulting Accuracy 

Attack Type Training Testing Total

Reconnaissance 2,074              1,456              3,530              

Exploits 6,901              4,538              11,439            

DoS 2,609              2,298              4,907              

Generic 34,119            27,759            61,878            

Shellcode 227                 144                 371                 

Fuzzers 3,168              2,222              5,390              

Backdoor 351                 315                 666                 

Worms 27                   16                   43                   

Analysis 348                 322                 670                 

Total 49,824            39,070            88,894            
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and FPR are shown in figures 4 and 5 respectively below.  The highest Accuracy 

(0.9886) was achieved at a cut-off at 24 features which corresponded to an FPR of 

0.0068. 

 

Figure 4:  Accuracy by # of Features (440K Data Set) 

 

 

Figure 5:  FPR by # of Features (440K Data Set) 
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A separate mini-experiment was conducted to gauge the impact of the number of 

hidden neurons on Accuracy and FPR.  The number of hidden neurons for the ELM 

model was varied from one to 160.  The results for Accuracy and FPR are shown 

respectively in figures 6 and 7 below.  The highest Accuracy (0.9823) occurred at 125 

nodes which corresponded to an FPR of 0.0170. 

 

Figure 6:  Accuracy by # of ELM Hidden Neurons (440K Data Set) 

 

 

Figure 7:  FPR by # of ELM Hidden Neurons (440K Data Set) 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

A
cc

u
ra

cy

Number of Hidden Neurons

Accuracy by # of Hidden Neurons (440K Data Set)

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

F
P

R

Number of Hidden Neurons

FPR by # of Hidden Neurons (440K Data Set)



    77 

HMM Construction 

 In compact notation, an HMM is notated as λ = (A, B, π) (Rabiner, 1989) where N 

is the number of states, M is the number of symbols per state, A is the state transition 

probability, B is the observation symbol emission probability distribution, and p is the 

initial state distribution. 

  Both of the created HMMs share the same three states:  normal, probe 

(corresponding to the analysis, fuzzers, and reconnaissance categories), and attack 

(corresponding to the backdoor, DoS, exploit, generic, shell code, and worm categories).  

The probe and attack states combined represent all of the attack traffic.  The three states 

are represented by N for Normal, P for Probe, and A for Attack.   

  For the first HMM (HMM S), the symbols represented all of the possible values 

for sttl (attribute 10 in Appendix A) which is source to destination Time to Live.  This 

feature is an integer with values between 0 and 255.  For the data set, there were 11 

distinct values (the M variable for the HMM).  These were represented by symbols 

labeled A through K. 

 For the second HMM (HMM C) the symbols represent the possible values for 

ct_state_ttl (attribute 37 in Appendix A) which is a derived value based on state and both 

destination to source and source to destination Time to Live.  This feature is an integer 

with values between 0 and 6 and has 5 distinct values (the M variable for the HMM) in 

the data set.  These were represented by symbols labeled A through E.  Since the two 

HMMs are separate, there was no conflict with the reuse of the same letters to represent 

the symbols. 
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 The training of each of the HMMs was performed using similar steps using the 

training data set.  First, the attack category value of each record was translated to the state 

value (N, A, or P).  Then the corresponding feature (either sttl or ct_state_ttl) was 

mapped to their appropriate symbols.  The training file with the known states and given 

symbols was then used to estimate the initial state distribution (π) and the symbol 

emission probability distribution (B) using the MATLAB hmmestimate function, which 

is part of the MATLAB machine learning tool kit (Theodoridis, Pikrakis, Koutroumbas, 

& Cavouras, 2010).  These data were then trained using the Baum-Welch algorithm 

(Rabiner, 1989), which is the most commonly used HMM training algorithm (Holgado et 

al., 2017), via the MATLAB hmmtrain function.  The resulting parameters for the 

training of each HMM are included in Appendix C. 

 For the execution of the HMMs against the test data, the emission symbols for 

each model were translated from their respective feature.  These symbol streams were 

then run through the Viterbi algorithm (Viterbi, 1967; Forney, 1973) to determine the 

most likely states using the MATLAB hmmviterbi function.  The results were then output 

to a file for each model for further processing with the ELM model. 

The ELM Model  

The basic ELM program was modified to provide an output file containing a zero 

or one predicted value for each row in the test data set for further use in the combination 

phase.  The ELM model was run multiple times following the process outlined in the 

methodology section.   

For experiment A, the ELM model was run once using 18 features and 60 hidden 

neurons to create a baseline.  That model was named ELM1.  An additional 10 ELM 
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models were created and labeled ELM2 to ELM11.  Models ELM1 to ELM11 all used 18 

features with 60 hidden neurons.  A new set of ELM models, ELM12 to ELM21, was 

then created using 24 features with 125 hidden neurons. 

The Combined Model 

 The combined model represents the third situation awareness phase, projection, 

and is the combined output of the HMMs and ELM providing both a projection in time 

and space.  To eliminate false positives, the outputs of the two HMMs and the ELM 

classifier were combined using a unanimous voting scheme and resulted in an attack only 

if all three agreed.  Otherwise, the record would be considered normal.   

 Three ELM models where chosen for combination with the HMMs:  ELM1, 

ELM11, and ELM14.   ELM1 was chosen since it was the baseline.  ELM11 was chosen 

since it had the lowest FPR among for the ELMs created using 18 features with 60 hidden 

neurons.  ELM14 was chosen since it had the lowest FPR for the ELMs created with 24 

features using 125 hidden neurons.  

 The combined models were denoted as ELM + HMM followed by the HMMs.  

So, ELM11+HMM C&S is the combined output of ELM11, HMM C, and HMM S. 

Comparison to Other Classifier Models 

 To provide a comparison to other classifiers, the same training and testing data 

was used with a J48 DT and an MLP.  These are labeled as J48-1 and MLP1 using 18 

features and J48-2 and MLP2 using 24 features. 

 

Findings 
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 For each model, the confusion matrix variables TP, TN, FP, and FN were 

calculated along with FPR and Accuracy.  The results sorted by highest FPR to lowest 

FPR are displayed in Table 4 below.   

This shows that the combined model outperformed the individual models and 

other classifiers for both the 18 feature (ELM11 + HMM C&S) and 24 feature (ELM14 + 

HMM C&S) models.  Table 5 provides a summary view of how the results compared to 

the primary and secondary goals. 

 

Table 4:  Experiment A Results Sorted by Highest to Lowest FPR 

  

Model Features TN FP FN TP Accuracy FPR

ELM1 18 133168 3780 547 38523 0.9754 0.0276

ELM9 18 133307 3641 573 38497 0.9761 0.0266

ELM10 18 133485 3463 749 38321 0.9761 0.0253

MLP1 18 133529 3419 394 38676 0.9783 0.0250

ELM3 18 133742 3206 762 38308 0.9775 0.0234

ELM18 24 133779 3169 450 38620 0.9794 0.0231

ELM12 24 133790 3158 918 38152 0.9768 0.0231

ELM17 24 133805 3143 833 38237 0.9774 0.0230

ELM5 18 133885 3063 1032 38038 0.9767 0.0224

ELM4 18 133898 3050 979 38091 0.9771 0.0223

ELM20 24 133929 3019 791 38279 0.9784 0.0220

ELM16 24 133934 3014 3300 35770 0.9641 0.0220

ELM6 18 134081 2867 827 38243 0.9790 0.0209

ELM13 24 134127 2821 708 38362 0.9800 0.0206

ELM21 24 134129 2819 2895 36175 0.9675 0.0206

ELM7 18 134148 2800 730 38340 0.9799 0.0204

ELM19 24 134184 2764 749 38321 0.9800 0.0202

MLP2 24 134201 2747 761 38309 0.9801 0.0201

ELM8 18 134201 2747 987 38083 0.9788 0.0201

ELM2 18 134302 2646 992 38078 0.9793 0.0193

ELM15 24 134305 2643 799 38271 0.9804 0.0193

HMM S 1 134597 2351 337 38733 0.9847 0.0172

J48-1 18 134776 2172 775 38295 0.9833 0.0159

ELM11 18 134780 2168 761 38309 0.9834 0.0158

ELM14 24 134915 2033 1212 37858 0.9816 0.0148

ELM1 + HMM S 18 134938 2010 856 38214 0.9837 0.0147

HMM C 1 135643 1305 651 38419 0.9889 0.0095

ELM1 + HMM C 18 135767 1181 1045 38025 0.9874 0.0086

ELM1 + HMM C&S 18 135942 1006 1045 38025 0.9883 0.0073

J48-2 24 136014 934 1078 37992 0.9886 0.0068

ELM14 + HMM S 24 136060 888 1498 37572 0.9864 0.0065

ELM11 + HMM S 18 136074 874 1058 38012 0.9890 0.0064

ELM14 + HMM C 24 136527 421 1716 37354 0.9879 0.0031

ELM14 + HMM C&S 24 136528 420 1716 37354 0.9879 0.0031

ELM11 + HMM C 18 136563 385 1359 37711 0.9901 0.0028

ELM11 + HMM C&S 18 136565 383 1359 37711 0.9901 0.0028
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Table 5:  Summary of Results Compared to Goals for Experiment A 

 

 

Experiment B (Non-Time Ordered Data) 

 

 Experiment B is similar to Experiment A.  The primary difference is that the DoS 

data set was used.   

Data Analysis  

As discussed in the methodology section, a new data set, named DoS, was created 

from the UNSW-NB15 Test and Train data set.  Table 6 below shows the distribution of 

traffic by normal and attack.  The Training and Testing split follows the original Test and 

Train data set split of roughly 60% for Training and 40% for Testing.  The only attack 

category included in this data set was DoS.   

 

Table 6:  Distribution of DoS Data by Traffic Type (DoS Data Set) 
 

 
 

 

Feature Selection 

 The UNSW-NB15 Train and Test data set from which the DoS data set was 

derived has less features than the Full 2.45M data set.  In particular, the authors removed 

features such as source and destination IP address and ports and record start and end time 

% 

Reduction in 

FPR Goal Met

FPR Less 

than 0.6% Goal Met

FPR 

Difference 

vs. MLP Goal Met

FPR 

Difference 

v. J48 DT Goal Met

Accuracy 

Change

Improved/ 

Reduced

Model

ELM11 + HMM C&S -82.33% Yes 0.28% Yes -88.80% Yes -82.37% Yes 0.69% Improved

ELM14 + HMM C&S -79.34% Yes 0.31% Yes -84.71% Yes -55.03% Yes 0.46% Improved

Primary Goals Secondary Goals

FPR Reduction of 10% 

Compared to ELM Alone FPR less than 0.6% FPR vs. MLP FPR v. J48 DT Accuracy v. ELM Alone

Traffic Type Training Testing Total

Normal 56,000           37,000           93,000           

Attack 12,264           4,089             16,353           

Total 68,264           41,089           109,353         
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were removed.  The list of available features in the Train and Test data set is included in 

Appendix D.   

The CFS evaluation returned a subset of four features:  sttl, proto, dttl, and 

ct_dst_sport_ltm which are features 10, 2, 11, and 35 respectively in Appendix D.  From 

those, 3 HMMs were built:  sttl (HMM DS), dttl (HMM DD), and ct_dst_sport_ltm 

(HMM DC).   

 A similar process was followed as for Experiment A using Information Gain and 

CFS.  The result of the Information Gain ranking for the DoS data set is shown in 

Appendix E.  The optimal number of features using a backwards cut-off threshold with 

Accuracy as a determination was 11 which had an Accuracy of 0.9855 and an FPR of 

0.0071.  Graphs of Accuracy by features and FPR respectively for the DoS data set is 

shown in figures 8 and 9 below. 

 

 
 

Figure 8:  Accuracy by # of Features (DoS Data Set) 
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Figure 9:  FPR by # of Features (DoS Data Set) 

 

 

Effect of Number of ELM Hidden Neurons on Accuracy and FPR 

 As with experiment A, to determine an optimal number of hidden neurons for the 

ELM, both Accuracy and FPR were evaluated as the number of hidden neurons was 

increased from 1 to 160.  The highest Accuracy occurred at 144 hidden neurons which 

corresponded to an FPR of 0.0006.  This is shown in figures 10 and 11 below. 

 
 

 
 

Figure 10: Accuracy by # of ELM Hidden Neurons (DoS Data Set) 
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Figure 11: FPR by # of ELM Hidden Neurons (DoS Data Set) 

 

HMM Construction 

 

 For this experiment, 3 HMMs were built.  The same process as outlined in 

Experiment A above was used.  The three states were represented by N for Normal, P for 

Probe, and A for Attack.  However, since this experiment only used DoS and Normal 

traffic, the only states expected would be N and A. 

 For the first HMM (HMM DS), the symbols represented all of the possible values 

for sttl (attribute 10 in Appendix D) which is source to destination Time to Live.  This 

feature is an integer with values between 0 and 255.  For the DoS data set, there were 13 

distinct values (the M variable for the HMM).  These were represented by symbols 

labeled A through M. 

 For the second HMM (HMM DC) the symbols represent the possible values for 

ct_dst_sport_ltm (attribute 35 in Appendix D) which is a derived feature involving the 

number of connections between the same destination address and source port.  This 

feature is an integer.  There were 16 unique values for this field (the M variable for the 

HMM).  These were represented by symbols labeled A through P.   
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For the third HMM (HMM DD) the symbols represent the possible values for dttl 

(attribute 11 in Appendix D) which is the destination to source Time to Live value.  This 

feature is an integer which can vary from 0 to 255.  There were 9 unique values for this 

field (the M variable for the HMM).  These were represented by symbols labeled A 

through I.   

As with experiment A, since the HMMs are separate, there was no conflict with 

the reuse of the same letters to represent the symbols.  The training of each of the three 

HMMs was performed using the same steps as outlined for Experiment A above.  The 

resulting parameters for these HMMs are included in Appendix F.  

The ELM Model  

For experiment B, the ELM model was run 10 times.  The resulting models were 

named ELMD1 to ELMD10 with the number of hidden neurons set at 144.   

The Combined Model 

 The combined model represents the third situation awareness phase, projection, 

and is the combined output of the three HMMs and ELM9 providing both a projection in 

time and space.  To eliminate false positives, the outputs of the three HMMs and the 

ELM classifier were combined using a unanimous voting scheme and resulted in an 

attack only if all three agreed.  Otherwise, the record would be considered normal.  The 

result is labeled ELMD9 + HMM DS, DD, & DC. 

Comparison to Other Models 

To provide a comparison to other classifiers, the same training and testing data 

was used with a J48 DT and an MLP.  These are labeled as J48 D and MLP D. 

Findings 
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For each model, the confusion matrix variables TP, TN, FP, and FN were 

calculated along with FPR and Accuracy.  The results sorted by highest FPR to lowest 

FPR are displayed in Table 7 below.  Table 8 provides a summary view of how the 

results compared to the primary and secondary goals. 

 

Table 7: Experiment B Results Sorted by Highest to Lowest FPR  

 
 

 

 

Table 8:  Summary of Results Compared to Goals for Experiment B  
 

 
 

 

 

 

 

 

 

 

 

 

 

Model TN FP FN TP Accuracy FPR

HMM DD 16932 20068 2 4087 0.5115 0.5424

HMM DS 16932 20068 0 4089 0.5116 0.5424

HMM DC 34677 2323 989 3100 0.9194 0.0628

J48 D 36737 263 332 3757 0.9855 0.0071

ELMD5 36909 91 890 3199 0.9761 0.0025

ELMD8 36916 84 885 3204 0.9764 0.0023

ELMD4 36926 74 887 3202 0.9766 0.0020

ELMD6 36928 72 893 3196 0.9765 0.0019

ELMD2 36936 64 902 3187 0.9765 0.0017

ELMD3 36941 59 900 3189 0.9767 0.0016

ELMD1  36943 57 911 3178 0.9764 0.0015

ELMD7 36943 57 894 3195 0.9769 0.0015

ELMD10 36954 46 890 3199 0.9772 0.0012

ELMD9 36956 44 840 3249 0.9785 0.0012

ELMD9 + HMM DS, DD, & DC 37000 0 1361 2728 0.9669 0.0000

MLP D 37000 0 1235 2854 0.9699 0.0000

% 

Reduction in 

FPR Goal Met

FPR less 

than 0.6% Goal Met

FPR 

Difference 

vs. MLP Goal Met

FPR 

Difference 

v. J48 DT Goal Met

Accuracy 

Change

Improved/ 

Reduced

Model

ELMD9 + HMM DC & DD & DS -100.00% Yes 0.00% Yes 0.00% Yes / Tied -100.00% Yes -1.19% Reduced

Primary Goals Secondary Goals

FPR Reduction of 10% 

Compared to ELM Alone FPR less than 0.6% FPR vs. MLP FPR v. J48 DT Accuracy v. ELM Alone
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Training and Test Time Comparisons 

 

 Table 9 below provides a summary of CPU times for training and testing both the 

440K and DoS data sets using the same hardware.   ELM outperforms J48 DT, HMM, 

and MLP in terms of training time.  MLP takes orders of magnitude longer to train than 

ELM, J48 DT, or HMM.   

 

Table 9:  Training & Testing CPU Time Comparison by Classifier 
 

 
 

 

 

Comparisons to Other Literature 

 

For additional comparison purposes, Table 10 lists results from 17 research papers 

published between 2017 and 2019, including a total of 44 algorithms, that were based on 

the UNSW-NB15 data sets.  All included FPR and most included Accuracy results.  In 

some cases, FRP and Accuracy were derived from provided confusion matrices.  Care 

was taken to review the FPR formula used in each paper, to ensure a valid comparison, 

since some researchers referred to FPR as FAR or Fall Out.  Additionally, seven of the 

key results from Tables 4 and 7 were also replicated in Table 10 for comparison 

purposes. 

  

Data Set Attributes Classifier

Training 

Time (s)

Testing 

Time (s)

24 ELM (average, n=10) 2.95 0.56

24 J48 DT 37.50 0.09

1 HMM (average, n=2) 139.66 0.26

ELM + HMM 282.27 1.08

24 MLP 30213.62 11.91

11 ELM (average, n=10) 0.97 0.19

11 J48 DT 3.14 0.03

1 HMM (average, n=3) 6.09 0.05

ELM + HMM 19.24 0.34

11 MLP 13058.10 4.13

440K

DoS
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Table 10:   Comparisons to Other Research Using UNSW-NB15 Data Sorted by FPR 
 

 
 

 
 
 
 

Reference UNSW-NB15 Data Set Algorithm FPR Accuracy

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset SVM 0.4164 0.7936

Wang, Xu, Lee, & Lee (2018) Train (50%) & Test Subset MLP 0.4029 0.8161

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset Multinominal NB 0.3800 0.7675

Wang, Xu, Lee, & Lee (2018) Train (50%) & Test Subset C-ELM (CAI) 0.3646 0.8274

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset ANN 0.3611 0.8329

Valero León (2017) Full 2.54M records Snort  (signature-based) 0.3066 0.6087

Benmessahel, Xie, Chellal, & Semong (2019) Train & Test Subset ANN w/ Genetic Algorithm 0.2910 0.8644

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset Deep Belief Network 0.2788 0.8602

Vinayakumar, et al. (2019) Train & Test Subset (Normal Traffic) Deep Neural Network 0.2640 0.7970

Wang, Xu, Lee, & Lee (2018) Train (25%) & Test Subset SVM 0.2554 0.8587

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset KNN 0.2519 0.8538

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset RF 0.2315 0.8756

Yang,  Zheng, Wu, & Yang (2019) Train & Test Subset Deep Neural Network 0.1901 0.8908

Yang, Zheng, Wu, Niu, & Yang (2019) Train & Test Subset Deep Belief Network 0.1715 0.9021

Benmessahel, Xie, Chellal, & Semong (2019) Train & Test Subset ANN w/ Particle Swarm Optimization 0.1478 0.9242

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records KNN 0.1148 0.8664

Benmessahel, Xie, Chellal, & Semong (2019) Train & Test Subset ANN w/ Locust Swarm Optimization 0.0940 0.9542

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records SVM 0.0873 0.9260

Tama & Rhee  (2019) Subset 20% Gradient Boosted Machine (hold out) 0.0860 0.9131

Valero León (2017) Full 2.54M records DT  0.0857 0.9228

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records Classification & Regression Tree 0.0851 0.9023

Kamarudin, Maple, Watson, & Safa (2017) Subset 27K records Random Forest DT w/ AdaBoost 0.0830 0.9027

Moustafa, Turnbull, & Choo (2018) DNS Traffic Subset NB 0.0825 0.9117

Kamarudin, Maple, Watson, & Safa (2017) Subset 27K records Random Forest DT w/ LogitBoost 0.0822 0.9033

Muna, Moustafa, & Sitnikova (2018) Train & Test Subset Deep Auto Encoder 0.0820 0.9240

Moustafa, Turnbull, & Choo (2018) DNS Traffic Subset ANN 0.0787 0.9261

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records Random Forest 0.0656 0.9372

Bamakan, Wang, & Shi (2017) Train & Test Subset SVM 0.0612 0.8465

Moustafa, Creech,  & Slay (2017) Train & Test Subset Finite Dirichlet Mixture Model 0.0588 0.9430

Moustafa, Turnbull, & Choo (2018) DNS Traffic Subset DT 0.0522 0.9532

Moustafa, Slay, & Creech (2017) Inferred Train & Test Subset Beta Mixture Model 0.0510 0.9280

Tchakoucht & Ezziyyani (2018) Train & Test Subset Recurrent Neural Network 0.0510 --

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records Outlier Gaussian Mixture 0.0472 0.9519

Moustafa, Turnbull, & Choo (2018) HTTP Traffic Subset ANN 0.0426 0.9627

Moustafa, Turnbull, & Choo (2018) HTTP Traffic Subset NB 0.0418 0.9591

Moustafa, Adi, Turnbull, & Hu (2018) Inferred Full 2.54M records Beta Mixture HMM 0.0382 0.9632

Moustafa, Turnbull, & Choo (2018) HTTP Traffic Subset DT 0.0343 0.9713

Tama & Rhee  (2019) Subset 20% Gradient Boosted Machine (10 fold) 0.0297 0.9508

Moustafa, Turnbull, & Choo (2018) HTTP Traffic Subset Ensemble 0.0258 0.9897

Vinayakumar, et al. (2019) Train & Test Subset (Normal Traffic) NB 0.0250 0.8370

This Research (from Table 4) Subset 440K records MLP1 0.0250 0.9783

Bamakan, Wang, & Shi (2017) Train & Test Subset SVM 0.0246 0.9352

This Research (from Table 4) Subset 440K records MLP2 0.0201 0.9801

This Research (from Table 4) Subset 440K records DT (J48 - 1) 0.0159 0.9833

This Research (from Table 4) Subset 440K records ELM11 0.0158 0.9834

Moustafa, Turnbull, & Choo (2018) DNS Traffic Subset Ensemble 0.0138 0.9954

Igbe (2019) Train & Test (DoS) Artificial Immune System 0.0134 0.9811

This Research (from Table 7) Train & Test (DoS) J48 D 0.0071 0.9855

This Research (from Table 4) Subset 440K records DT (J48 - 2) 0.0068 0.9886

Alhaidari & Zohdy (2018) Training/Testing (80%/20%) HMM 0.0038 0.9641

This Research (from Table 4) Subset 440K records ELM14 + HMM C&S 0.0031 0.9879

This Research (from Table 4) Subset 440K records ELM11 + HMM C&S 0.0028 0.9901

This Research (from Table 7) Train & Test (DoS) ELM9 + HMM DS, DD, &DC 0.0000 0.9669

This Research (from Table 7) Train & Test (DoS) MLP D 0.0000 0.9699
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Summary of Results 

 

 The primary evaluation metric for this research was FPR.  For Experiment A 

(time-ordered data), Tables 4 and 5 demonstrate that the combined model of ELM with 

HMMs in a situation awareness framework using a unanimous voting scheme achieved 

the goals of an FPR reduction of 10%, an FPR under 0.6%, and a better FPR than either a 

J48 DT or MLP classifier using the same data sets.  This was achieved for both models 

using 18 attributes as well as 24 attributes.  However, the difference between 18 and 24 

attributes and 60 and 125 hidden neurons was not overly significant as shown in Table 4. 

 For experiment B, which was using DoS traffic (non-time ordered), the primary 

goals of an FPR reduction of 10% and an FPR under 0.6% were also met.  The secondary 

goals of a better FPR than either a J48 DT or MLP classifier were achieved for the J48 

DT but resulted in a tie for the MLP classifier since both solutions had an FPR of 0%.  

With the FPR being 0%, that was a 100% reduction from ELM alone but that resulted in 

a slight degraded Accuracy rate.   Also, for experiment B, two of the three HMMs had a 

perfect and almost perfect TPR but very poor FPR performance.  However, due to the 

unanimous voting scheme, the very high rates of false positives were cancelled out for 

the overall ensemble. 
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Chapter 5 
 

Conclusions, Summary, Implications, & Recommendations 

 

This research demonstrates that false positives can be better minimized, while 

maintaining detection accuracy, by combining ELM and HMMs as classifiers within the 

context of a situation awareness framework.  This research was performed using the 

UNSW-NB15 data set which is more representative of contemporary cyber-attack and 

normal network traffic than older data sets typically used in IDS research.  It is shown 

that this approach provides better results than either HMM or ELM alone and with a 

lower FPR than other comparable approaches that also used the UNSW-NB15 data set. 

 

Conclusions  

 The overall approach proved effective for both time-ordered and non-time ordered 

data but for likely different reasons.  For the 440K data set, the two HMMs demonstrated 

very good Accuracy rates even as a single attribute classifier.   The Accuracy was 0.9889 

and 0.9847 for HMMs C and S respectively.  The Information Gain merit for those 

attributes, from Appendix B, was 0.614 and 0.593 respectively which wouldn’t seem to 

support those type of Accuracy results.  Thus, the Accuracy is likely due to a boost in 

predictive ability due to patterns in the time sequence data associated with each of those 

attributes.   
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 However, for the DoS data set, two of the HMMs, DS and DD, both had poor 

Accuracy rates of 0.5424 and very high FPRs.  DS was also constructed from the feature 

sttl which is the same feature used for HMM S for the 440K data set.  For the DoS data 

set sttl showed an Information Gain merit of 0.300 (Appendix E).  HMM DD was created 

from feature dttl, destination Time to Live, and had a merit of 0.316.  The overall result 

would seem to indicate that there was no temporal pattern to boost the individual 

Accuracy.  The third HMM, HMM DC, based on feature ct_dst_sport_ltm had a merit of 

only 0.165 but performed much better as a single attribute classifier with an Accuracy of 

0.9194 as compared to HMMs DS & DD.  Overall, the poor HMM individual 

performance from the DoS data set as compared to the 440K data set supports evidence 

of a temporal pattern in the time-ordered data.  Given most real-world IDSs ingest such 

time ordered data, this boosts the case for evaluations using time-ordered data sets vs. 

those that have been shuffled from techniques such as cross-validation. 

 Of other note for feature selection is that sttl showed up in the CFS selection 

subsets for both 440K and DoS.  This is likely since sttl was noted as being a feature that 

has relevance in more than one type of attack (Moustafa & Slay, 2017; Janarthanan & 

Zargari, 2017).   So, given the 440K data set has nine categories of attack, that makes the 

feature more valuable when the task is to detect any attack versus a particular type of 

attack.   

 So, despite the poor performance of the DoS HMMs, the overall result still ended 

up at an FPR of 0%.  This highlights one of the benefits of a unanimous voting scheme.  

All it takes is one classifier to disagree on an attack to negate incorrect decisions by other 
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classifiers.  HMM DS had a perfect TPR of 100% while HMM DD was virtually at 

100%.  But the excessive number of FPs significantly hurt both the FPR and the 

Accuracy calculations.  However, the ELMs had generally low FPs for the DoS data set.  

Thus, when combined, there was a perfect FPR at only a slightly reduced Accuracy.  It 

should be noted that the MLP also had a perfect FPR of 0%.  This is likely since the DoS 

attacks used to create the data set have more distinctive patterns than other types of attack 

and are less complex to model. 

 In terms of comparison to other research papers using UNSW-NB15, the 

approach in this research compared very favorably to FPR and Accuracy metrics from 

other research in Table 10.  However, many researchers use different parts of UNSW-

NB15 and sometimes they are not clear on the parts they are using and the attributes 

chosen.  Thus, the comparisons to other research are indirect but still directional.   

 The most direct comparison from the table is for Igbe (2019) who used an 

Artificial Intelligence System scheme on UNSW-NB15 Test and Train data set for just 

Normal and DoS traffic.  Igbe (2019) had achieved an FPR of 0.0134 with an Accuracy 

of 0.9811.  That compares to the FPR of 0.0000 and an Accuracy of 0.9669 for the ELM 

plus HMM solution proposed by this research.  So, while this solution achieved a better 

FPR, the goal of the research, Igbe (2019) did have a slightly better Accuracy. 

 In terms of training time, the results of this research confirm the ELM trains very 

quickly.  As shown in Table 9, for the DoS data set, the ELM trained in 0.97 seconds of 

CPU time.  The MLP took 13058.10 CPU seconds on the same hardware.  That is one 

second to train for the ELM versus more than 3 hours for the MLP.  The ELM combined 

with the three HMM models took 19.24 seconds to train.  The MLP, in this case, 
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achieved the same 0% FPR as the combined model with a 0.3% increase in Accuracy.  

The question is whether that is worth an extra three plus hours of CPU time which, of 

course, would be application dependent.  For the 440K data set, the MLP took over eight 

hours of CPU time compared to just under three seconds for the ELM model.  Other 

research has shown that ELM needs up to four orders of magnitude in less time to train as 

compared to ANNs using Back Propagation (Wang & Huang, 2005).  This research 

supports that conclusion. 

The experiment with the number of hidden neurons to use for ELM confirms that 

ELM is very stable across a wide range of hidden nodes but performance can degrade 

with too few or too many neurons (Huang, Zhu, and Siew, 2006).  As seen in figures six 

through nine, the Accuracy of the system rises quickly as neurons are added from zero 

but eventually levels off with smaller improvements as more neurons are added.  The 

FPR results tend to oscillate in a band once the system approaches a steady state as more 

neurons are added. 

Differences Among Algorithms 

 To summarize the difference in algorithm performance in terms of Accuracy and 

FPR, the HMMs performed very well on the time-ordered 440K data set as shown in 

Table 4.  They had better FPRs individually than both MLP models that used 18 and 24 

features as well as several of the 18 and 24 feature ELM models.  The HMMs performed 

much better than would be expected from their information gain merit alone as single 

feature classifiers.  This was most likely due to their detection of temporal patterns in the 

data.  This conclusion is further supported by the results of the non-time ordered DoS 

Train & Test data set.   
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 In the DoS case, two of the three HMMs performed poorly as shown in Table 7 as 

was anticipated from non-time ordered data.  This performance is closer to what would 

have been expected for a single feature classifier based on their information gain merit.  

However, HMM DC performed relatively well.  This is likely since it was a derived 

feature involving the number of connections between the same destination address and 

source port and that was a good indicator for detecting the type of DoS attacks used in the 

data set. 

 The J48 DTs had mixed results with generally good performance on the 440K 

data set where both the 18 and 24 feature versions had a better FPR than many of the 

ELM models, some of the HMM models, and both of the MLP models.  However, both 

the MLP and all of the ELM models had a lower FPR than the J48 DT for the DoS data 

set.  And the MLP had one of the best performances on the DoS data set with a 0% FPR. 

 Overall, accounting for training time and results, this research supports prior 

findings that ELM has shown its versatility to minimize false positives (Zong et al., 2013; 

Fossaceca et al., 2015).  ELM also had the lowest training times of any of the algorithms 

as shown in Table 9 especially when compared to MLPs.  

The one constant among algorithms is that the combined model using a 

unanimous voting scheme had the best performance (or was tied for best performance) 

for FPR.  Lin et al. (2003) had previously demonstrated that a combination of classifiers 

can result in a significant accuracy improvement.  

Feature Selection Anomalies 

For feature selection using Information Gain on the 440K data set, two data points 

representing features stand out on Figures 4 and 5 which graph the Accuracy and FPR by 



    95 

number of features respectively.  Both have a lower Accuracy and higher FPR than 

would be indicated by a trend line.  A similar anomaly is seen with the DoS data set for 

two feature points as shown in Figures 8 and 9.  While inconsequential, since none of the 

features in question were chosen for the experiments, the most likely explanation is that 

there was a slight variation in distributions between the respective test and training data 

that caused some observations to skew which can affect the FPR.   This phenomenon was 

discussed in the statistical analysis of the UNSW-NB15 data set by Moustafa and Slay 

(2016). 

 

Summary 

A primary purpose of this research was to extend promising emerging research 

into ELM as a classifier, in conjunction with HMMs using a situation awareness 

framework, to minimize false positives while maintaining accuracy.  That goal was 

achieved given the evaluation criteria.   

More broadly, the intent was to further the use of ML based anomaly detection 

techniques which have shown promise of detecting indications of novel cyber-attacks but 

still typically generate more false positives than signature-based methods (Pao et al., 

2015).  Incidentally, Valero León (2018), who created an ML based model using UNSW-

NB15 data, used a version of Snort with the then most recent signatures and achieved an 

FPR of 30.66% compared to 8.57% with an anomaly-based method, DT, using the same 

training and testing data.   Hence, in this one instance, a signature-based approach 

generated a much higher than expected FPR. 
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Another research goal was to use a recent and relevant set of comprehensive 

benchmark data, containing both cyber-attack and normal traffic.  This research used 

UNSW-NB15 (Moustafa & Slay, 2015) which achieved that goal.  Researchers such as 

Sommer and Paxton (2010), pointed out that the cybersecurity landscape has changed 

significantly since the creation of the KDD99 data and that they do not consider 

experiments that use older data sets such as KDD99 relevant anymore.  And more 

recently, Khammassi and Krichen (2017) had stated that the NIDS research community 

now considers UNSW-NB15 a new benchmark data set to be used for evaluations of 

IDSs.  However, there is still a gap in the literature on ample published research for 

comparison purposes which will likely take some time to close.  But given that 17 papers 

(as shown in Table 10) published between 2017 through mid-year 2019 provided 

comparable results for FPR using UNSW-NB15, this gap is clearly closing. 

However, given the needs of different researchers, more than 10 different portions 

up to and including the full data set of UNSW-NB15 (as listed in the UNSW-NB15 data 

set column) were used in the 17 papers cited.  Different research also used different 

feature selection methods.  But these still provide a better comparison to the literature 

than using results from older data sets such as KDD99.  

 This research also used the three situation awareness components defined by 

Endsley (1988).  The first stage, perception, was accomplished with a network-based 

(NIDS) anomaly-detection engine for intrusion detection using an ELM as the primary 

classifier.   

The second stage, comprehension, which achieved the goal of further reducing 

false positives and improving accuracy, was accomplished using a post processing 
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approach and implemented using HMMs.  Treinen and Thurimella (2009) stated that 

HMMs are very effective at detecting all types of attacks by acting as an anomaly 

detector over a set of IDS alarms thus providing a low rate of false positives and high rate 

of alarm reduction.   The results in Tables 5 and 8 demonstrate that point with significant 

reductions in FPR after combining the ELM results with the HMMs used for this 

research.  The temporal aspect from the HMMs provided better context around 

interactions in time compared to a more traditional IDS approach that is just looking at a 

single event in space.  

The third phase, projection, was a decision informed by the perception and 

comprehension stages, in space and time, on whether a given alert from the perception 

stage should be put forth to a human operator or an automated action as an intrusion alert.  

This was the combined output of the ELM and HMM classifiers.   

 An ELM was chosen as a classifier for the perception phase based on the positive 

results as a classifier for IDS (Fossaceca et al., 2015).  While ELM research only goes 

back to Huang, Zhu, and Siew (2004) with the first IDS-based research from Cheng et al. 

(2012), ELM has shown its versatility to minimize false positives (Zong et al., 2013).   

But given the random initialization, ELM results can vary quite a bit, within a range, as 

seen in Tables 4 and 7.  To mitigate this, multiple runs can be considered as part of a 

training and validation step prior to testing. 

A combined approach was also used since prior research had shown positive 

results in reducing false positives in IDS using post processing (Spathoulas & Katsikas, 

2013b).  Other hybrid results had yielded positive results such as using a KNN followed 
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by ELM (Akusok et al., 2014) and a NB to HMM (Karthick et al., 2012) for malware 

detection.   

The primary evaluation metric for this research was FPR.  Table 5 demonstrated 

that the combined classifier did have the lowest or the same FPR including against an 

MLP and J48 DT using the same testing and training data.  The goal was that the addition 

of the HMMs would reduce the FPR by at least 10% compared to the ELM classifier 

alone and have an FPR of less than 0.6%.  Those goals were exceeded.   

This approach is novel as an extension of drawing upon several separate research 

results by combining the positive aspects of each one.  While there have been various 

hybrids using either HMM or ELM for IDS, it is believed this approach was the first to 

use a combination of an ELM with multiple HMMs for IDS.  It is further unique in its use 

of these classifiers in a situation awareness framework for network intrusion detection.  

 

Implications 

Given the increased stakes as a result of cyber-attacks, the need for faster and 

more automated responses to indications of a potential cyber-attack is critical.  Many 

commercial IDSs and related systems are capable of blocking traffic in real-time, by 

source IP address for example, based on intrusion alerts.  However, as discussed, an 

action based on a false positive with an automated response could deny resource access to 

legitimate users or tasks that could be unacceptable based on the circumstance.  Thus, 

steps, such as demonstrated by this research, to further reduce false positives will help to 

achieve better threat detection and response. 

 



    99 

Recommendations 

 While this research has highlighted the versatility of ELM and the ability to make 

ELM better using situation awareness in conjunction with HMMs, there is ample 

opportunity to extend this research to both further reduce FRP and improve accuracy.  

One area of additional research would be to evaluate the feature selection process.  This 

research used both information gain (Kayacik et al., 2005) and CFS (Hall, 2000).  

However, other studies that were cited, even those using similar feature selection 

methods, have come up with widely varying results using different subsets of UNSW-

NB15.   So, further research on feature selection methods would be warranted.  Likewise, 

a further evaluation of which features produce the best temporal results with HMMs, 

beyond the features chosen, would likely provide other interesting insights. 

 The choice of testing and training data is another area for study.  Different 

research has used different portions of the UNSW-NB15 data set.  Questions such as the 

optimal training and testing data split, how varying the number of records impacts the 

results, and how to best choose sequential data for time-series analysis could be further 

studied. 

 Other researchers, as discussed, had also modified the ELM algorithm itself.  For 

example, Castaño et al. (2013) introduced PCA-ELM which eliminated the random 

initialization of the weights and determined them based on a PCA of the training data.  

So, another avenune of further research would be to evaluate variations of the ELM 

algorithms and their impact on FPR.  Variations of key ELM parameters such as the 

optimal number of hidden neurons and the best activation function could also be further 

explored. 
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For the HMM classifiers, experiments could be done to determine if more than 

two or three HMM classifiers improve the results.  For the third phase of projection, this 

research used a unanimous voting scheme where a record was marked as an attack only if 

the ELM and the HMM models agreed.  Variations on this could also be explored such as 

by weighting the results from each model and using discrete thresholds for the ELM and 

HMMs instead of binary ones for each model. 

Another avenue of inquiry would be to determine how ELM, or a similar 

combination with HMMs, could better reduce the FNR while also maintaining Accuracy.  

This could help to better ferret out indications of compromise which might not alarm.  

Overall, this research provided promising results and has hopefully provided insights for 

additional exploration and improvement opportunities. 
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Appendix A 

 

UNSW-NB15 Features Description for Experiment A (Full 2.54M) 

(Moustafa & Slay, 2015) 

 
Table 11:  UNSW-NB15 Features Description  

 

 

No. Name Type Description

Flow Features

1 srcip nominal Source IP address

2 sport integer Source port number

3 dstip nominal Destination IP address

4 dsport integer Destination port number

5 proto nominal Transaction protocol

Basic Features

6 state nominal

Indicates to the state and its dependent protocol, e.g. ACC, CLO, CON, ECO, ECR, FIN, INT, MAS, 

PAR, REQ, RST, TST, TXD, URH, URN, and (-) (if not used state)

7 dur Float Record total duration

8 sbytes Integer Source to destination transaction bytes 

9 dbytes Integer Destination to source transaction bytes

10 sttl Integer Source to destination time to live value 

11 dttl Integer Destination to source time to live value

12 sloss Integer Source packets retransmitted or dropped 

13 dloss Integer Destination packets retransmitted or dropped

14 service nominal http, ftp, smtp, ssh, dns, ftp-data ,irc  and (-) if not much used service

15 Sload Float Source bits per second

16 Dload Float Destination bits per second

17 Spkts integer Source to destination packet count 

18 Dpkts integer Destination to source packet count

Content Features

19 swin integer Source TCP window advertisement value

20 dwin integer Destination TCP window advertisement value

21 stcpb integer Source TCP base sequence number

22 dtcpb integer Destination TCP base sequence number

23 smeansz integer Mean of the flow packet size transmitted by the src 

24 dmeansz integer Mean of the flow packet size transmitted by the dst 

25 trans_depth integer Represents the pipelined depth into the connection of http request/response transaction

26 res_bdy_len integer Actual uncompressed content size of the data transferred from the serverís http service.

Time Features

27 Sjit Float Source jitter (mSec)

28 Djit Float Destination jitter (mSec)

29 Stime Timestamp record start time

30 Ltime Timestamp record last time

31 Sintpkt Float Source interpacket arrival time (mSec)

32 Dintpkt Float Destination interpacket arrival time (mSec)

33 tcprtt Float TCP connection setup round-trip time, the sum of ísynackí and íackdatí.

34 synack Float TCP connection setup time, the time between the SYN and the SYN_ACK packets.

35 ackdat Float TCP connection setup time, the time between the SYN_ACK and the ACK packets.

Additional Generated Features

36 is_sm_ips_ports Binary

If source (1) and destination (3) IP addresses equal and port numbers (2)(4)  equal then, this variable 

takes value 1 else 0

37 ct_state_ttl Integer No. for each state (6) according to specific range of values for source/destination time to live (10) (11).

38 ct_flw_http_mthd Integer No. of flows that has methods such as Get and Post in http service.

39 is_ftp_login Binary If the ftp session is accessed by user and password then 1 else 0. 

40 ct_ftp_cmd integer No of flows that has a command in ftp session.
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No. Name Type Description

Connection Features

41 ct_srv_src integer

No. of connections that contain the same service (14) and source address (1) in 100 connections 

according to the last time (26).

42 ct_srv_dst integer

No. of connections that contain the same service (14) and destination address (3) in 100 connections 

according to the last time (26).

43 ct_dst_ltm integer

No. of connections of the same destination address (3) in 100 connections according to the last time 

(26).

44 ct_src_ ltm integer No. of connections of the same source address (1) in 100 connections according to the last time (26).

45 ct_src_dport_ltm integer

No of connections of the same source address (1) and the destination port (4) in 100 connections 

according to the last time (26).

46 ct_dst_sport_ltm integer

No of connections of the same destination address (3) and the source port (2) in 100 connections 

according to the last time (26).

47 ct_dst_src_ltm integer

No of connections of the same source (1) and the destination (3) address in in 100 connections 

according to the last time (26).

Labelled Features

48 attack_cat nominal

The name of each attack category. In this data set, nine categories:  Fuzzers, Analysis, Backdoors, DoS 

Exploits, Generic, Reconnaissance, Shellcode and Worms

49 Label binary 0 for normal and 1 for attack records
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Appendix B 

Information Gain Analysis of UNSW-NB15 Features for Experiment A 

 
Table 12:  Experiment A:  Information Gain Analysis of UNSW NB-15 Features  

 

 
 

  

Rank Attribute # Attribute Name Merit

1 8 sbytes 0.637

2 3  dstip 0.629

3 1  srcip 0.618

4 37 ct_state_ttl 0.614

5 10 sttl 0.593

6 15 Sload 0.563

7 23 smeansz 0.541

8 11 dttl 0.330

9 9 dbytes 0.329

10 24 dmeansz 0.303

11 7 dur 0.290

12 32 Dintpkt 0.278

13 16 Dload 0.274

14 18 Dpkts 0.261

15 46 ct_dst_sport_ltm 0.258

16 45 ct_src_dport_ltm 0.214

17 33 tcprtt 0.212

18 34 synack 0.209

19 35 ackdat 0.209

20 4 dsport 0.204

21 31 Sintpkt 0.201

22 6 state 0.201

23 43 ct_dst_ltm 0.196

24 2 sport 0.192

25 44 ct_src_ ltm 0.167

26 17 Spkts 0.165

27 27 Sjit 0.161

28 28 Djit 0.160

29 47 ct_dst_src_ltm 0.156

30 42 ct_srv_dst 0.154

31 41 ct_srv_src 0.146

32 13  dloss 0.141

33 12 sloss 0.133

34 5 proto 0.122

35 19 swin 0.083

36 21 stcpb 0.082

37 22 dtcpb 0.082

38 20 dwin 0.082

39 29 Stime 0.081

40 30 Ltime 0.078

41 14 service 0.059

42 26 res_bdy_len 0.031

43 25 trans_depth 0.001

44 36 is_sm_ips_ports 0.000

45 38 ct_flw_http_mthd 0.000

46 40 ct_ftp_cmd 0.000

47 39 is_ftp_login 0.000
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Appendix C 

 

HMM Parameters for Experiment A 

 
For HMM S 

 

Initial estimates:  
 

estTR = 
 
    0.9776    0.0070    0.0154 
    0.2503    0.2610    0.4887 
    0.0769    0.0596    0.8635 
 
 
estE = 
 
  Columns 1 through 8 
 
    0.0027    0.0011    0.0000    0.7722    0.1919    0.0046    0.0004    0.0028 
    0.0021    0             0             0             0             0.0134    0             0 
    0.0014    0             0             0             0             0.0737    0             0 
  
  Columns 9 through 11 
 
    0.0000    0.0240    0.0000 
    0             0.9843    0.0002 
    0             0.9249    0 
 
After Baum-Welch algorithm: 
 
estTR1 = 
 
    0.9703    0.0200    0.0097 
    0.4876    0.4560    0.0564 
    0.0474    0.0113    0.9413 
 
 
estE2 = 
 
  Columns 1 through 8 
 
    0.0008    0.0012    0.0000    0.7804    0.1939    0.0022    0.0004    0.0029 
    0.0562    0             0             0             0             0.3591    0             0 
    0.0000    0             0             0             0             0.0169    0             0 
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  Columns 9 through 11 
 
    0.0000    0.0181    0.0000 

0          0.5843    0.0004 
    0             0.9831    0 
 
For HMM C 

 
Initial estimates: 
 
estTRC = 
 
    0.9776    0.0070    0.0154 
    0.2503    0.2610    0.4887 
    0.0769    0.0596    0.8635 
 
 
estEC = 
 
    0.9723    0.0174    0.0064    0.0021    0.0018 
    0.0030    0.5363    0.4453    0         0.0154 
    0.0040    0.1179    0.8735    0.0010    0.0036 
 
 
After Baum-Welch algorithm: 
 
estTRC1 = 
 
    0.9710    0.0206    0.0084 
    0.4577    0.4734    0.0689 
    0.0439    0.0138    0.9423 
 
 
estEC1 = 
 
    0.9812    0.0128    0.0032    0.0023    0.0005 
    0.0000    0.8028    0.1434    0         0.0538 
    0.0001    0.0399    0.9598    0.0002    0.0001 
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Appendix D 

 

UNSW-NB15 Features Description for Experiment B (Train and Test) 

(Moustafa & Slay, 2015; Moustafa & Slay, 2016) 

 
 
Table 13:  UNSW-NB15 Features Description for the Train and Test Data Set 
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No. Name Type Description

0 id integer unique id number

1 dur Float Record total duration

2 proto nominal Transaction protocol

3 service nominal http, ftp, smtp, ssh, dns, ftp-data ,irc  and (-) if not much used service

4 state nominal

Indicates to the state and its dependent protocol, e.g. ACC, CLO, CON, ECO, ECR, 

FIN, INT, MAS, PAR, REQ, RST, TST, TXD, URH, URN, and (-) (if not used state)

5 spkts integer Source to destination packet count 

6 dpkts integer Destination to source packet count

7 sbytes Integer Source to destination transaction bytes 

8 dbytes Integer Destination to source transaction bytes

9 rate Float rate

10 sttl Integer Source to destination time to live value 

11 dttl Integer Destination to source time to live value

12 sload Float Source bits per second

13 dload Float Destination bits per second

14 sloss Integer Source packets retransmitted or dropped 

15 dloss Integer Destination packets retransmitted or dropped

16 sintpkt Float Source interpacket arrival time (mSec)

17 dintpkt Float Destination interpacket arrival time (mSec)

18 sjit Float Source jitter (mSec)

19 djit Float Destination jitter (mSec)

20 swin integer Source TCP window advertisement value

21 stcpb integer Source TCP base sequence number

22 dtcpb integer Destination TCP base sequence number

23 dwin integer Destination TCP window advertisement value

24 tcprtt Float TCP connection setup round-trip time, the sum of ísynackí and íackdatí.

25 synack Float TCP connection setup time, the time between the SYN and the SYN_ACK packets.

26 ackdat Float TCP connection setup time, the time between the SYN_ACK and the ACK packets.

27 smean integer Mean of the flow packet size transmitted by the src 

28 dmean integer Mean of the flow packet size transmitted by the dst 

29 trans_depth integer Represents the pipelined depth into the connection of http request/response transaction

30 response_body_len integer Actual uncompressed content size of the data transferred from the serverís http service.

31 ct_srv_src integer

No. of connections that contain the same service (14) and source address (1) in 100 

connections according to the last time (26).

32 ct_state_ttl Integer

No. for each state (6) according to specific range of values for source/destination time 

to live (10) (11).

33 ct_dst_ltm integer

No. of connections of the same destination address (3) in 100 connections according to 

the last time (26).

34 ct_src_dport_ltm integer

No of connections of the same source address (1) and the destination port (4) in 100 

connections according to the last time (26).

35 ct_dst_sport_ltm integer

No of connections of the same destination address (3) and the source port (2) in 100 

connections according to the last time (26).

36 ct_dst_src_ltm integer

No of connections of the same source (1) and the destination (3) address in in 100 

connections according to the last time (26).

37 is_ftp_login Binary If the ftp session is accessed by user and password then 1 else 0. 

38 ct_ftp_cmd integer No of flows that has a command in ftp session.

39 ct_flw_http_mthd Integer No. of flows that has methods such as Get and Post in http service.

40 ct_src_ ltm integer

No. of connections of the same source address (1) in 100 connections according to the 

last time (26).

41 ct_srv_dst integer

No. of connections that contain the same service (14) and destination address (3) in 100 

connections according to the last time (26).

42 is_sm_ips_ports Binary

If source (1) and destination (3) IP addresses equal and port numbers (2)(4)  equal 

then, this variable takes value 1 else 0

43 attack_cat nominal

The name of each attack category. In this data set, nine categories:  Fuzzers, Analysis, 

Backdoors, DoS Exploits, Generic, Reconnaissance, Shellcode and Worms

44 Label binary 0 for normal and 1 for attack records
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Appendix E  

Information Gain Analysis for Experiment B 

 
 

Table 14:  Experiment B:  Information Gain Analysis of UNSW NB-15 Features 
  

 
  

Rank Attribute # Attribute Name Merit

1 7 sbytes 0.546

2 27 smean 0.479

3 2 proto 0.453

4 12 sload 0.442

5 8 dbytes 0.356

6 9 rate 0.356

7 1 dur 0.346

8 28 dmean 0.323

9 11 dttl 0.316

10 32 ct_state_ttl 0.305

11 10 sttl 0.300

12 17 dinpkt 0.287

13 13 dload 0.285

14 6 dpkts 0.283

15 4 state 0.244

16 16 sinpkt 0.229

17 25 synack 0.188

18 24 tcprtt 0.188

19 5 spkts 0.183

20 26 ackdat 0.179

21 35 ct_dst_sport_ltm 0.165

22 19 djit 0.164

23 14 sloss 0.157

24 18 sjit 0.154

25 15 dloss 0.152

26 20 swin 0.118

27 21 stcpb 0.111

28 22 dtcpb 0.111

29 23 dwin 0.111

30 34 ct_src_dport_ltm 0.061

31 36 ct_dst_src_ltm 0.055

32 3 service 0.051

33 30 response_body_len 0.038

34 41 ct_srv_dst 0.035

35 31 ct_srv_src 0.031

36 33 ct_dst_ltm 0.026

37 40 ct_src_ltm 0.021

38 42 is_sm_ips_ports 0.012

39 38 ct_ftp_cmd 0.003

40 37 is_ftp_login 0.003

41 39 ct_flw_http_mthd 0.001

42 29 trans_depth 0.000
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Appendix F 

 

  HMM Parameters for Experiment B 
 

 

 

 

HMM S 

 
estTRC = 
 
0.9759          0 0.0241 
0  0  0 
0.1100          0     0.8900 
 
 
estEC = 
 
  Columns 1 through 9 
 
    0.0511    0.0011    0.0000 0    0.7046     0    0.0001 0.0387    0.0006 
    0  0         0         0         0         0         0         0    0 
    0.0059         0         0         0         0         0         0     0.1024    0 
 
  Columns 10 through 13 
 
    0.0032    0.0000    0.2005    0.0000 
         0         0            0             0 
         0         0            0.8909    0.0008 
 
After Baum-Welch Algorithm 
 
estTRC1 = 
 
    0.9999         0    0.0001 
         0    1.0000         0 
    0.0001         0    0.9999 
 
 
estEC1 = 
 
  Columns 1 through 9 
 
    0.0035    0.0016    0.0000    0.0001    0.9663    0.0001    0.0001    0.0000    0.0008 
    0             0             0             0             0             0             0             0             0 
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    0.1017    0             0             0             0             0             0              0.1248   0 
 
  Columns 10 through 13 
 
    0.0044    0.0000    0.0231    0.0000 
    0             0             0             0 
    0             0             0.7732    0.0004 
 
 

HMM C  
 
estTRC = 
 
    0.9759         0    0.0241 
    0                  0    0 
    0.1100         0    0.8900 
 
 
estEC = 
 
  Columns 1 through 9 
 
    0.9201    0.0721    0.0035    0.0008    0.0003    0             0             0             0 
    0             0             0             0             0             0             0             0             0 
    0.4603    0.2644    0.1651    0.0646    0.0192    0.0034    0.0040    0.0098    0.0044 
 
  Columns 10 through 16 
 
    0             0.0003    0.0004    0.0004    0.0007    0.0007    0.0008 
    0              0             0             0             0             0             0 
    0.0049     0             0             0             0             0             0 
 
 
After Baum-Welch Algorithm: 
 
estTRC1 = 
 
    0.9924   0           0.0076 
    0            1.0000  0 
    0.0281   0           0.9719 
 
 
estEC1 = 
 
  Columns 1 through 9 
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    0.9712    0.0241    0.0010    0.0003    0.0002    0            0              0             0 
    0             0             0             0             0             0            0              0             0 
    0.3421    0.4126    0.1495    0.0568    0.0167    0.0029    0.0034    0.0083    0.0037 
 
  Columns 10 through 16 
 
    0             0.0003    0.0004    0.0004    0.0007    0.0007    0.0009 
    0             0             0             0             0             0             0 
    0.0041    0             0             0             0             0             0 
 
 

HMM D 

 

 
estTRC = 
 
    0.9759         0    0.0241 
    0                  0    0 
    0.1100         0    0.8900 
 
 
estEC = 
 
    0.1205    0.7046     0    0.0000         0    0.0013    0.1736         0   0.0000 
    0             0              0    0                  0    0              0                 0   0 
    0.7951    0              0    0                  0    0.0181    0.1868         0   0 
 
After Baum-Welch Algorithm 
 
estTRC1 = 
 
    0.9998         0    0.0002 
         0    1.0000         0 
    0.0002         0    0.9998 
 
 
estEC1 = 
 
    0.0180    0.9668    0.0001    0.0001    0.0001    0.0017    0.0133    0.0001    0.0001 
    0         0             0              0              0               0              0              0              0     
    0.5741     0            0               0              0           0.0081    0.4178          0              0 
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