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ABSTRACT Energy management systems for islanded microgrids often rely on predictions of energy

availability and usage. Such predictions can be used to plan actions, such as shedding non-essential loads,

so that critical loads continue to be served. However, uncertainties in the prediction models may lead to

incorrect decisions, and subsequently jeopardize reliable operation of the microgrid. For a photovoltaic (PV)

and battery based microgrid, uncertainties in the PV rating and the battery capacity model parameters

can lead to otherwise avoidable outages. In this paper, techniques have been developed to identify and

compensate for such model uncertainties. The approach uses differences between the actual and predicted

data sequences to determine compensation factors to improve prediction accuracy. The developed techniques

account for operating condition changes automatically, and no additional sensors are needed for their

implementation. The method has been evaluated using data from rooftop irradiance and temperature sensors

and the corresponding forecasts. It has been shown that the proposed techniques can improve the accuracy of

the predictions and hence lead to more effective energy management decisions. Together with a pre-emptive

load shedding strategy, the total outage time of the microgrid can be shortened by as much as 11% for the

chosen scenario.

INDEX TERMS Energy management, photovoltaic systems, microgrids, prediction model uncertainties.

NOMENCLATURE

B Battery unit dataset

Emax
batt Battery capacity (Wh)

Emax
batt-0 Uncompensated battery capacity (Wh)

F Interpolated forecast dataset

G Forecast irradiance (W/m2)

Gstc Standard test condition irradiance (W/m2)

i, j, k Index variables

kc Relative temperature coefficient (%/◦C)

L Load forecast dataset

L Threshold limit for determining a sunny day

M Number of non-zero elements in the datasets

N Number of elements in the stored datasets

P PV unit dataset

Pbatt Power measured at the battery unit (W)

P̂batt Battery power prediction (W)

P̂load Load prediction (W)

PPV Power measured at the PV unit (W)

P̂PV PV prediction (W)

Pmax
PV PV system rating (W)

Pmax
PV-0 Uncompensated PV system rating (W)

P̂PV-0 PV prediction based on the uncompensated

PV rating (W)

PPV-nor Normalized PV power values

P̂PV-nor Normalized PV power prediction values

PPV-nz Non-zero normalized PV power values
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P̂PV-nz Non-zero normalized PV power predictions

PPV-peak Daily peak of PV power (W)

P̂PV-peak Daily peak of predicted PV power (W)

RMSEPV Root-mean-square error between the

prediction and actual PV power

RMSEPV-nz Root-mean-square error between the

non-zero prediction and actual PV power

SOC Battery state-of-charge (%)

SOCmin Lower limit of the state-of-charge (%)

ŜOC Predicted state-of-charge (%)

ŜOC0 Uncompensated predicted SOC (%)

T Ambient Temperature forecast (◦C)

Tc PV cell temperature (◦C)

Tnoc Nominal operating cell temperature (◦C)

Tstc Standard test condition temperature (◦C)

1SOC Difference in SOC

1ŜOC Difference in SOC prediction

1SOC Mean of 1SOC

1ŜOC Mean of 1ŜOC

ǫb Battery unit fixed losses (W)

ηb Efficiency of the battery unit

ηchg Efficiency of the battery when charging

ηdis Efficiency of the battery when discharging

ηMPP Efficiency of the PV system at MPP

γPV Compensation factor for PV system rating

γbatt Compensation factor for battery capacity

τ Data collection interval (h)

I. INTRODUCTION

One of the fundamental objectives in microgrid operation

is to maintain a balance between available power and load

demand [1], so that the system frequency and voltage profile

are at desirable levels. Energy management systems (EMS)

often use predictions of near-term energy production and

load consumption in order to make effective operational

decisions to help maintain this balance in the foreseeable

future [2]–[5]. In the absence of dispatchable energy sources,

one may be forced to pre-emptively shed some less critical

loads in order to extend the operating duration for more

critical loads [6]. Hence, it is very important to have accurate

predictions of potential supply and expected consumption so

that the scheduling of such shedding can be performed effec-

tively to minimize unnecessary power curtailment or service

interruption.

To achieve high quality predictions, one must rely on accu-

rate models of the key system components. In an islanded

photovoltaic (PV) and battery based microgrid, as shown

in Fig. 1, the models of the PV subsystem and the battery sub-

system play a critical role [7], [8]. Any uncertainties in these

models will lead to inaccurate predictions, and thus result in

poor energy management decisions. These uncertainties can

vary with time, operating conditions, and environmental fac-

tors. Thus, it is highly desirable to identify these uncertainties

and correct them online in real-time [9].

FIGURE 1. An islanded microgrid with PV and battery storage,

with critical and sheddable loads.

Among all the variables, the weather forecasts and the load

demand play key roles in the decision-making process [10].

The information provided by the weather forecasts (e.g. those

available fromEnvironment Canada) includes point estimates

of the future irradiance and temperature levels at the PV

array site. This information can be used to predict PV power

production [11] by using the models of the PV array and the

associated power electronic converters with the forecasted

irradiance data [12]. A key parameter in the prediction model

is the power rating of the PV array used. Any uncertainties

there will result in either an overestimate or an underestimate

of the PV power production.

A battery model is used to estimate the amount of stored

energy. The accuracy of this model is also vital to ensure reli-

able operation of the microgrid. Even though different battery

models have been developed in the literature [13]–[15], a dis-

crete Coulomb-counting model is chosen herein to balance

its accuracy and computational effectiveness for real-time

implementation. This model is essentially based on calcula-

tions of the power flowing into and out of the battery. The

model also takes into account the losses in the charging and

discharging processes [10], [16], [17]. A key parameter of

interest herein is the battery storage capacity. Any uncertain-

ties in this parameter will result in an incorrect estimate of the

available stored energy.

If such models are used in a predictive EMS, these model

uncertainties will affect the quality of the energy manage-

ment decisions. For example, consider the EMS in [7], where

48 hour ahead predictions are used to schedule load shedding

to avert or reduce the duration of outages for critical loads.

If the predictions are incorrect, then either too much or too

little loadwill be shed. Since themicrogrid operates in closed-

loop, the effects of such model uncertainties may be masked,

and may not be immediately noticeable. However, over a

course of prolonged operation, the cumulative effects can

be detrimental. If these uncertainties can be identified and
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corrected subsequently in real time, both the duration and

the number of outages for critical loads can be reduced or

eliminated.

It is important to note that the uncertainties consid-

ered here differ from the inherent deviations between

the forecast and actual PV production. Such devia-

tions have been dealt with by using model-predictive

control [1], [18], robust optimization [19], [20], and stochas-

tic optimization [17], [21]. The impact of forecast uncertain-

ties on a demand response strategy is also explored in [22].

These forecast uncertainties are caused by the inherent

stochastic nature of weather conditions, specifically clouds

in the case of PV forecasting, and can therefore never be

completely eliminated. The model parameter uncertainties

under investigation in this work are instead relatively constant

or slowly changing over a long period of time. They represent

a constant source of error in the predictions, and as such

are worthy of correction or compensation. By removing this

persistent source of error, the overall prediction quality can

be ultimately improved, independent of the variations due

to forecast uncertainties. In comparison to the research on

forecast uncertainties, little work has been done on deal-

ing directly with uncertainties in the models used in the

prediction process.

Among the limited work in the literature, model uncertain-

ties are discussed and analyzed in [23], however it does not

investigate any compensation techniques. Another approach

to PV production estimation is presented in [24], which

calculates the parameters of the nonlinear PVUSA model

based on measured power, calculated clear-sky irradiance,

and forecasted temperature. The impacts of the discrepancies

between the actual and the predicted PV production in a

grid-connected microgrid have also been considered in [25].

In this case, a compensation factor based on the ratio of the

sum of the two latest consecutive actual PV measured power

and the sum of the corresponding two latest consecutive pre-

dicted PV production is proposed. This compensation factor

is then used to improve the PV power estimation in the model

predictive control scheme. However, given that the predicted

PV production based on the local weather forecast can deviate

significantly from the actual power production, particularly

over just the twomost recent sample points, the compensation

factors calculated using this approach will be sensitive to

volatile changing cloud conditions, since these samples are

taken every 30 minutes and can change drastically over this

period. This may lead to over- or under-compensation.

In this paper, model uncertainties in the PV system rat-

ing and battery storage capacity parameters are addressed

directly. A novel technique to compensate them has been

developed. The technique utilizes stored daily measurements

from the power electronic converters to achievemore accurate

predictions of the PV production and the battery state-of-

charge (SOC). For compensating uncertainties in the PV sys-

tem rating parameter, the technique uses the characteristics

of the daily PV profile under relatively cloud-free conditions

to determine the compensation, making it less sensitive to

short-term weather variations. It has been shown that the

developed technique can potentially improve the accuracy

of the PV production prediction by as much as 17%. It can

virtually eliminate all the errors caused by an uncertain bat-

tery capacity parameter in the SOC estimate in the chosen

scenarios. In combination with a pre-emptive load shedding

strategy, the EMS can reduce the total outage duration for

critical loads by 11% (for a modeled PV system overrating

of 14% and a battery capacity overrating of 12%), without

adding any additional hardware.

The paper is organized as follows: In Section II, the models

for the PV rating and the battery capacity have been estab-

lished and the nature of the uncertainties in these models have

been analyzed. Then, potential solutions to deal with them are

developed in Section III. Evaluation of these solutions has

been carried out in Section IV, together with validation and

verification. Finally, conclusions are drawn in Section V.

II. PREDICTION OF PV PRODUCTION

AND STORED ENERGY

A. SYSTEM DESCRIPTION

Consider the islanded microgrid shown in Fig. 1, which rep-

resents a small-scale application such as on top of a build-

ing or a remote monitoring station. The PV unit contains

a PV array (made up of panels of similar type and rating),

a dc-dc converter with a maximum power-point track-

ing (MPPT) algorithm, and a 3-phase inverter. The energy

storage unit includes a battery bank, a bidirectional dc-dc

converter, and a 3-phase inverter. The loads can be divided

into critical and non-critical groups. The critical loads should

be served with the highest priority, while the non-critical ones

may be shed if necessary to preserve energy for the former.

The EMS relies on 48-hour ahead forecasts of solar irradi-

ance and ambient temperature from an external provider, and

the prediction of the load consumption profile is based on

historical data. The EMS then predicts the battery SOC in

order to assess potential energy shortages or oversupply. This

information is used to make pre-emptive decisions to shed

a portion of the non-critical loads. The details, implementa-

tion, and benefits of this strategy have been described in [7].

However, it was assumed that there were no uncertainties

in the PV models, nor in the battery models, which was

an ideal case. The focus of the current investigation is to

deal with uncertainties in these models so that more accurate

predictions can be made. The proposed approach is a data

driven compensation technique.

B. DATA SEQUENCES

Assume that the measurements from the PV and battery units

are represented as data sequences sampled at an interval of τ .

For the PV unit, the dataset is represented by P:

P = {PPV[k] | k = 0, . . . ,N − 1} (1)

where PPV is the measured power in Watts (W) and N is the

size of the sequence.

VOLUME 5, NO. 4, DECEMBER 2018 131



IEEE Power and Energy Technology Systems Journal

The battery unit dataset can be represented by B:

B = {Pbatt[k],SOC[k] | k = 0, . . . ,N − 1} (2)

where Pbatt is the measured power in W flowing into or out

of the battery, and SOC is the state-of-charge which can be

obtained from the battery converter.

For the forecast irradiance, the interpolated irradiance is

represented by F

F = {(G[k],T [k]) | k = 0, . . . ,N − 1} (3)

where G and T are the forecast irradiance in W/m2 and

temperature in ◦C, respectively.

Finally, a load forecast is represented by L

L = {P̂load[k] | k = 0, . . . ,N − 1} (4)

where P̂load is the forecast load in W.

C. PV AND BATTERY MODELS

1) PV PREDICTION MODEL

The predicted PV power output at sample k , P̂PV[k], can

be obtained by using the irradiance forecast relationship as

follows [26]. First, the PV cell temperature Tc is estimated

based on the forecast irradiance and ambient temperature

using the following characteristic relations [27]

Tc = T [k] +
G[k]

800
(Tnoc − 20) (5)

where Tnoc is the nominal operating cell temperature

of 44.2 ◦C. The power output can then be calculated from

P̂PV[k] =
G[k]

Gstc
Pmax
PV (1 + kc(Tc − Tstc)ηMPP (6)

where Gstc = 1000 W/m2, kc = −0.430 %/◦C [28], Tstc =

25 ◦C, and ηMPP is the efficiency of the PV unit at the

maximum power point.

2) BATTERY PREDICTION MODEL

Any difference between the PV generation and the load

demand must be balanced by the battery through sup-

ply (P̂batt > 0) or absorption (P̂batt < 0). Hence, the battery

power can be expressed as

P̂batt[k] = P̂load[k] − P̂PV[k]. (7)

The relationship between the predicted stored energy, rep-

resented as a percentage of the total battery capacity, and

the charging/discharging power can be represented with an

accumulation equation

ŜOC[k] = ŜOC[k − 1]−
100%

Emax
batt

(P̂batt[k]−ǫb)τηb(P̂batt[k]).

(8)

where SOC[k] is the predicted energy in the bat-

tery at k , and ǫb and ηb(P̂batt[k]) are parameters that

account for the losses and the efficiency of the battery

charging/discharging systems, respectively. The efficiency is

a function of the power direction

ηb(P̂batt[k]) =





ηchg, P̂batt[k] ≤ 0
1

ηdis
, P̂batt[k] > 0

. (9)

where ηdis is the discharge efficiency and ηchg is the charge

efficiency.

Furthermore, the battery capacity limits are bounded by the

following constraint

SOCmin ≤ ŜOC[k] ≤ 100% (10)

where SOCmin is the minimum charge level of the battery.

At times when there is insufficient PV production to meet

the load, and if the stored energy drops below this limit,

the microgrid will have to shut down.

D. MODEL UNCERTAINTIES

1) UNCERTAINTIES IN THE PV RATING PARAMETER

For the microgrid in Fig. 1, it is assumed that the maximal PV

rating is Pmax
PV-0. However, in practice, the PV array seldom

achieves this ideal level of performance. This can be due

to mistakes during commissioning, PV array degradation,

or an accumulation of contaminants on the panels, just to

mention a few. Thus, using this value blindly to predict the

PV production can lead to errors. Since the PV rating does

not change dynamically with other system variables, it is

reasonable to assume that the true value, Pmax
PV , is related to

Pmax
PV-0 in a linear fashion, and that there is no offset error:

Pmax
PV = γPVP

max
PV-0 (11)

where γPV represents the scaling factor between the presumed

rated PV power production and the actual maximal produc-

tion, and is known as the PV compensation factor.

FIGURE 2. Effect of parameter uncertainties in the PV rating. The

over-prediction of PV production leads to an over-prediction of

the SOC, and thus an incorrect outage prediction.

To illustrate the effect of this uncertainty on the perfor-

mance of a microgrid, consider a case where the PV system

rating has been overrated. This will lead to overconfidence in

estimating the amount of PV production, which could result

in an earlier than expected outage as shown conceptually

in Fig. 2. This error in prediction of the PV production has

led to a significantly higher SOC estimate. The actual energy
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reserve in the microgrid is considerably lower than expected,

which would lead to unplanned outages due to shortages of

energy.

2) UNCERTAINTIES IN THE BATTERY

CAPACITY PARAMETER

For the battery, the presumed capacity is represented

as Emax
batt-0. Uncertainties in this parameter, potentially due to

incorrect system characterization or aging, can also lead to

incorrect prediction of the amount of stored energy in the

battery. The actual value Emax
batt could only be a fraction of the

rated battery capacity Emax
batt-0:

Emax
batt = γbattE

max
batt-0 (12)

where γbatt represents the scaling factor for the battery capac-

ity parameter, and is known as the battery compensation

factor.

FIGURE 3. Effect of parameter uncertainty in the battery

capacity. The over-estimate of the battery capacity results in a

missed prediction of an outage.

The effect of such an error can be observed in Fig. 3, where

an uncertainty has led to an inaccurate estimate of the SOC,

which can then result in an unexpected system shutdown.

The outage could have been averted by pre-emptive shed-

ding of non-critical loads, if an accurate prediction had been

available.

Clearly, it is vital to have actual models to represent the true

status of the PV rating and battery capacity. Hence, the main

focus of this paper is to develop techniques to identify such

uncertainties and effectively compensate them to prolong the

operating duration for critical loads.

E. PROBLEM STATEMENT

The objectives of the current investigation are (1) to use the

measurement data sequences P , B, and the forecast F to

detect model uncertainties, and (2) to accurately determine

the compensation factors γPV and γbatt for P
max
PV and Emax

batt ,

respectively, so that the PV production prediction, P̂PV, and

the stored energy prediction, ŜOC, are closer to the actual

values, i.e.,
∥∥∥PPV − P̂PV

∥∥∥ <

∥∥∥PPV − P̂PV-0

∥∥∥ (13)

and
∥∥SOC − ŜOC

∥∥ <
∥∥SOC − ŜOC0

∥∥ (14)

The above tasks are carried out by using only the mea-

surements from the converters and the forecasts, without

installing any additional sensors, so that this technique can

be easily retrofitted into existing systems. The effectiveness

of the compensation techniques will also be demonstrated in

Section IV by showing the extension of the duration for crit-

ical load support when these compensated models are incor-

porated in a pre-emptive load shedding energy management

strategy.

III. DETERMINATION OF THE

COMPENSATION FACTORS

A. COMPENSATION FACTOR FOR PV RATING

The key approach for determining the correct γPV in (11) is

to compare the actual measured PV power production against

the predicted production under a clear-sky condition.

In the absence of clouds, the PV production will closely

follow the rise and set of the sun, with a peak at approximately

mid-day. Under these conditions, one can simply take just

the peak values in the measured data sequences and compare

them with the predicted values to calculate the compensation

factor. However, when clouds are present, this approach is

complicated by the variability of the PV power production.

Comparing the peaks on a cloudy day is unlikely to result

in an accurate compensation factor. Therefore, if one can

identify relatively cloud-free days, where the forecast PV

profile is similar to the actual PV profile, these days can be

used as references to calculate the compensation factor.

To determine whether a given day is relatively cloud-free,

the root-mean-squared error between PPV and P̂PV can be

used

RMSEPV =

√√√√ 1

N − 1

N−1∑

i=0

(PPV[i] − P̂PV[i])2 (15)

where, for an ideal day with a correct value for γPV, the result-

ing RMSEPV would be very small, or even near zero,

indicating an accurate prediction. However, given that γPV
is unknown, the datasets must be normalized first. Also,

the overnight periods and any outages that have occurred

during the considered interval should be removed before (15)

can be applied. Therefore, the resulting solution is separated

into four steps: data normalization, removal of overnight and

outage periods, determination of cloud-free conditions, and

calculation of the PV compensation factor.

1) DATA NORMALIZATION

First, the peaks of the actual PV measurements and

the PV prediction datasets are determined: PPV-peak =

maxN−1
i=0 PPV[i] and P̂PV-peak = maxN−1

i=0 P̂PV[i], where i

indexes the N stored data points from the previous day.

These peak values are used for both normalization and for

determining the PV compensation factor later on.

The datasets are then normalized as follows

PPV-nor[i] = 100
PPV[i]

PPV-peak
, i = 0, . . . ,N − 1 (16)

P̂PV-nor[i] = 100
P̂PV[i]

P̂PV-peak
, i = 0, . . . ,N − 1 (17)
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where PPV-nor and P̂PV-nor are the normalized datasets con-

taining the actual measured PV power production and the

forecast PV power predictions, respectively.

2) REMOVAL OF OUTAGE AND OVERNIGHT PERIODS

An additional challenge is that the actual recorded PV pro-

duction will also include the effects of control actions such as

shutdowns, but these actions will not appear in the prediction.

Subsets of the data that contain just the non-zero PV produc-

tion periods are thus used to calculate the comparison, where

PPV-nz and P̂PV-nz are the non-zero data points of normalized

PV power measurements and the predicted PV power pro-

duction, respectively, and M is the number of non-zero data

points.

3) DETERMINATION OF CLOUD-FREE CONDITIONS

The root-mean-squared error can now be found using (15),

after substituting PPV-nz for PPV, P̂PV-nz for P̂PV, andM forN

RMSEPV-nz =

√√√√ 1

M − 1

M−1∑

i=0

(PPV-nz[i] − P̂PV-nz[i])2 (18)

If the RMSEPV-nz value is less than a certain threshold L,

the agreement is deemed to be acceptable, suggesting that

the chosen day is relatively cloud-free. A threshold value L

of 10% effectively discriminates between sunny and cloudy

days, approximately corresponding with the metrological cri-

teria separating a ‘‘sunny’’ forecast from a ‘‘mostly sunny’’

one [29].

4) CALCULATION OF THE PV COMPENSATION FACTOR

Given that the chosen day has been identified as relatively

cloud-free, the PV compensation factor can now be calcu-

lated as

γPV =
PPV-peak

P̂PV-peak
(19)

B. COMPENSATION FACTOR FOR SOC ESTIMATION

The compensation factor for the battery storage capacity γbatt
in (12) can be found by comparing the calculated SOC using

the battery model and the measured Pbatt values, against the

recorded SOC values. First, one can use (8) to determine

the profile of the ŜOC by iterating over Pbatt, starting from

the initial value ŜOC[0] = SOC[0].

Next, the differences between subsequent data points in the

datasets can be calculated as

1SOC[i]=SOC[i+ 1]−SOC[i], i=0, . . . ,N − 2 (20)

1ŜOC[i]= ŜOC[i+ 1]−ŜOC[i], i=0, . . . ,N − 2 (21)

Note that from (8), 1ŜOC[i] is proportional to 1/Emax
batt-0,

and 1SOC[i] is also proportional to 1/Emax
batt , since it is

calculated from the SOC estimated at the battery converter.

Therefore, from (12), it can be assumed that

1ŜOC = γbatt1SOC (22)

A linear regression between1ŜOC and1SOC can then be

used to determine the battery compensation factor as

γbatt =

∑N−2
i=0 (1SOC[i] − 1SOC)(1ŜOC[i] − 1ŜOC)

∑N−2
i=0 (1SOC[i] − 1SOC)2

(23)

where 1ŜOC is the mean of the 1ŜOC dataset, and 1SOC

is the mean of the 1SOC dataset.

It should be emphasized that the calculation of the SOC

compensation factor is a backward-looking technique which

operates on data recorded from the previous day. It is, there-

fore, not affected by uncertainties in the PV production or

load forecast. Also, note that this technique does not inter-

act with the PV compensation approach from the previous

subsection.

IV. VALIDATION OF THE COMPENSATION TECHNIQUES

The developed uncertainties compensation techniques have

been implemented on a simulated microgrid and EMS in

Python with SciPy [30]. The key properties, such as PV

curtailment and low-SOC shutdown have also been imple-

mented. The data used are a 42-day irradiance and tem-

perature dataset recorded from a rooftop system with a

Kipp & Zonen SP Lite2 pyranometer and an Analog Devices

TMP35 temperature sensor. This data is processed with

the PV model to create the PV production profile used

for the simulation. The corresponding forecast data for the

same location is obtained from the Environment Canada

Global Environmental Multiscale numerical weather predic-

tion model, specifically the High Resolution Deterministic

Prediction System dataset [31]. This forecast offers a max-

imum horizon of 48 hours, and is updated every six hours as

new information becomes available. The load is represented

by an aggregated daily residential load profile. The inputs

from the simulated power electronic converters are sampled

once every 2 minutes, and the EMS functions are executed

at 4 minute intervals to carry out PV power production and

battery stored energy predictions, and make corresponding

load-shedding decisions [7]. A one-day rolling history for

data from P , B, and F are stored in this case for anal-

ysis, which includes a daily peak for data normalization

purposes.

To validate the techniques, errors are deliberately intro-

duced into the EMS prediction model parameters so that

they differ from those in the models used in the PV and

battery subsystems of the simulated microgrid. The PV rat-

ing is overrated by 14%, and the battery capacity is over-

rated by 12%. These uncertainties represent possible practical

scenarios such as incorrect parameter configuration during

installation, or PV panel soiling and battery aging. The results

produced with these parameter uncertainties are then com-

pared with those produced with the true parameters. Finally,

the compensation technique is enabled to demonstrate the

effectiveness of the approach.
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A. IMPROVEMENT IN PV PRODUCTION PREDICTIONS

The effect of the compensation technique on the prediction

of the PV production can be observed in Fig. 4. The original

predicted PV production is denoted P̂PV-0. Thanks to the com-

pensation factor, as can be seen, the compensated prediction

matches the actual PV generation much more closely than the

original prediction.

FIGURE 4. The original PV prediction, the compensated PV

prediction, and the measured PV power.

FIGURE 5. Daily PV actual vs. forecast RMSE, with and without

uncertainty compensation.

To evaluate the overall improvement with the proposed

approach, the difference between the actual and predicted PV

productions based on the forecast is determined on a daily

basis for a period of 42 days. The resulting RMSE values are

shown in Fig. 5.

It is interesting to note that, for the initial nine days no

compensation was carried out, since they were mostly cloudy

days. None of them can be used as the reference for determin-

ing the compensation factors. On the tenth day, a near full-sun

irradiance day has been detected and subsequently used for

the PV compensation factor calculation. Hence, the accu-

racy of the PV production prediction has been improved

significantly. Over a period of 42 days, the average daily

improvement in terms of RMSE is about 17%.

B. IMPROVEMENT IN SOC PREDICTIONS

To evaluate the effectiveness of the proposed technique on

SOC prediction, the predicted SOCs with and without com-

pensation for a period of one day are shown in Fig. 6. The

original prediction is labeled as ŜOC0. It can be seen that

the compensation technique is able to virtually eliminate the

FIGURE 6. The original SOC prediction, the compensated SOC

prediction, and the recorded SOC. Note that the compensated

SOC prediction overlays the recorded SOC.

FIGURE 7. The RMSE between the actual and predicted SOCs

with and without compensation.

error caused by the battery capacity parameter uncertainty

for the previously recorded day’s dataset, where the actual

PV production and load behaviour are already known. It is

important to note that the technique cannot eliminate the error

between the future predicted SOC and the actual SOC, as that

would require perfect knowledge of the future PV production

and loads. The technique instead ensures that the SOC pre-

diction model is as accurate as possible, with respect to the

battery capacity parameter, based on the known data. Hence,

the accuracy of future SOC predictions can be improved.

The daily RMSE values for the SOC predictions with and

without compensation are presented in Fig. 7. It can be seen

that the compensation improves the performance of the SOC

predictions.

C. IMPROVEMENT IN OUTAGE REDUCTION

The ultimate objective of the developed compensation tech-

niques is to obtain more accurate predictions of PV produc-

tion and the SOC so that the EMS can make more effec-

tive decisions in the planning of load shedding actions to

minimize both the number and the duration of any outages.

To demonstrate this point, three case studies have been per-

formed for the same duration of 42 days, but with various

levels of parameter uncertainties and their compensation sce-

narios. In addition, without loss of generality, a Gaussian load

variation profile is introduced so that the load forecast does

not instantaneously match the simulated load.
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FIGURE 8. The outage performance of the microgrid over 42 days with model parameter uncertainties. (Scenario 1).

FIGURE 9. The outage performance of the microgrid with the developed uncertainty compensation

scheme. (Scenario 2).

In the first scenario, intentional uncertainties are intro-

duced into the prediction model parameters, with the PV

system rating being overrated by 14% and the battery capac-

ity being overrated by 12%. The corresponding results are

shown in Fig. 8. There are 20 outages with a total duration

of 110 hours.

The second scenario employs the uncertainty compensa-

tion scheme developed in Section III, with the same intro-

duced prediction model parameter uncertainties. The results

are shown in Fig. 9. As can be seen, the microgrid has expe-

rienced 16 outages in total, of collectively 98 hours in dura-

tion. This is an 11% reduction in the overall outage duration
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achieved simply by using the proposed scheme without any

additional hardware devices.

In the third scenario, it is assumed that the exact parame-

ters are used in the prediction process. Therefore, the EMS

always makes the correct decisions. Due to space limitations,

the results from this scenario is not included herein, however

the results are very similar to those in the second scenario.

The microgrid has experienced 15 outages totalling 98 hours,

which represents the best possible case. This illustrates that

the developed technique can almost achieve the same level of

performance as if there were no model uncertainties.

As a comparison, in an identical operating environment,

if no pre-emptive load-shedding EMS scheme had been used,

there would have been 35 outages totalling 205 hours. The

results of the above studies are summarized in Table 1. These

results have demonstrated the effectiveness the developed

scheme used with the pre-emptive load shedding strategy.

TABLE 1. Summary of results over a 42-day interval.

V. CONCLUSIONS

A method for compensating uncertainties in PV rating and

battery capacity model parameters in a predictive energy

management system for islanded microgrids has been devel-

oped in this work. The technique uses measurements pro-

vided by the inverters, along with weather forecast data,

to improve the accuracy of the models used for predictions,

which are then used to make outage mitigation decisions.

No additional sensors are needed to implement the technique,

and the algorithms are computationally efficient to be embed-

ded in an existing EMS. The technique has been implemented

and validated within a simulated pre-emptive load shedding

EMS for an islanded PV and battery microgrid. The results

have shown that formerly declared outages attributable to

model uncertainties can be almost completely eliminated.

As a result, for a modeled PV system overrating of 14% and a

battery capacity overrating of 12%, an 11% improvement in

the reduction of overall outage duration has been achieved.
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