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We recently reported the analysis of the frequency noise in the frequency modulation atomic force

microscopy (FM-AFM) both in high-Q and low-Q environments [Rev. Sci. Instrum. 80, 043708

(2009)]. We showed in the paper that the oscillator noise, the frequency fluctuation of the oscillator,

becomes prominent in the modulation frequency lower than f0/2Q, where f0 and Q are the resonance

frequency and Q-factor. The magnitude of the oscillator noise is determined by the slope of the phase

versus frequency curve of the cantilever at f0. However, in actual FM-AFM in liquids, the phase

versus frequency curve may not be always ideal because of the existence of various phase shifting

elements (PSEs). For example, the spurious resonance peaks caused by the acoustic excitation and a

band-pass filter in the self-oscillation loop increase the slope of the phase versus frequency curve. Due

to those PSEs, the effective Q-factor is often increased from the intrinsic Q-factor of the cantilever.

In this article, the frequency noise in the FM-AFM system with the PSEs in the self-oscillation loop

is analyzed to show that the oscillator noise is reduced by the increase of the effective Q-factor. It is

also shown that the oscillation frequency deviates from the resonance frequency due to the increase

of the effective Q-factor, thereby causing the reduction in the frequency shift signal with the same

factor. Therefore the increase of the effective Q-factor does not affect the signal-to-noise ratio in

the frequency shift measurement, but it does affect the quantitativeness of the measured force in the

FM-AFM. Furthermore, the reduction of the frequency noise and frequency shift by the increase of

the effective Q-factor were confirmed by the experiments. © 2011 American Institute of Physics.

[doi:10.1063/1.3557416]

I. INTRODUCTION

Frequency modulation atomic force microscopy (FM-

AFM)1–3 has been widely used for atomic/molecular-scale

investigations of various materials in various environments.

In the FM-AFM, the conservative force between the tip and

the sample surface is detected as the frequency shift of the

cantilever, which is self-oscillated at its resonance frequency.

Hence it is important to understand and reduce the frequency

noise to achieve high-resolution imaging by the FM-AFM,

especially for those operated in low-Q environments, where

the quality factor (Q-factor) of the cantilever is extremely

damped, such as in liquids.

Recently, we reported the analysis of the frequency noise

in the FM-AFM both in high-Q and low-Q environments.4

We showed in the paper that the oscillator noise, the frequency

fluctuation of the oscillator, contributes to the total frequency

noise as well as the frequency measurement noise, which is

brought by the measurement of the oscillation frequency. The

magnitude of the oscillator noise is determined by the slope

of the phase response curve of the cantilever at the resonance

frequency ( f0). Since the slope is steep in the frequency range

f0 ± f0/2Q, where Q is the Q-factor of the cantilever, the os-

cillator noise with the modulation frequency ( fm) lower than

f0/2Q becomes prominent. In low-Q environments such as in

a)Electronic mail: keicoba@iic.kyoto-u.ac.jp.

liquids, the corner frequency ( fc), which is defined as f0/2Q,

becomes very high, and the frequency noise with fm of con-

cern is governed by the oscillator noise. On the other hand,

even though fc becomes very low in high-Q environments,

the oscillator noise becomes dominant when the tip is scanned

slowly because fm of concern becomes low. Therefore un-

derstanding the oscillator noise is important not only for the

FM-AFM experiments in low-Q environments, but also for

those in high-Q environments.

However, it becomes difficult to precisely estimate the

oscillator noise in actual FM-AFM experiments because the

phase versus frequency curve is often modified by many rea-

sons. First, in many FM-AFM instruments, the cantilever is

excited indirectly by the acoustic method, where a piezo-

electric actuator is used to vibrate the cantilever base. When

the Q-factor of the cantilever is low, the actuator excites not

only the base of the cantilever, but causes unwanted vibra-

tion of surrounding components.5 Such spurious resonance

peaks of the surrounding components make the identification

of the intrinsic resonance frequency of the cantilever difficult

by means of measuring the amplitude versus frequency curve

and also modify the phase versus frequency curve. In addi-

tion, many AFM experimentalists have experienced that the

cantilevers do not show clean resonance curves even in air or

in vacuum conditions due to nonideal mechanical coupling

between the actuator and the cantilever.6 Second, a band-

pass filter (BPF) or other electronic filters are often used in
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the FM-AFM experiments to eliminate the unwanted noise

components other than the resonance frequency range.1 It is

also useful to avoid the self-oscillation at the spurious res-

onance peaks mentioned above or at the resonance modes

other than the desired mode such as the second eigenmode.

Third, when the Q-factor of the cantilever is modified by the

feedback electronics,7–11 the phase versus frequency curve is

also altered. It is also reported by several researchers that the

Q-factor of the cantilever is modified by the use of the Fabry–

Pérot interferometer in high-Q environments.12–14 Moreover,

the phase versus frequency curve might be modified by the

limited bandwidth of the displacement sensor electronics,15

or by that of the excitation systems.16, 17 Therefore, the analy-

sis of the frequency noise considering the effect of these phase

shifting elements (PSEs), which modify the phase versus fre-

quency curve of the cantilever, is of great importance for the

FM-AFM experiments.

In this article we analyze the frequency noise in the FM-

AFM system with the PSEs in the self-oscillation loop to un-

derstand the effect of the PSEs on the frequency noise and

the frequency shift signal as well. We first derive the analyt-

ical equations for describing the total frequency noise den-

sity of the self-oscillated cantilever in the FM-AFM with the

PSEs. The analysis is based on an assumption that only the

slope of the phase versus frequency curve in the frequency

range around f0 is modified. Then we derive the oscillation

spectrum and corresponding frequency noise density by the

numerical analysis so that we can apply the analysis for any

FM-AFM systems with the PSEs. We also discuss the effect of

the PSEs on the frequency shift signal to discuss the effect of

the PSEs on the signal-to-noise ratio of the FM-AFM. Finally,

we confirmed the validity of the analysis by the measurement

of the frequency noise of the self-oscillating cantilever with

a BPF of various Q-factors. The effect of the PSEs on the

frequency shift signal was also confirmed by the hydration

force measurement at the muscovite mica–water interface us-

ing both acoustic excitation and photothermal excitation of

the cantilever.

II. DERIVATION OF ANALYTICAL EQUATIONS
OF FREQUENCY NOISE DENSITY IN FM-AFM
WITH PHASE SHIFTING ELEMENTS IN
SELF-OSCILLATION LOOP

First, we review the analysis of the frequency noise of

the self-oscillated cantilever in the FM-AFM, which does not

include any PSEs in the self-oscillation loop.4 A schematic

diagram of the FM-AFM instrument is shown in Fig. 1. We

derive the analytical equations of the total frequency noise

density as the sum of the oscillator noise and the frequency

measurement noise. The oscillator noise, the fluctuation of

the oscillator frequency, is determined by the thermal mo-

tion of the cantilever displacement noise and the displacement

sensor noise within f0 ± fc, while those outside of f0 ± fc

bring additional noise on the frequency measurement, the fre-

quency measurement noise. Since the phase noise of the can-

tilever turns into the fluctuation of the oscillation frequency

by the self-oscillation, the oscillator noise is proportional to

the slope of the phase versus frequency curve at the oscilla-

tion frequency. The transfer function of the cantilever with the

spring constant of kz can be written as

Gcantilever( f ) =
Q

Q(1 − ( f/ f0)2) + j( f/ f0)

1

kz

= |Gcantilever( f )| exp[ jθ ( f )], (1)

where θ ( f ) is the phase response of the cantilever to the

external force. The frequency noise of the cantilever with

the modulation frequency fm is determined by the thermal

displacement of the cantilever Nth( f0 ± fm) and the noise-

equivalent displacement density (displacement sensor noise)

Nds( f0 ± fm). By inserting f = f0 ± fm to Gcantilever( f ), we

can approximate Gcantilever( f0 ± fm) as

Gcantilever( f0 ± fm) ≃
1

kz

− j Q

1 ± j ( fm/ fc)
, (2)

FIG. 1. Schematic of the FM-AFM instrument showing possible sources of the frequency noise. The Brownian motion (thermal displacement noise) of the

cantilever and the displacement sensor noise within f0 ± fc, where fc is f0/2Q, determine the frequency fluctuation of the oscillator (oscillator noise). The

elements shown as thick-line blocks are components which might modify the phase versus frequency shift curve of the cantilever (phase shifting elements).
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within the frequency range f0 ± fc. Therefore θ ( f0 ± fm) can

be approximated as

θ ( f0 ± fm) ≃ −
π

2
∓

fm

fc

= −
π

2
∓

2Q

f0

fm. (3)

From this equation, the slope of θ ( f ) versus f at f0 is de-

scribed as

dθ

d f

∣

∣

∣

∣

f = f0

= −
2Q

f0

, (4)

which is considered constant within f0 ± fc. From the

equipartition theorem, the mean-square displacement of the

cantilever end by the thermal energy kBT is given by

〈zth
2〉 =

∫ ∞

0

|Gcantilever ( f )|2 Fth
2d f =

kBT

kz

, (5)

where Fth is the magnitude of the random driving force

with a white spectral density. Therefore the magnitude of Fth

becomes

Fth =

√

2kzkBT

Qπ f0

. (6)

The thermal displacement noise density Nth( f0 ± fm)

becomes

Nth( f0 ± fm) = |Gcantilever( f0 ± fm)| Fth

=

√

2kBT Q

πkz f0

1

1 + ( fm/ fc)2
. (7)

Since the displacement noise density at f0 + fm and f0 − fm

equally contribute to the frequency noise at the modulation

frequency of fm (See Appendix in Ref. 4), we define G ′( fm),

N ′
th( fm), and N ′

ds( fm) which are functions of the modulation

frequency for convenience as follows:

|G ′( fm)| =
1

2
(|G( f0 + fm)| + |G( f0 − fm)|) , (8)

N ′
th( fm) =

1

2
(Nth( f0 + fm) + Nth( f0 − fm)) , (9)

N ′
ds( fm) =

1

2
(Nds( f0 + fm) + Nth( f0 − fm)) . (10)

Now we assume the displacement sensor noise is constant

for the frequency range of concern ( f0 ± fm) and define Nds

= N ′
ds( fm) for simplicity. Therefore the total displacement

noise density including the displacement sensor noise density

becomes

N ′
total( fm) =

√

N ′
th( fm)

2 + Nds
2

=

√

2kBT Q

πkz f0

1

1 + ( fm/ fc)2
+ Nds

2. (11)

As discussed in Ref. 4 the oscillator noise is given by

NFM(osc)( fm) =
∣

∣

∣

∣

d f

dθ

∣

∣

∣

∣

√
2N ′

total( fm)

A0

=
f0

2Q

√
2N ′

total( fm)

A0

,

(12)

thus we obtain

NFM(osc)( fm) =

√

f0kBT

πkz Q A0
2

1

1 + ( fm/ fc)2
+

f0
2 Nds

2

2Q2 A0
2
. (13)

On the other hand, the frequency measurement noise density

is given by

NFM(measure)( fm) =
√

2N ′
total( fm)

A0

fm, (14)

and it becomes

NFM(measure)( fm) =

√

f0kBT

πkz Q A0
2

( fm/ fc)2

1 + ( fm/ fc)2
+

2Nds
2

A0
2

fm
2

(15)

using Eq. (11). The combination of Eqs. (12) and (15) gives

the analytical equation for the frequency noise density in the

FM-AFM,

NFM( fm) =
√

NFM(osc)
2 + NFM(measure)

2

=

√

f0kBT

πkz Q A0
2

+
f0

2 Nds
2

2Q2 A0
2

+
2Nds

2

A0
2

fm
2, (16)

which was given as Eq. (18) in Ref. 4. The first term of the

equation represents the contribution of the thermal displace-

ment noise, which is constant, and the following terms are

those of the displacement sensor noise. The combination of

the oscillator noise and the measurement noise to give the to-

tal frequency noise is schematically summarized in Fig. 2(a).

Note that both axes in the schematics in Fig. 2 are logarithmic.

One can obtain the total frequency noise δ f by integrating the

FIG. 2. (Color online) (a) Schematic of the contribution of the oscillator

noise density and the frequency measurement noise density to the total fre-

quency noise density. Dark gray and black areas represent two levels (small

and large) of additional displacement sensor noise. (b) Schematic showing

the contribution of the oscillator noise, which is reduced by the increase of

the effective Q-factor, and the frequency measurement noise, which is not

affected, to the total frequency noise density in the FM-AFM with the PSE.
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frequency noise density for the bandwidth of B as

δ f =

√

∫ B

0

NFM
2d fm

=

√

f0kBT B

πkz Q A0
2

+
f0

2 Nds
2 B

2Q2 A0
2

+
2Nds

2

3A0
2

B3. (17)

Now we consider the case when some PSEs such as the

BPF are existing in the self-oscillation loop. The displacement

sensor or the excitation system which has any frequency-

dependent phase response in the frequency range of f0 ± fc

is also considered as the PSE. Possible PSEs are indicated in

Fig. 1. We assume that the amplitude response of the PSE is

considered to be linear within the frequency range of concern

( f0 ± fc). Due to the PSE, the slope of the effective phase re-

sponse of the cantilever to the driving force (θeff( f )) at f0 is

affected and it is now described as

dθeff

d f

∣

∣

∣

∣

f = f0

=
dθ

d f

∣

∣

∣

∣

f = f0

+
dθadd

d f

∣

∣

∣

∣

f = f0

= −
2Q

f0

−
2Qadd

f0

= −
2Qeff

f0

, (18)

where Qeff is the effective Q-factor. θadd is the phase transfer

function of the PSE, and Qadd corresponds to the Q-factor of

the PSE, which is defined by the slope of θadd at f0. Hereafter

the intrinsic Q-factor of the cantilever is denoted as Q0 to

avoid confusion. Now the oscillator noise density given by

Eq. (12) is modified to

NFM(osc,PSE)( fm) =
∣

∣

∣

∣

d f

dθeff

∣

∣

∣

∣

√
2N ′

total( fm)

A0

=
f0

2Qeff

√
2N ′

total( fm)

A0

. (19)

Note that the polarity of Qadd is not necessarily positive

depending on the PSE. While the oscillator noise density

is decreased by the increase in the effective Q-factor, the

frequency measurement noise density is not modified from

Eq. (15). Thus we obtain the total frequency noise density by

the combination of Eqs. (19) and (15) as

NFM(PSE)( fm) =

√

(

Q0

Qeff

)2

NFM(osc)
2 + NFM(measure)

2 (20)

=

√

f0kBT

πkz Q0 A0
2

(Q0/Qeff)
2 + ( fm/ fc)2

1 + ( fm/ fc)2
+

(

Q0

Qeff

)2
f0

2 Nds
2

2Q0
2 A0

2
+

2Nds
2

A0
2

fm
2.

The combination of the reduced oscillator noise and the fre-

quency measurement noise to give the total frequency noise

in the FM-AFM with PSE is schematically summarized in

Fig. 2(b). Figure 3(a) shows the total frequency noise density

spectra NFM(PSE)( fm) of a self-oscillated cantilever in liquid

(kz = 26 N/m, f0 = 140 kHz, Q0 = 9, A0 = 0.5 nm) mea-

sured by the displacement sensor with the noise-equivalent

displacement density of 20 fm/
√

Hz, which were calculated

using Eq. (20). Each curve corresponds to the frequency noise

density spectrum with the additional Q-factor (Qadd) of 0, 1,

2, 5, 10, and 20. The spectrum for Qadd = 0 represents the fre-

quency noise density spectrum without any PSE. It should be

noted that the total frequency noise density given by Eq. (20)

can be approximated by simply multiplying the terms related

to the oscillator noise, which are the first and second terms in

Eq. (16), with Q0/Qeff as

NFM(PSE)( fm) ≃

√

(

Q0

Qeff

)2
f0kBT

πkz Q0 A0
2

+
(

Q0

Qeff

)2
f0

2 Nds
2

2Q0
2 A0

2
+

2Nds
2

A0
2

fm
2. (21)

Figure 3(b) shows NFM(PSE)( fm) calculated using Eq. (21).

Parameters used for the calculation are the same as those in

Fig. 3(a). The figure shows that the total frequency noise

density given by Eq. (21) is essentially the same as that

given by Eq. (20) except for the case when fm is close

to fc.
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FIG. 3. (Color online) (a) Total frequency noise density spectra NFM(PSE)( fm) of a self-oscillated cantilever in liquid (kz = 26 N/m, f0 = 140 kHz, Q0 = 9,

A0 = 0.5 nm) measured by the displacement sensor with the noise-equivalent displacement density of 20 fm/
√

Hz, which were calculated using Eq. (20). Each

curve corresponds to the spectrum with the additional Q-factor (Qadd) of 0, 1, 2, 5, 10, and 20. (b) Total frequency noise density spectra NFM(PSE)( fm) of a

self-oscillated cantilever in liquid calculated using Eq. (21). Parameters used for the calculation are the same as those in (a).

III. NUMERICAL ANALYSIS OF FREQUENCY NOISE
DENSITY IN FM-AFM WITH PHASE SHIFTING
ELEMENTS IN SELF-OSCILLATION LOOP

In Sec. II, we derive the analytical equations of the

frequency noise density by assuming the PSE whose am-

plitude characteristics is flat within the frequency range

of concern. The equations give fairly good approximations

for cases when Qadd is smaller than Q0, but they do not

give good approximations any more when Qadd is much

larger than Q0. Here we describe a method to calculate

the displacement density spectrum of the self-oscillated can-

tilever and then obtain the frequency noise density spec-

trum. In order to calculate the displacement density spec-

trum of the self-oscillated cantilever, the transfer function

of each element in the self-oscillation loop such as those

shown in Fig. 1 has to be determined. For example, if we

define the displacement density spectrum of the cantilever

and the frequency-dependent displacement sensor sensitiv-

ity as Aosc( f ) and Sds( f ), respectively, the sensor output

signal becomes Sds( f ) · Aosc( f ). The transfer functions of

the BPF, the phase shifter, and the variable gain amplifier

in the amplitude regulator are defined as GBPF( f ), GPS( f ),

and GVGA( f ), respectively. Then the excitation signal

becomes

Vexc( f ) = GVGA( f ) · GPS( f ) · GBPF( f ) · Sds( f ) · Aosc( f ).

(22)

As the transfer function of the excitation system Gexc( f ), we

assume the acoustic excitation using a piezoelectric trans-

ducer with a piezoelectric constant of d33. Thus the driving

force becomes

Fexc( f ) = Gexc( f ) · Vexc = kzd33Vexc( f ). (23)

Since Aosc( f ) is given by the sum of the excited displacement

density and the noise-equivalent displacement density as

Aosc( f ) = Gcantilever( f ) · Fexc( f ) + Ntotal( f ), (24)

Aosc( f ) becomes

Aosc( f ) =
Ntotal( f )

1 − Gcantilever( f ) · kzd33 · GVGA( f ) · GPS( f ) · GBPF( f ) · Sds( f )
, (25)

by combining Eqs. (22)–(24). In ideal FM-AFM which we as-

sume, GPS( f ) is set as GPS( f ) = j so that the oscillation fre-

quency matches f0. Note that this is not valid when the phase

shifter is implemented by an all-pass filter with a variable re-

sistor, which has a frequency-dependent phase response. If we

assume GVGA( f ) is constant within the bandwidth of concern,

the constant gain GVGA should become

GVGA =
1

Gcantilever( f0) · kzd33 · j · GBPF( f0) · Sds( f0)
, (26)

since the criterion of the self-oscillation requires the total

loop gain of 1. By inserting GVGA to Eq. (25), one can nu-

merically obtain Aosc( f ). Once we obtain the displacement

density spectrum Aosc( f ), the total frequency noise density

NFM(PSE)( fm) is obtained as

NFM(PSE)( fm) =
√

(Aosc( f0 + fm))2 + (Aosc( f0 − fm))2 fm

A0

.

(27)
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FIG. 4. (Color online) (a) Displacement density spectra Aosc( f ) of a self-oscillated cantilever in liquid (kz = 26 N/m, f0 = 140 kHz, Q0 = 9, A0 = 0.5 nm)

measured by the displacement sensor with the noise-equivalent displacement density of 20 fm/
√

Hz. Each curve corresponds to the spectrum with Qadd of 0, 1,

2, 5, 10, and 20. (b) Corresponding frequency noise spectra obtained from (a) using Eq. (27).

(See Appendix in Ref. 4). In Fig. 4(a), we show the nu-

merically calculated displacement density spectra Aosc of a

self-oscillated cantilever in liquid (kz = 26 N/m, f0 = 140

kHz, Q0 = 9, A0 = 0.5 nm) measured by the displacement

sensor with the noise-equivalent displacement density of 20

fm/
√

Hz. We modeled GBPF( f ) as

GBPF ( f ) =
j ( f/ f0)

Qadd(1 − ( f/ f0)2) + j ( f/ f0)
, (28)

where Qadd is a quality factor of the BPF and assumed Sds( f )

is constant. Each curve in Fig. 4(a) corresponds to the spec-

trum with Qadd of 0, 1, 2, 5, 10, and 20. Corresponding fre-

quency noise spectra obtained from the displacement density

spectra in Fig. 4(a) using Eq. (27) are shown in Fig. 4(b). It

is shown by the figures that the linewidth of the oscillator is

decreased by increasing the Q-factor of the BPF, and the fre-

quency noise density at the lower modulation frequency range

is reduced accordingly.

IV. FREQUENCY SHIFT OF FM-AFM WITH PHASE
SHIFTING ELEMENTS IN SELF-OSCILLATION LOOP

In Secs. II and III, we showed that the oscillator noise is

reduced by the increase of the effective Q-factor of the can-

tilever by the PSEs in the self-oscillation loop. Here we dis-

cuss the effect of the PSEs on the frequency shift signal to

discuss the effect of the PSEs on the signal-to-noise ratio of

the FM-AFM. The oscillation frequency of the cantilever is

the frequency at which the phase criterion

θ ( f ) + θPS( f ) = 2nπ (29)

is met, where θ ( f ) was given in Eq. (1), and θPS( f ) is the

phase shift of the phase shifter. Since the phase shift of the

cantilever at f0, θ ( f0), is −π/2, θPS is ideally kept constant at

π/2 + 2nπ during experiments. However, due to the presence

of the PSE, the phase criterion determining the oscillation fre-

quency in actual FM-AFM experiments becomes

θeff( f ) + θPS( f ) = 2nπ. (30)

Schematic of the apparent phase versus frequency curves of

the cantilever without any PSE (θ ( f )) and with the PSE

(θeff( f )) are shown in Fig. 5(a) as thin and thick curves, re-

spectively. Their slope at f0 are given in Eqs. (4) and (18),

respectively. Now we consider the situation where θ ( f ) is

slightly shifted by � fcantilever due to the tip-sample interaction

force, and the resonance frequency moves to f0 + � fcantilever.

In this situation, the phase response of the cantilever at f0 be-

comes −π/2 + �θ , where θ is given by

�θ = 2Q0

� fcantilever

f0

, (31)

FIG. 5. (Color online) (a) Schematic of apparent phase versus frequency curves of the cantilever without any PSE (θ ( f ), thin curve) and with the PSE (θeff( f ),

thick curve). The slope of θ , dθ/d f , is almost constant within the frequency range f0 ± fc , and it is increased by the PSE in the self-oscillation loop. (b)

Schematic illustration showing that the oscillation frequency deviates from the resonance frequency because of the increase in the effective Q-factor by the PSE.
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FIG. 6. (Color online) (a) Displacement density spectra of a self-oscillated cantilever in water (kz = 26 N/m, f0 = 140 kHz, Q0 = 8.6, A0 = 0.5 nm). Each

curve corresponds to the spectrum with Qadd of 1, 2, 5, 10, and 20. (b) Corresponding frequency noise spectra obtained from (a) using Eq. (27).

as shown in Fig. 5(b). This phase shift is instantaneously

nulled by the self-oscillation loop, which adjusts the oscilla-

tion frequency to f0 + � fcantilever. However, with the PSE, the

phase shift �θ is nulled by adjusting the oscillation frequency

to f0 + � feff, which is given by

� feff = �θ

(

∣

∣

∣

∣

dθeff

d f

∣

∣

∣

∣

f = f0

)−1

=
Q0

Qeff

� f, (32)

where � feff represents the effective frequency shift tracked

by the self-oscillation loop with the PSE. If we compare

Eqs. (20) or (21) with Eq. (32), both the signal and noise de-

creases by the same factor of Qeff/Q0, therefore, the signal to

noise ratio of the FM-AFM is eventually not affected by the

increase of the effective Q-factor.

V. MEASUREMENT OF FREQUENCY NOISE
WITH PHASE DELAY ELEMENTS IN
SELF-OSCILLATION LOOP

We measured the frequency noise of a self-oscillated can-

tilever in liquid to show the validity of the discussion on

the effect of the PSEs on the frequency noise. We used a

highly doped n-type Si cantilever with gold reflex coating on

the backside (Nanosensors: NCH-AuD), whose spring con-

stant was 26 N/m, calibrated using Sader’s method in air.18

The cantilever was immersed in water and the resonance fre-

quency and Q-factor in water were 140 kHz and 8.6, respec-

tively. We used a commercial AFM head (Shimadzu: SPM-

9500) after some modifications to the optics and electronics

to reduce the displacement sensor noise in the optical beam

deflection sensor as described in Ref. 15. The thermal dis-

placement density spectrum was measured in water, and it

was fitted to the simple harmonic oscillator model.19 The sen-

sitivity of the displacement sensor was calibrated, and the

displacement sensor noise density was determined as about

23 fm/
√

Hz. A band-pass filter implemented using a state-

variable filter module (NF Corporation: DT-208D), whose

center frequency was set at 140 kHz, was inserted in the self-

oscillation loop as shown in Fig. 1. We used home-built self-

oscillation electronics with a phase shifter (NF Corporation:

CD-951V4).20 The cantilever was excited by an intensity-

modulated blue–violet laser (Sanyo: DL-LS5042) driven by

a laser-diode driver (Wavelength Technology: WLD3343) to

avoid exciting at the spurious resonance peaks.21, 22 The can-

tilever was self-excited at 140 kHz with an oscillation ampli-

tude of 1.0 nm peak-to-peak. We varied Qadd from 1 to 20,

and measured the frequency spectra of the displacement sig-

nal using a spectrum analyzer (Agilent Technologies: 4395A).

Since the demodulation bandwidth of the frequency detector

was limited at about 10 kHz,20 we calculated the frequency

noise density spectra from the measured displacement density

spectra.

Figure 6(a) shows the displacement density spectra of

the self-oscillated cantilever in water (kz = 26 N/m, f0 =
140 kHz, Q0 = 8.6, A0 = 0.5 nm). Each curve corresponds

to the spectrum with QBPF of 1, 2, 5, 10, and 20. Corre-

sponding frequency noise spectra obtained from Fig. 6(a) us-

ing Eq. (27) are shown in Fig. 6(b). The frequency noise

density spectra for the modulation frequency lower than 1

kHz were calculated from the displacement density spec-

tra measured with the frequency span of f0 ± 1 kHz (not

shown). Figures 6(a) and 6(b) are quantitatively consistent to

Figs. 4(a) and 4(b), respectively. Possible reasons of slight

difference between the theoretical spectra and the measured

spectra are deviation of the cantilever characteristics from the

simple harmonic oscillator model given in Eq. (1),23 errors in

the parameters used for the calculation and nonideal circuit

characteristics.

VI. MEASUREMENT OF FREQUENCY SHIFT
WITH PHASE DELAY ELEMENTS IN
SELF-OSCILLATION LOOP

We performed hydration force measurements on mica to

show the validity of the discussion on the effect of the PSEs

on the frequency shift. The experimental setup for the mea-

surement was the same as described in Sec. V. A freshly

cleaved muscovite mica substrate was immersed in 1 mol/l

KCl aqueous solution. First, the cantilever was excited by

a piezoelectric actuator attached close to the cantilever. We

measured the two-dimensional frequency shift map as de-

scribed in Ref. 24 and frequency shift curves averaged for

ten consecutively measured frequency shift curves is plot-

ted at the top of Fig. 7(a). Then we performed the same ex-

periments by the photothermal actuation of the cantilever.
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FIG. 7. (Color online) (a) Averaged frequency shift curves measured in 1 mol/l KCl solution using acoustic actuation (top) and photothermal excitation (bottom).

(b) Averaged frequency shift curves in (a) plotted together after correction for the curve acquired with the acoustic actuation using Eq. (33).

The frequency shift curves averaged for ten consecutively

measured frequency shift curves is plotted at the bottom

of Fig. 7(a).

The frequency shift variation due to the hydration force is

smaller in the frequency shift curve measured by the acoustic

actuation. We measured the frequency response of the can-

tilever from the excitation signal to the displacement signal,

which is equivalent to GBPF · Sds · Gcantilever · Gexc in Fig. 1,

from which we calculated the effective Q-factor. It was about

16, mainly due to the spurious resonance peaks of the fluid

cell. The resonance frequency shift can be corrected by the

equation,

� f =
Qeff

Q0

� fmeasured, (33)

derived from Eq. (32), where � fmeasured is the measured fre-

quency shift. The curve acquired with the acoustic actuation

was corrected using Eq. (33). Figure 7(b) shows averaged fre-

quency shift curves measured in 1 mol/l KCl solution plot-

ted together after correction for the curve acquired with the

acoustic actuation. They are quantitatively coinciding with

each other, which proves that the discussion on the effect of

the PSEs on the frequency shift is valid. The frequency shift

measured with the FM-AFM system including PSEs in the

self-oscillation loop could be under/overestimated by the in-

crease/decrease in the effective Q-factor.

VII. CONCLUSIONS

We analyzed the frequency noise of the cantilever in FM-

AFM considering the frequency-dependent phase shifting el-

ements in the self-oscillation loop. We first derived the analyt-

ical equations for describing the total frequency noise density

of the self-oscillated cantilever in the FM-AFM with the PSEs

and showed that the oscillator noise decreases with increasing

effective Q-factor. Then we presented numerical calculation

of the frequency noise density spectrum of the self-oscillated

cantilever, which can be applied for the self-oscillation loop

including general PSEs. We also showed that the frequency

shift is no longer the same as the resonance frequency if the

PSE exists in the self-oscillation loop. The frequency shift de-

creases with the same factor with the decrease in the oscillator

noise by the increase of the effective Q-factor by the PSEs.

Even though the signal-to-noise ratio in the frequency mea-

surement in the FM-AFM is not affected by the increase of

the effective Q-factor, it does affect the quantitativeness of

the measured force in the FM-AFM. The reduction of the fre-

quency noise and frequency shift signal by the increase of the

effective Q-factor were confirmed experimentally by the fre-

quency noise measurements and the hydration force measure-

ments on mica, and the frequency shift versus distance curve

measured by the acoustic excitation was corrected. One has to

take a great care for quantitative force measurement with the

FM-AFM if the PSE could exist in the self-oscillation loop

independent of the operating environments.
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