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Abstract: Fuzzy controller’s design depends mainly on the rule base and membership functions 
over the controller’s input and output ranges. This paper presents two different approaches to 
deal with these design issues. A simple and efficient approach; namely, Fuzzy Subtractive 
Clustering is used to identify the rule base needed to realize Fuzzy PI and PD type controllers. 
This technique provides a mechanism to obtain the reduced rule set covering the whole 
input/output space as well as membership functions for each input variable. But it is found that 
some membership functions projected from different clusters have high degree of similarity. The 
number of membership functions of each input variable is then reduced using a similarity 
measure. In this paper, the fuzzy subtractive clustering approach is shown to reduce 49 rules to 8 
rules and number of membership functions to 4 and 6 for input variables (error and change in 
error) maintaining almost the same level of performance. Simulation on a wide range of linear 
and nonlinear processes is carried out and results are compared with fuzzy PI and PD type 
controllers without clustering in terms of several performance measures such as peak overshoot, 
settling time, rise time, integral absolute error (IAE) and integral-of-time multiplied absolute 
error (ITAE) and in each case the proposed schemes shows an identical performance. 
 
Keywords: Extraction of rules, fuzzy control, fuzzy subtractive clustering, membership 
functions. 
 

1. INTRODUCTION 
 
The applicability of classical control methods have 

been demonstrated in many control problems in 
industry, however the ever-increasing demand of 
flexibility will demand a response which does not 
change due to parameter variations at all levels of 
automation. Its simplicity has been the main reason 
for its wide application in the industry. Since classical 
controllers are fixed gain feedback controllers they 
cannot compensate the parameter variation in the 
plant easily and cannot adapt to changes in the 
environment. The difficulties that arise in this 
methodology are broadly classified into three 
categories. The first is the computational complexity 
due to mathematical modelling, second is the presence 
of the non-linear processes with many degrees of 
freedom and third is uncertainty (presence of noise 
and load disturbances etc.). The greater the ability to 

deal with these difficulties, the more intelligent is the 
control system. Because many living systems do 
implement some sort of intelligent control, it has been 
natural to look into computational paradigms used by 
nature. Fuzzy logic and Artificial Neural Networks 
represent such a biologically inspired paradigm. 

Fuzzy Logic Controllers (FLC) have been 
introduced and successfully applied. One of the 
hallmarks of fuzzy logic is that it allows nonlinear 
input/output relationships to be expressed by a set of 
qualitative “if – then rules.” Nonlinear control and 
process models may all be expressed in the form of 
fuzzy rules. Most fuzzy systems are hand crafted by 
human expert to capture some desired input/output 
relationships that the expert has in mind. However 
often an expert cannot express his or her knowledge 
explicitly and for many applications, an expert may 
not even exist. Hence there is considerable interest in 
being able to extract fuzzy rules from experimental 
input/output data. The motivation for capturing data 
behavior in the form of fuzzy rules is easy to 
understand [1]. An expert can check the rules for 
completeness and fine-tune or extend the system by 
editing the rule base. Obviously, it is difficult for 
human experts to examine all the input/output data 
from complex system to find the number of proper 
rules for fuzzy system. To cope with this difficulty, 
much research effort has been devoted to develop 
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alternative design methods. Generally, these methods 
consist of two learning phases, structure learning 
phase and parameter learning phase. The structure 
learning phase is employed to decide the structure of 
fuzzy rules and parameter learning phase is used to 
tune the coefficients of each rule (like the shape and 
positions of membership functions). An important task 
in the structure identification is the partition of the 
input space, which influences the number of fuzzy 
rules generated. Recently, methods for extracting 
fuzzy rules have incorporated clustering techniques. 
These methods require the user to prespecify the 
structure of the rule base, i.e., number of rules per 
class or number of membership functions per input 
feature, along with initial values for the adjustable 
parameters. 

Clustering is the unsupervised classification of 
patterns (observations, data item, or feature vectors) 
into groups (clusters). But fuzzy clustering is also 
very useful for constructing fuzzy if-then rules from 
data. The structure of the rules depends on the 
considered application. For fault diagnosis and other 
classification tasks the rules aim at deciding to which 
class in a finite set of classes (like ok/tolerable/faulty) 
a given datum should be assigned. In system 
identification or function approximation the rules 
describe a usually continuous connection between 
different variables (like in fuzzy control). Clustering 
algorithms typically require the user to prespecify the 
number of cluster centers and their initial locations; 
the locations of the cluster centers are then adapted in 
a way such that the cluster centers can better represent 
a set of archetypical data points covering the range of 
data behavior. The Fuzzy c-Means algorithm (FCM) 
[2] and Kohonen’s Self-Organizing Map [3] method 
are well-known examples of such clustering 
algorithms. For these algorithms, the quality of the 
solution, like that of most nonlinear optimization 
problems, depends strongly on the choice of initial 
values (i.e., the number of cluster centers and their 
initial locations). Pal et al. [4] in 1997 survey the use 
of clustering for identification of various parameters 
of fuzzy systems. Issues discussed include the proper 
domain for clustering, the clustering algorithm used, 
validation of clusters, and system validation. 

Kusiak and Chow [5] in 1987 give an efficient 
clustering algorithm which has relatively low 
computational time complexity. Cheng et al. [6] 
presents a multistage random sampling fuzzy c-means 
based clustering algorithm, which is used to create 
fuzzy rules in the domain of magnetic resonance 
images where over 60,000 patterns and 3 features of 
attributes are common. Yang [7] in 1993 presents the 
survey of fuzzy set theory applied in cluster analysis 
and gives a survey of fuzzy clustering in three 
categories. The first category is the fuzzy clustering 
based on fuzzy relation. The second one is the fuzzy 

clustering based on objective function. Finally, the 
author gives an overview of a nonparametric classifier. 
Runkler and Palm [8] in 1996 develops a regular 
fuzzy c-elliptotype clustering algorithm for the direct 
extraction of regular fuzzy systems from measured 
data. In contrast to the conventional fuzzy c-
elliptotype clustering, the modified algorithm 
identifies clusters located on a regular grid. Regular 
fuzzy clustering has a low computational complexity 
and good convergence properties. A new approach [9] 
to the design of fuzzy systems is presented by Sin and 
Rui, assuming that the system specification is given in 
terms of a large number of sample input/output pairs. 
In this approach, there is no need to guess the number 
and shapes of fuzzy sets in the input and output 
universe of discourse, and the number of clusters can 
be determined by using an appropriate measure of 
cluster validity. 

In 1985, Takagi and Sugeno [10] present a 
mathematical tool to build a fuzzy model of a system 
where fuzzy implications and reasoning are used. The 
premise of an implication is the description of fuzzy 
subspace of inputs and its consequence is a linear 
input-output relation. The method of identification of 
a system using its input-output data is then shown. 
Hanss [11] in 1999 presents a special fuzzy modeling 
method for developing multivariable fuzzy model on 
the basis of measured input and output data. The fuzzy 
model identification procedure is carried out by 
applying fuzzy c-elliptotype method, to provide the 
parameters of the fuzzy model. Gedeon et al. [12] in 
2002 present a method which extracts rules directly 
from numerical data for a Sedimentary Rock Data Set. 
This paper shows how pre-processing input data using 
clustering may help the classification accuracy in 
some cases.  

Yager and Filev [13] proposed a simple and 
effective algorithm, called the mountain method, for 
estimating the number and initial location of cluster 
centers. Their method is based on gridding the data 
space and computing a potential value for each grid 
point. Although this method is simple and effective, 
the computation grows exponentially with the 
dimension of the problem. Chiu [14] proposed an 
extension of Yager and Filev’s mountain method, 
called subtractive clustering, in which each data point, 
rather than the grid point, is considered as a potential 
cluster center. Using this method, the number of 
effective “grid points” to be evaluated is simply equal 
to the number of data points, independent of the 
dimension of the problem. Another advantage of this 
method is that it eliminates the need to specify a grid 
resolution, in which tradeoffs between accuracy and 
computational complexity must be considered. 

Chiu [15] in 1997 presents methods for extracting 
fuzzy rules for both function approximation and 
pattern classification. The rule extraction methods are 
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based on estimating clusters in the data; each cluster 
obtained corresponds to a fuzzy rule that relates a 
region in the input space to an output region (or, in the 
case of pattern classification, to an output class). Chiu 
[16] again in 1997 presents an efficient method for 
extracting fuzzy classification rules from high 
dimensional data. A cluster estimation method called 
subtractive clustering is used to efficiently extract 
rules from a high dimensional feature space. 

Pal and Mudi [17] used FCM [2] to identify the rule 
base needed to realize a self-tuning fuzzy PI-type 
controller and they are able to reduce 49 rules to 17 
rules by strategy 1 (data generated by uniform 
sampling e and Δe). The performance of the identified 
system is not quite satisfactory. Then they suggested 
other methods to get the initial estimate of 
membership functions (MFs) and data generated by 
running the process in closed loop, called strategy 2, 
for the improvement in performance. Grabusts [18] 
aims at modeling the input-output relationship with 
fuzzy IF-THEN rules by using fuzzy clustering 
technique. The main difference between fuzzy 
clustering and other clustering techniques is that it 
generates fuzzy partitions of the data instead of hard 
partitions. The author examines two fuzzy-clustering 
algorithms: FCM and subtractive clustering algorithm. 

The Fuzzy c-means (FCM) clustering algorithm, 
which has been widely studied and applied, needs a 
priori knowledge of the number of clusters. Whenever 
FCM requires a desired number of clusters and initial 
guess positions for each cluster center, the output rules 
depend strongly on the choice of initial values as the 
FCM algorithm forms iteratively a suitable cluster 
pattern in order to minimize an objective function 
dependent of cluster locations. The auto-generation 
capability for determining the number and initial 
location of cluster centers through search techniques 
was introduced in the mountain clustering method. 
This method considers each discrete grid point as a 
potential cluster center by computing a search 
measure called the mountain function at each grid 
point. It is a subtractive clustering method with 
improved computational effort, in which the data 
points themselves are considered as candidates for 
cluster centers instead of grid points. By using this 
method, the computation is simply proportional to the 
number of data points and independent of the 
dimension of the problem. In this method, a data point 
with highest potential which is a function of the 
distance measure is considered as a cluster center and 
data points close to new cluster center are penalized in 
order to control the emergence of new cluster centers. 
Fuzzy c-means is a supervised algorithm, because it is 
necessary to tell it how many clusters ‘c’ to look for. If 
‘c’ is not known before, it is necessary to apply an 
unsupervised algorithm. Subtractive clustering is 
based on a measure of the density of data points in the 

feature space. The idea is to find regions in the feature 
space with high densities of data points. The point 
with the highest number of neighbours is selected as 
centre for a cluster. The data points within a 
prespecified, fuzzy radius are then removed 
(subtracted), and the algorithm looks for a new point 
with the highest number of neighbours. This continues 
until all data points are examined. 

The preceding discussion shows that different 
researchers have used different clustering algorithms 
and different cluster validity indices to decide on the 
number of rules. Our search though the literature 
revealed that Subtractive Clustering is fast and robust 
method for estimating the number and location of 
cluster centers present in a collection of data points. 
Initial fuzzy rules with rough estimate membership 
functions are obtained from the cluster centers; the 
membership functions and other rule parameters are 
then optimized with respect to some output error 
criterion.  

The problem of the clustering based partition is that 
corresponding membership functions in each input 
variable are always opaque to the user, especially in 
the case of high-input dimensions. This violates the 
spirit of fuzzy systems that what a fuzzy rule means 
and how it works should be easy to understand. This 
problem can be solved by projecting the generated 
cluster onto each dimension of the input space to form 
a projected one-dimensional (1-D) membership 
function for each input variable and represent a cluster 
by the product of the projected membership functions, 
as illustrated in Fig. 1 [20]. 

Compared with the grid-type partition, the 
clustering-based partition does reduce the number of 
generated rules, but not the number of membership 
functions of each input variable as in [23]. To verify 
this, suppose there are ‘n’ input variables and each 
input variable is partitioned into ‘m’ parts (fuzzy 
terms). Then the total number of membership 
functions used is ‘nm’ for the grid-type partition. As to 
the clustering-based partition, if there are ‘k’ clusters 
formed, then the number of membership functions 

 

 
 

Fig. 1. Clustering-based partitioning. 
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generated is ‘nk’. In general, k is larger than m, 
meaning that the clustering-based partition creates 
more membership functions than the grid-type one 
dose. In fact, by observing the projected membership 
functions in Fig. 1, it is found in [23] that some 
membership functions projected from different 
clusters have high similarity degrees. In this paper, 
these highly similar membership functions are 
eliminated. This phenomenon occurs not only in the 
clustering-based partitioning methods, but also in 
other approaches like those based on the orthogonal 
least square [OLS] method [24].  

Firstly, Fuzzy Subtractive Clustering (FSC) 
approach is used to decide the number of rules. After 
that highly similar membership functions obtained 
from subtractive clustering are eliminated using 
similarity measure. Then FSC is used for 
identification of PD type Fuzzy Logic Controllers 
(FPDC) and PI type FLC (FPIC). A comparison 
between the clustering based Fuzzy Logic Controllers 
and conventional Fuzzy Logic Controllers using 
simulation of a wide range of linear and nonlinear 
processes is presented.  

 
2. CLUSTER ESTIMATION 

 
If a cluster tendency assessment technique signals 

existence of good substructure in the data, then it may 
be easier to find an “optimal” number of rules. 
However, irrespective of whether the input–output 
data has cluster substructure or not, it is always 
possible to partition it into a number of subsets and 
each such subset can be converted into a rule. If the 
data indeed has hyperspherical clusters [1], then the 
number of rules (subsets) would be smaller compared 
to the case when the data does not have any cluster 
substructure. For example, if the input–output relation 
is linear, the data will not exhibit any cluster structure, 
yet it can be partitioned into a number of small 
hyperspherical clusters to generate a set of rules to 
identify such linear systems. 

Consider a collection of n data points {x1, x2, … xn} 
in an M dimensional space. Without loss of generality, 
we assume that the data points have been normalized 
in each dimension so that they are bounded by a unit 
hypercube. We consider each data point as a possible 
cluster center and define a measure of the potential of 
data point xi as 

2

1
,i j

n x x
i

j
P e

α− −

=
= ∑    (1) 

where 24 / arα = .   (2) 

||.|| denotes the Euclidean distance, and ra is a 
positive constant. Thus, the measure of the potential 
for a data point is a function of its distances to all 

other data points. A data point with many neighboring 
data points will have a high potential value. The 
constant ra is effectively the radius defining a 
neighborhood; data points outside this radius have 
little influence on the potential. After the potential of 
every data point has been computed, the data point 
with the highest potential is selected as the first cluster 
center. Let x1* be the location of the first cluster 
center and P1* be its potential value. The potential of 
each data point xi is revised by the formula 

2*
1

1 * ix x
i iP P P e

β− −
⇐ − ,                 (3) 

where 24 / brβ = ,                        (4) 

and rb is a positive constant. Next, from each data 
point, an amount of potential is subtracted as a 
function of its distance from the first cluster center. 
The data points near the first cluster center will have 
greatly reduced potential, and therefore will be 
unlikely to be selected as the next cluster center. The 
constant rb is effectively the radius defining the 
neighborhood which will have measurable reductions 
in potential. To avoid obtaining closely spaced cluster 
centers, rb is set to be somewhat greater than ra; a 
good choice is rb = 1.25 ra. When the potentials of all 
data points have been revised according to (3), the 
data point with the highest remaining potential is 
selected as the second cluster center. The process is 
then continued further. In general, after the kth cluster 
center has been obtained, the potential of each data 
point is revised by the formula 

*
2* i kx x

i i kP P P e
β− −

⇐ − ,                 (5) 

where xk* is the location of the kth cluster center and 
Pk* is its potential value. 

The process of acquiring new cluster center and 
revising potentials repeats until the remaining 
potential of all data points falls below some fraction 
of the potential of the first cluster center P1*. In 
addition to this criterion for ending the clustering 
process are criteria for accepting and rejecting cluster 
centers that help avoid marginal cluster centers [15]. 

 
3. EXTRACTION OF RULES AND 

MEMBERSHIP FUNCTIONS 
 
To extract the rules, firstly data is separated into 

groups according to their respective classes. 
Subtractive clustering is then applied to the input 
space of each group of data individually for 
identifying each class of data [16]. The clusters found 
in the data of a given group identify regions in the 
input space that map into the associated class. Hence, 
each cluster center may be translated into a fuzzy rule 
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for identifying the class. For example, if subtractive 
clustering was applied to the group of data for class 
and cluster center xi* was found in the group of data 
for class c1, then cluster center provides the rule:  
Rule i: If {x is near xi*} then class is c1. 

The degree of fulfillment of {x is near xi*} is 
defined as 

*
2 ,ix x

i e
α

μ
− −

=                          (6) 

where α  is the constant defined by (2). 
One can also write this rule in the more familiar 

form: 
Rule i: If X1 is Ai1 & X2 is Ai2 &... then class is c1, 
where Xj is the j’th input feature and Aij is the 
membership function (Gaussian type) in the i’th rule 
associated with the j’th input feature. 
The membership function Aij is given by 

2*1( ) exp ,
2

j ij
ij j ij

X x
A X

σ

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟= −⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

           (7) 

where xij* is the j’th element of xi*, and  

2 1/(2 ).ijσ α=                             (8) 

The degree of fulfillment of each rule is computed 
by using multiplication as the AND operator. By 
applying subtractive clustering to each class of data 
individually, a set of rules may be obtained for 
identifying each class. The individual sets of rules can 
then be combined to form the rule base of the 
classifier. When performing classification, the output 
class of the classifier is simply determined by the rule 
with the highest degree of fulfillment. 

 
4. IMPLEMENTATION AND RESULTS 

 
The FSC is used for identification of PD type FLC 

and PI type FLC. But for Fuzzy Controllers, 
parameter settings is necessary to determine universe 
ranges and perform hundreds of simulation 
experiments until acceptable values are not found. A 
retrieval of optimal parameter is very difficult, 
because the setting is dependent on lot of other 
parameters and desired value. One method with the 
unified universe range, stated in [19], considerably 
simplifies the setting of fuzzy PI/PD/PID controller. 
For the sake of completeness, a brief description of 
parameter setting for fuzzy PI type controller is given. 

 
4.1. Fuzzy PI controller design 

Fuzzy PID controllers are physically related to 
classical PID controller. A classical PI controller is 
described by (9) where K is the gain of PI controller, 

TI is an integral constant, e(t) is an error signal, e(t) = 
r(t)-y(t), r(t) is the desired value, y(t) is the output 
from process and u(t) is the output from controller. 

0
1( ) ( ( ) ( )

t

I
u t K e t e d

T
τ τ= + ∫                (9) 

When we derive (9) we get 

1( ) ( ) ( ) .
I

u t K e t e t
T

⎛ ⎞
′ ′= +⎜ ⎟

⎝ ⎠
                (10) 

For a local extreme location we put 

1( ) ( ) ( ) 0,
I

u t K e t e t
T

⎛ ⎞
′ ′= + =⎜ ⎟

⎝ ⎠
             (11) 

1( ) ( ).e t e t
TI

′ = −                         (12) 

If we translate (11) to discrete form, we get the 
equation for action value change of discrete PI 
controller 

1( ) ( ) ( ) ,u k K e k e k
TI

⎛ ⎞
Δ = Δ +⎜ ⎟⎜ ⎟

⎝ ⎠
             (13) 

where ( ) ( ( ) ( 1)) / ,u k u k u k TΔ = − −  
( ) ( ( ) ( 1)) / .e k e k e k TΔ = − −  

T is the sampling period, k is the step. Equation 
(13) can also be written as 

( )1( ) ( ) ( ) .I
I

u k K T e k e k
T

Δ = Δ +             (14) 

In next step it is necessary to map the rule base to 
the discrete state space ( ), ( ).e k e kΔ  We define the 
scale factor M for the universe range, M >0. This scale 
factor sets the universe ranges for the error and its first 
differences. 
After extending (14) it becomes 

1( ) ( ) ( ) .I

I

TMu k K e k e k
T M M

⎛ ⎞Δ = Δ +⎜ ⎟
⎝ ⎠

        (15) 

The placement of the base rules mapped into the 
state plane according to (15) is determined only by the 
chosen scale factor and the integral constant 
magnitude. Multiplication of the normalized universe 
is inversely proportional; therefore the values on axis 
are inverted up against (15).  

Then apply fuzzification to input variables and after 
defuzzification, 

1( ) ( ) ( )I

I

TMu k K e k e k
T M M

⎧ ⎫⎧ ⎫Δ = Δ +⎨ ⎨ ⎬⎬
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D F ,  (16) 
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where F is an operation for fuzzification and D for 
defuzzification. 
For Δu(k)  

   

( ) ( 1)( )

1( ) ( ) .I

I

u k u ku k
T

TMK e k e k
T M M

− −
Δ =

⎧ ⎫⎧ ⎫= Δ +⎨ ⎨ ⎬⎬
⎩ ⎭⎩ ⎭

D F
 (17) 

The output of the fuzzy PI controller in the step k is 
then 

1( ) ( ) ( ) ( 1).I

I

TKMTu k e k e k u k
T M M

⎧ ⎫⎧ ⎫= Δ + + −⎨ ⎨ ⎬⎬
⎩ ⎭⎩ ⎭

D F  

(18) 
The block diagram of PI type FLC is shown in Fig. 2.  
The change in error is defined as 

   ( ) ( ) ( 1),e k e k e kΔ = − −    (19) 

where e(k) is the error at the kth sample. 
All membership functions (MFs) for controller inputs 
(i.e., e and Δe) and incremental change in controller 
output (i.e., Δu) are defined on the common 
normalized domain [-1,1]. The membership functions 
are shown in Fig. 3. 
Here the input and output gains are Ge, GΔe and Gu. 

   1 , , .I
e e u

I

T KMTG G G
M M TΔ= = =   (20) 

The operation of PI type FLC can be described by 

   ( ) ( 1) ( ).u k u k u k= − + Δ    (21) 

In (21), Δu is the incremental change in controller 
output, which is determined by the rules of the form If 
e is E and Δe is ΔE, then Δu is ΔU. The rule base for 
computing Δu is shown in Fig. 4, which is a fairly 
standard one. 
On the other hand, if the output of the FLC is u (not 
Δu) and there is no accumulation of controller output 
then fig is converted to a PD type FLC. In this case, 
the input and output gains Ge, GΔe and Gu are: 

   1 , , ,D
e e u

T
G G G KM

M MΔ= = =   (22) 

where TD is an derivative constant. 
In this paper, PI and PD type FLC’s (system with 

49 rules) will be denoted by FPIC and FPDC, 
respectively, and their corresponding clustering based 
FLC’s (system with reduced rule set) will be denoted 
by TFPIC and TFPDC.  
 
4.2. Identification of fuzzy controllers 

The FPIC in Fig. 2 use 49 rules and 7 membership 
functions in each variable to compute output, and 
exhibits good performance [21]. Next, we investigate 
the following – Given some data describing the output 
(Δu) as a function of Inputs (i.e., e and Δe), now main 
aim is to extract a smaller set of rules using FSC 
approach and then reduce membership functions to do 
the same. Then, the performance of the simple 
controller (identified system) compare with the 
original one. Now the following steps are followed. 

Control
 Rule-Base

GΔe

Ge

Process

Gu

Z-1

Z-1
-y

r + e e

Δe ΔeN

eN

ΔuN Δu + u
-
+

+

y
 

Fig. 2. Block diagram of FPIC. 
 

NB         NM NS ZE      PS    PM PB1

-1              -0.5                0                0.5              1
 

NB-Negative Big, NM-Negative Medium, NS-Negative Small, 
ZE-Zero Error, PS-Positive Small, PM-Positive Medium, PB-
Positive Big 

Fig. 3. MFs for e, Δe and Δu. 
 
Δe/e NB NM NS ZE PS PM PB
NM NB NB NB NM NS NS ZE
NM NB NM NM NM NS ZE PS
NS NB NM NS NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PS PM PB
PM NS ZE PS PM PM PM PB
PB ZE PS PS PM PB PB PB

Fig. 4. Rule base. 
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4.2.1 Data generation  
To identify the FPIC and FPDC, some data is 

needed, i.e., a set of two-dimensional input vectors 
X={X1, X2,…..Xn} and the associated set of one-
dimensional output vectors as Y={Y1,…….Yn} where 
X={e and Δe} and Y={u} is required. Here, the data 
has been generated by sampling input variables e and 
Δe uniformly and computing the value of {u} for each 
sampled point. The number of data points generated is 
442. 

 
4.2.2 Rule extraction and membership functions 

After generating the data, the next step is to 
estimate the rules. Although the number of rules 
(clusters) is automatically determined by this method, 
the user-specified parameter ra (the radius of influence 
of cluster center) strongly affects the number of rules 
that will be generated. A large ra generally results in 
fewer rules, while a small ra can produce excessive 
number of rules. Thus ra is an approximate 
specification. In this case data dimension is 3 (e.g., X 
has 2 columns and Y has 1 column). Here the radius of 
influence in the first data dimension is half the width 
of the data space and the range of influence in the 
second data dimension is one quarter the width of the 
data space and so on [21,25]. 

Then after applying Subtractive Clustering algorithm, 
eight clusters (rules) are extracted and eight MFs are 
formed. But using the similarity measure, the number 
of membership functions is reduced to 4 of input 1 
‘error (e)’ and 6 of input 2 ‘Change in error (Δe)’. The 
membership functions of e and Δe after reduction are 
shown in Fig. 5. 

 
4.2.3 Results 

The FSC approach has been tested on a variety of 
linear and nonlinear processes, Type 0 and Type 1, of 
orders from 1 to 3, with different values of dead time 
(L). The objective here is to justify whether the 
system after clustering (with less no. of rules and 

membership functions can provide the same level of 
performance as that of the original one (system with 
49 rules). This has been tested for the processes 
referred in [21,22,26] and observed satisfactory results 
in each case except in some systems using FPIC 
where after adjusting the values of gains (when all 
rules are fired), then it is observed that the 
performance of both the systems is close only on 
particular gains. However, four of them are reported 
here. 

The process transfer functions G(s) are reproduced as 

G1(s)=e-Ls/s (s+1),                      (23) 
G2(s)=(s+1)/(s3+9s2 +26s+24),            (24) 
G3(s)= 1/(s+1),                         (25) 

20.25 ( ).y y y u t L+ + = −                 (26) 

The FPDC and FPIC as in Fig. 2 are used here with 
values of gains (Ge, GΔe and Gu) as 1 in almost all 
cases except those systems in which all rules are not 
fired (e and Δe are out of range) during simulation . In 
those systems, input and output gains are calculated 
from (20) and (22) as described in Section 4 (A). In 
subsequent discussion, the performance of TFPIC and 
TFPDC is considered good or satisfactory only when 
its performance is close to that of FPIC and FPDC. In 
this paper, it is emphasize that an identified system is 
called satisfactory only with respect to its closeness to 
the target system, here FPDC and FPIC. Response 
characteristics for all systems with and without 
clustering (with and without membership and rule 
reduction) are shown in Figs. 6 to 11. A number of 
performance indices such as peak overshoot (% os), 
settling time (ts(s)) for ± 5% tolerance band, rise time 

 

Fig. 5. MFs for e and Δe. 

Table 1. Performance analysis for system 1 and 2. 
System FLC %os Ts tr ITAE IAE

1 FPDC 16.0 5.7 2.7 17 10 
 TFPDC 17.0 5.6 2.7 18 10 

2 FPIC - 71 56 704 32 
 TFPIC - 72 56 747 33 

 
Table 2. Performance analysis for system 3. 
System FLC %os ts tr ITAE IAE

3 FPDC - 1.3 0.86 27 9 
 TFPDC - 1.35 0.95 28 9 

3 FPIC - 12 2.7 27 19 
 TFPIC - 13 2.7 28 19 

 
Table 3. Performance analysis for system 4. 
System FLC %os ts tr ITAE IAE

4 FPDC 15.2 4.2 2.1 907 235
 TFPDC 19.8 4.2 2.1 887 231

4 FPIC 1.5 8 7.5 27 19 
 TFPIC 3 8 7.5 28 19 
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(tr(s)), integral-absolute error (IAE), and integral of 
time-multiplied absolute error (ITAE) are computed 
[27,28] for a detailed performance comparison of the 
identified system and the original systems. These 
performance indices for both processes are provided 
in tabular forms (Table 1, 2, and 3). In each table, row 
corresponding to FPIC and FPDC presents the 
performance of the original system.  

To summarize, when the data set is generated by the 
FLC with 49 rules, it exhibits cluster structure. Rules 
are then generated using the approach FSC which 
gives 8 rules and 8 membership functions. Then 
highly similar membership functions are eliminated. It 

reduces the MFs of error to 4 and MFs of change in 
error to 6. The overall performance of the clustering 
based Fuzzy Logic Controllers is compared with those 
of conventional Fuzzy Logic Controllers. Response 
characteristics of the identified system in both cases 
(FPDC and FPIC) are very close to the original one. 

 
5. CONCLUSION 

 
This paper presents two different approaches to 

deal with the most important design issues i.e., 
number of rules, number of membership function of 
Fuzzy Controllers. The FSC approach has been used 
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Fig. 6. Response of G1(s)= e-0.1s/s(s+1) with FPDC. 
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Fig. 7. Response of G2(s)=(s+1)/(s3+9s2+26s+24) with
FPIC. 
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Fig. 8. Response of G3(s)= 1/(s+1) with FPDC. 
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Fig. 9. Response of G3(s)= 1/(s+1) with FPIC. 
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Fig. 10. Response of nonlinear system with FPDC. 
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Fig. 11. Response of nonlinear system with FPIC. 
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to extract a rule base for the output ‘u’ of a FPIC and 
FPDC. This method is fast for estimating the number 
and location of cluster centers present in a collection 
of data points. After that highly similar membership 
functions obtained from subtractive clustering are 
eliminated using similarity measure. The proposed 
combination is able to reduce 49 rules to 8 rules and 
the number of MFs to 4 and 6 for error and change in 
error maintaining almost the same level of 
performance. The main advantage of the proposed 
approach is that by reducing the rules and membership 
functions, it can significantly reduce the time and 
effort needed to design a fuzzy controller directly 
from numerical data. 
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