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Abstract. Laser cleaning of the electrodes in a planar micro-fabricated ion trap

has been attempted using ns pulses from a tripled Nd:YAG laser at 355 nm.

The effect of the laser pulses at several energy density levels has been tested

by measuring the heating rate of a single 40Ca+ trapped ion as a function of its

secular frequency ωz. A reduction of the electric-field noise spectral density by

∼50% has been observed and a change in the frequency dependence also noticed.

This is the first reported experiment where the ‘anomalous heating’ phenomenon

has been reduced by removing the source as opposed to reducing its thermal

driving by cryogenic cooling. This technique may open up the way to better

control of the electrode surface quality in ion microtraps.

The recent success of quantum information experiments based on trapped ions [1] triggered

research on micro-fabricated radio-frequency (Paul) traps, which are in principle able to fulfill

the scalability requirement of a quantum computer [2, 3]. In such traps, a set of micro-fabricated

conducting electrodes generates oscillating and static electric fields that trap laser-cooled ions in

a harmonic potential well at a sub-millimeter distance d from the substrate [4, 5]. However, the

presence of uncontrolled fluctuating electric fields affects the ions’ external motion and induces

an ‘anomalous heating’ that limits the achievable fidelity of multi-ion quantum gates that rely on

the coherent control of this motion [6]. Experimental observations concerning this phenomenon
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are consistent with a very unfavorable d−4 scaling law, compatible with a random distribution of

fluctuating charges or dipolar ‘patches’ at the electrode surfaces [7, 8]. In addition, the scaling of

the electric field noise spectral density SE(ω) with respect to trap secular frequency ω has been

found to approximate a ω−α law, with exponents roughly compatible with α = 1 but spanning

the range 0.4 < α < 1.6 [7–12].

Some recent theoretical models propose the fluctuations of the electric dipoles of adsorbed

molecules as a possible driving mechanism [13, 14], while other authors point out the role

played by a more general (but microscopically not identified) correlation length associated

with disorder on the surface [15, 16]. Several studies point to surface contamination being an

issue: the first one observed an order of magnitude variation between four nominally identical

traps and even the same trap after it had been re-cleaned [11], the second one observed no

change in the heating rate even when the bulk of the electrode undergoes a transition to a

superconducting state [17], and the third one reported an increased heating rate in the region of

the trap used for loading ions [13]. Although traps are typically cleaned using some combination

of organic solvents, ozone cleaning or plasma cleaning after fabrication, any surface that has

been exposed to the atmosphere will have a covering of adsorbents at least several monolayers

thick. Additionally, trap electrode materials that react with oxygen will have a native oxide layer.

Standard methods of preparing atomically clean metal surfaces under ultrahigh vacuum involve

either in situ cleaving, evaporation or repeated cycles of ion bombardment and high-temperature

annealing [18]. While the latter two processes could be used in principle for microtraps, they

would add significant engineering complexity to the trap structures and to the experimental

vacuum systems. Moreover, such harsh treatments are unlikely to be compatible with traps

currently under development, which incorporate integrated optics [19, 20], an important step

towards scaling up ion trap quantum computing.

The cleaning of metallic surfaces based on pulsed-laser sources has also been noted as an

effective, if less frequently used, technique for producing clean surfaces [22]. The technique

is based on the fact that energy density thresholds for desorbing contaminants or removing

oxides are generally lower than the ablation damage threshold for the metallic surface [23]. In

particular, ‘dry’ laser cleaning, compatible with ultrahigh vacuum techniques, has been used

for oxide removal from metallic surfaces [24, 25] and cleaning of aluminum-coated optical

surfaces [26]. Typically, ultraviolet (UV) pulses from nanosecond sources (e.g. excimer or

Nd:YAG third/fourth harmonic) and energy densities of ∼100 mJ cm−2 are used. Laser cleaning

may be easily applied to an ion microtrap and requires no modification to a typical vacuum

system (viewports that transmit UV are often required for laser access). Furthermore, the

cleaning-laser beam can be positioned with micron-level precision and its direction easily

adjusted, in order to avoid delicate components or to irradiate selectively different parts of

complex three-dimensional (3D) trap designs.

We implement this technique on a state-of-the-art microfabricated trap [12, 20, 21]. The

structure of the trap (see figure 1) is such that three different materials are exposed to the

cleaning beam: the aluminum of the upper electrode surface (2.4 µm of sputter deposited Al-

1/2% Cu with 2–3 nm native oxide having an rms surface roughness of ∼8 nm), the gold

coating on the silicon (500 nm Au/50 nm Pt/20 nm Ti stack, e-beam evaporated) and the silicon

dioxide of the pillars which support the electrodes (plasma deposited tetraethyl orthosilicate).

We note that the gold coating was evaporated at an angle such that it has a nominal thickness

of 114 nm on the slot side walls. Previous works describe laser ablation or laser cleaning of

such materials; we briefly review here the main results that may apply to the present study.
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Figure 1. Schematic cross-section (to scale) of the microfabricated trap [12, 21];

all dimensions are in microns. The slot through the center of the substrate,

parallel to the trap z-axis, allows ions to be loaded from the underside of

the substrate: this avoids contamination of the trap electrodes from the neutral

atomic beam source. An important issue for the present study is the gold

coating that covers the silicon, which has a nominal thickness of 0.11 µm on

the slot side walls (not to scale on the scheme). The cleaning beam cross-section

corresponding to the Ek− = (− 1

2
, − 1√

2
, 1

2
) propagation direction (violet shade) is

also sketched.

For aluminum the generally accepted ablation threshold (for plasma generation) lies around

4 J cm−2 at λ = 355 nm [27]; however, careful studies in high vacuum demonstrated that a

measurable Al+ ion yield appears at energy densities lower than 100 mJ cm−2 [28]. At the

same wavelength, the reported thresholds for cleaning and damaging the surface of an Al-

coated glass substrate (BK7) are 200 and 490 mJ cm−2, respectively [26]. The laser ablation of

aluminum oxide is somewhat more complicated due to the fact that several phases can coexist

in native oxides. An experiment performed in ultrahigh vacuum conditions (ion detection and

surface analysis) on a sapphire monocrystal [29] gives an ablation threshold of 3 J cm−2 and a

threshold more than one order of magnitude lower for Al+ ion emission. Even lower thresholds

are expected for native oxides [24]. In the case of gold, an experimental study addressed

the case of thin films (up to some microns) in the single-shot regime [30] and estimated the

ablation threshold to be ∼250 mJ cm−2 (with the damage threshold a factor of 2 below this)

for a film thickness of 100 nm. While the ablation threshold for silicon is well documented

(1.3 J cm−2) [31], the case of silicon dioxide is less straightforward to analyze, due to the

differences in composition and porosity.

The cleaning beam is generated by a tripled Nd:YAG laser (Continuum Minilite ML I) that

delivers 3–5 ns pulses (nominal) at λ = 355 nm with an energy continuously adjustable to up

to ∼1 mJ and a repetition rate of up to 15 Hz. The beam is spectrally filtered by a fused silica

prism and then sent to the trap. A ∼300 µm diameter pin-hole selects the central part of the laser

beam and is imaged on the trap plane in order to obtain a well-defined spot with an intensity

that is uniform to ∼20%. The imaging lens (2f–2f configuration) is mounted on a micrometer

translation stage to allow for fine positioning of the cleaning spot. In view of the particular

geometry of the trap, with a slot through the center of the substrate, two symmetric beam paths,
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Figure 2. Left: typical image of the cleaning laser light scattered from the

trap. The electrode gaps are sketched as lines and the two trapping sites A

and B discussed in the text are indicated. Right: plume fluorescence (false

colors) associated with a single cleaning pulse (energy density ≃200 mJ cm−2)

impinging on an uncleaned area. The displayed image does not show the

scattered laser light, which was subtracted using an image taken after cleaning.

both at 45◦ incidence to the substrate plane (xz-plane), are used to allow cleaning of both interior

walls of the slot (see figure 1). The spot size and position on the trap are monitored using

an electron multiplying charge coupled device camera (Andor Luca), also used for imaging

the trapped ion. A typical image of the UV light scattered from the trap is shown in figure 2

where the geometry of the electrodes is also sketched. With this setup, energy densities up to

≃350 mJ cm−2 can be obtained with a spot diameter of ∼300 µm. In the following, energy

densities are given normal to the beam propagation direction. The energy density on a specific

trap surface is reduced by a geometrical factor: for the xz-plane (upper electrode surfaces) this

factor is 1√
2
; for the yz-plane (slot side walls) it is 1

2
. All trap electrodes were grounded while

firing the laser, to prevent the possibility of arcing initiated by photoelectrons.

The experimental methods for loading and cooling 40Ca+ ions in a similar trap,

compensating for micromotion and measuring heating rates using the Doppler re-cooling

technique, have previously been described in detail [32]. Before applying any laser cleaning,

we characterized the trap heating rate by testing three trapping sites (z = 0, ±240 µm from the

center). The heating rate and frequency dependence were uniform (within the estimated error)

and compatible with previous measurements [12]. Contrary to the case of [13], we did not

observe an increase of the heating rate over an operation time of several months. In our loading

geometry, the oven is placed below the slot shown in figure 1, ∼50 mm behind the trap. Based

on data from a similar oven [33], we can estimate the order of magnitude of the flux reaching the

interior walls of the slot when the oven is on: ∼105 Ca atoms s−1 mm2 (less than one monolayer

every two years). However, we cannot exclude a contamination of the slot surfaces by other

species during the initial firing of the oven: at that moment, while the Ca flux was still /107

(atoms s−1) mm−2, the pressure in the vacuum chamber increased up to 10−8 mbar.

We began the laser cleaning by applying pulses to a trapping region two electrodes away

from the center of the trap array (z = +160 µm, site B on figure 2). Each experiment consisted of

applying a number of pulses at a given energy density (1 Hz repetition rate) around the trapping

position. After each experiment the trap was loaded and the ion’s heating rate was measured.

Then the energy density was increased for the next experiment. At 30 mJ cm−2 the dc electrode

centered at x = −60 µm showed clear signs of delamination near z = +400 µm, presumably

caused by differential expansion induced by heating (see figure 5(a)). At this point no change
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in heating rates had been observed. As we did not want to risk further damage to the trap, we

moved the trapping region to a symmetric position four electrodes away (site A, z = −160 µm)

and resumed the experiment, reducing the repetition rate to 0.2 Hz to minimize the risk of heat

accumulation. As we were still able to trap in site B and the heating rate had not significantly

changed there, we later used it as a control measurement to ensure that any measured change

in heating rate at zone A over time was not due to a systematic effect in our measurement or a

change in some global noise source (e.g. electrical pickup).

Figure 3 shows the evolution of the heating rates (expressed in terms of electric field

noise spectral density) and micromotion compensation fields throughout the entire series of

cleaning experiments applied to site A. Initially we applied the cleaning beam along the
Ek+ = ( 1

2
, − 1√

2
, −1

2
) direction only (see figures 1 and 2), indicated by black bars in figure 3. There

appears to be a slight drop in heating rates from ∼100 mJ cm−2 onwards, which initially is not

much below the scatter on the measurements. However, once we attempted cleaning also from

the Ek− = (− 1

2
, − 1√

2
, 1

2
) direction (indicated by red bars in figure 3) with an energy density of

100 mJ cm−2, the drop became much more pronounced. This effect points to a large contribution

to the noise from the slot side wall, the only significant area not cleaned by the Ek+ directed

beam. When cleaning a ‘fresh’ region, we also observed for each single-pulse shot a fluorescent

emission (ablation plume) from inside the slot (see figure 2) and an accompanying pressure

spike of a few 10−12 torr. The plume fluorescence intensity and the pressure spike amplitude

dropped rapidly and became undetectable after three or four shots, implying the source material

responsible for these phenomena had been removed. These effects were not observed in the first
Ek+ cleaning direction. This is due to the fact that along the Ek+ direction, we gradually increased

the intensity over thousands of pulses: this probably removed the material in smaller amounts,

below the sensitivity of the camera or ion gauge.

At this point, heating rate data as a function of axial trap frequency were taken at both sites

A and B (see figure 4). While the heating rate in site B is still entirely consistent with the data

taken several months before [12], that in site A shows a marked decrease and a significant drop

of the exponent α.

The exposure of the trap to cleaning laser pulses also caused a shift in the micromotion

compensation voltages along both the x- and y-directions. These shifts had a small component

(∼10%) which relaxed over several hours (presumably induced by charging [12, 34]) but the

major part of the effect did not relax, even over weeks. The direction of the electric field to be

compensated was mainly such that the ion was attracted upwards (+y) and away from the side

of the slot being cleaned. The effect appeared to have somewhat saturated until the Ek− cleaning

direction was used at which point the field roughly doubled in magnitude along y but evened

out in x . Again, this behavior points to a major contribution from the large slot side wall (silica

or gold surfaces).

We then attempted to reduce the heating rate further by increasing the energy density to

360 mJ cm−2 in the Ek− direction; however, this caused visible damage to the aluminum top

surface of the trap (observed as an increase of light scattering in the irradiated zone). This

damage caused an increase in the heating rate (although still below the initial value) and a

reversion to a higher exponent α in the frequency dependence (α = 0.88(3)).

The still-operational microtrap was then removed from the vacuum chamber and observed

under optical and electron microscopes. Optical microscope images confirmed some visual

damage of the Al surface of the electrodes surrounding site A and suggested a reflectivity

decrease of the slot side wall where it had been irradiated. Electron microscope images were
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Fig. 4 measurement
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Figure 3. Top to bottom: heating rates for an axial trapping frequency ωz/2π =
500 kHz (expressed in terms of electric field noise spectral density), micromotion

compensation fields (the x- and y-directions) and cleaning laser energy density

plotted against the experiment number. Each experiment consisted of a cleaning

attempt followed by micromotion compensation and heating-rate measurements.

In the top graph, blue open diamonds correspond to control measurements in

site B, while black filled circles correspond to measurements in the cleaned

site A. Error bars are derived from the scatter in measurements repeated under

nominally identical conditions. In the bottom graph, the number of cleaning

pulses applied in each experiment is proportional to the thickness of the bar

(1000, 400 or 100 pulses); black (red) bars indicate cleaning from the Ek+ ( Ek−)

direction, respectively (see text). The entire data set was taken over a 10 week

period with the cleaning laser operating at 0.2 Hz repetition rate.
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Figure 4. Heating rate (expressed in terms of electric field noise spectral density)

as a function of the axial trapping frequency ωz/2π . We compare two data

sets obtained in the A and B trapping sites (black filled circles and blue open

diamonds, respectively) taken on the same day with the same settings. For

reference, the data corresponding to the central site of the trap taken before

cleaning (red crosses; [12]) are also shown. Error bars are derived from the

scatter in repeated measurement sets and the lines correspond to the best fits

of each data set to a ω−α
z law. The exponents α corresponding to the A, B and

‘center’ sites are 0.57(3), 0.82(7) and 0.93(5), respectively.

taken with both secondary electron and back-scattered electron (BSE) contrasts. As shown in

figure 5(a), the delamination of the dc electrode (at z ∼ +400 µm) appears to be associated

with a delamination of the silica pillar, suggesting that some thermally induced stress may be

at the origin of this damage. The boundary between the irradiated (but not damaged) and the

non-irradiated region inside the slot side wall displays some change in the topography of the

gold coating (figure 5(b)). However, an image obtained with BSE contrast (which is sensitive

to Z ) shows that the gold was probably only removed (in a stripe-like fashion) around the

damaged site A (figure 5(c)) and it still forms a continuous film in the regions irradiated with

<200 mJ cm−2 energy density.

This study shows that the technique of high-intensity laser irradiation is capable of reducing

in situ the heating rate of a microfabricated ion trap. It is also notable that the exponent

α, characterizing the electric field noise frequency dependence, is affected by the procedure

(figure 4).
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Figure 5. Scanning electron microscope images of the microtrap (under a 45◦

angle to the y-axis, giving a view of a side wall of the slot) obtained after

laser-cleaning experiments. (a) Delamination damage of the dc electrode at z =
+400 µm. (b) Topography change between non-irradiated (left) and irradiated

(right) zones of the side wall. (c) BSE contrast image of the side wall around the

trapping site A. This side wall was irradiated with the maximum nominal energy

density of ≃360 mJ cm−2, i.e. ≃180 mJ cm−2 after the geometrical correction.

Due to the Z -contrast of the BSE the gold shows up brightly; it appears to have

been completely removed in places. (The corresponding laser spot is sketched

for reference.)

Two possible interpretations of the mechanism involved in this electric field noise reduction

can be pointed out. The first one is based on the (possibly partial) removal of surface

contamination, responsible for the existence of patches [13, 14]. The theoretical study in [14]

suggests that different adsorbates could give rise to different frequency dependences: partial

cleaning of a sub-set of adsorbates could then explain the observed change in the exponent

α. The second interpretation is that the observed effect was caused by the apparent change in

the topography of the thin gold film inside the slot side wall (see figure 5(b)). According to
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[15, 16], this rearrangement of the metallic film could increase the characteristic length ζ of the

disorder, leading to a reduction of the heating rate.

It should also be noted that in spite of the laser-cleaning procedure, we were unable to

bring the measured heating rate below the best results obtained with traps of this size at room

temperature (SE ∼ 2 × 10−12 V2 m−2 Hz−1 at ω/2π = 1 MHz; cf figure 5 of [13]). It is likely that

surface contamination is only one contributing factor to anomalous heating. If so, this technique

could still be very useful as a method of reducing the large variance observed between traps of

the same material and fabrication, which currently renders any systematic study into the best

material and fabrication choice very difficult.

The particular microtrap that we used for this investigation was not ideally suited to the

purpose; different materials were irradiated at the same time and the ion still had a direct

line-of-sight to the dielectric pillars. An improved version of the trap with shorter dielectric

pillars and a front, as well as back, evaporated coating has already been demonstrated [12].

A gold coating was used in that case, but in principle any conducting material could be

used. A similar experiment with such a trap would be easier to interpret as only this material

predominates.

In order to develop this technique further, a deeper understanding of cleaning and damage

thresholds for typical trap structures and adsorbates is needed. This could be achieved by

combining laser cleaning with analysis of the surface chemical composition (e.g. by Auger or

x-ray photoelectron spectroscopy techniques). Lasers with a higher photon energy (e.g. Nd:YAG

fourth harmonic or excimer) or a better ratio between peak intensity and average power (e.g. fs

lasers) should be investigated because more effective cleaning is expected for an equivalent

thermal load. Following these lines, an optimal combination of electrode materials and

cleaning laser could be identified, allowing for routine in situ cleaning of microtraps whenever

necessary.
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