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Homogeneous Riemannian structures

A Riemannian manifold (M, g) is called homogeneous if there is a Lie group G of

isometries acting transitively on it.

Theorem (Ambrose-Singer)

A connected, simply connected and complete Riemannian manifold (M, g) is

homogeneous if and only if it admits a (1, 2)-tensor field S such that, if ∇̃ = ∇− S

where ∇ is the Levi-Civita connection, then

∇̃g = 0, ∇̃R = 0, ∇̃S = 0. (1)

A tensor field S satisfying (1) is called a homogeneous Riemannian structure.
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Homogeneous Riemannian structures

Homogeneous Riemannian structures are classified in eight invariant

classes:

The class of symmetric spaces (S = 0).

Three primitive classes

S1 = {S ∈ S /SXYZ = g(X ,Y )ϕ(Z )− g(X ,Z )ϕ(Y ), ϕ ∈ Γ(T ∗M)}
S2 = {S ∈ S/ S

XYZ
SXYZ = 0, c12(S) = 0}

S3 = {S ∈ S /SXYZ + SYXZ = 0}.

Their direct sums S1 ⊕ S2, S1 ⊕ S3, S2 ⊕ S3.

And the generic class S1 ⊕ S2 ⊕ S3.
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The mechanical connection

Let (P, ḡ) be a Riemannian manifold and π : P → M be an

H-principal bundle with H acting on P by isometries. Let Vx̄P

denote the vertical subspace at a point x̄ ∈ P.

The mechanical connection is defined by the (H-invariant)

horizontal distribution

Hx̄P = (Vx̄P)⊥, x̄ ∈ P

In this situation there is a unique Riemannian metric g in M such

that π∗ : Hx̄P → T
π(x̄)M is an isometry, ∀x̄ ∈ P (we called g the

reduced metric).
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Problem

(P, ḡ)

H
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S̄
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(M, g) ?
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Reduction by a normal subgroup of isometries

Let (P, ḡ) be a connected homogeneous Riemannian manifold

and Ḡ a Lie group of isometries acting transitively on it. Suppose

Ḡ has a normal subgroup H acting freely on P.

We consider the quotient manifold M = P/H, the (left) H-principal

bundle π : P → M endowed with the mechanical connection, and

the reduced metric g in M.

In this situation the quotient group G = Ḡ/H acts on (M, g) by

π ◦ Φā = Φa ◦ π

where ā ∈ Ḡ, a = [ā] ∈ G, and Φ denotes the corresponding maps

for the actions. This action is transitive and by isometries.
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Reduction by a normal subgroup of isometries

This means that (M, g) is homogeneous Riemannian with G a Lie

group of isometries acting transitively.

Question

How homogeneous Riemannian structure tensors associated to the

action of G on M are related to that of the action of Ḡ on M̄?

Ḡ � P  S̄

↓ H ↓ H ↓?

G = Ḡ/H � M = P/H  S
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Reduction by a normal subgroup of isometries

Proposition

In the previous situation, every homogeneous Riemannian structure S̄

associated to the action of Ḡ induces a homogeneous Riemannian

structure S in M associated to the action of G given by

SX Y = π∗

(
S̄X H Y H

)
X ,Y ∈ X(M),

where X H denotes the horizontal lift with respect to the mechanical

connection.
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Reduction by a normal subgroup of isometries

Proof.

Let ḡ = m̄⊕ k̄ be a reductive decomposition of k̄ at x̄ ∈ P corresponding to S̄.

From the isomorphism m̄ → Tx̄ P (given by the infinitesimal action) the

mechanical connection induces an Ad(K̄ )-invariant decomposition

m̄ = m̄
h
⊕ m̄

v
.

Let τ : Ḡ → G be the quotient homomorphism. One proves that

g = τ∗(m̄
h)⊕ k

is a reductive decomposition of g at π(x̄) ∈ M.

One proves that the reduced homogeneous Riemannian structure tensor S

corresponding to this decomposition is

SX Y = π∗

(
S̄XH Y

H
)

X ,Y ∈ X(M).
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Reduction by a normal subgroup of isometries

Proposition

The set of homogeneous Riemannian structures associated to the action of Ḡ in P

reducing to a given homogeneous Riemannian structure S associated to the action of

G on M, is in one to one correspondence with the space of Ad(K̄ )-equivariant maps

ϕ : h → k̄,

where K̄ is the isotropy group and k̄ is its Lie algebra.

(One can obtain the explicit expression for those tensor fields)
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Reduction in a principal bundle

(P, ḡ)

H
��

///o/o/o S̄

?

���
�

�

(M, g) ///o/o/o S

We ask under which conditions the tensor field

SX Y = π∗

(
S̄X H Y H

)
X ,Y ∈ X(M)

defines a homogeneous Riemannian structure in (M, g).

M. Castrillón, I. Luján (ICMAT, UCM) September 23, 2011 18 / 30



Reduction in a principal bundle

Remark

In the previous section, H ⊳ Ḡ ⇒ the mechanical connection is

Ḡ-invariant ⇒ the connection form ω is Ad(Ḡ)-equivariant.

Infinitesimally this becomes

( ˜̄∇X̄ω
)
(Ȳ ) = ad

(
µ−1(X̄ )

)
(ω(Ȳ )) X̄ , Ȳ ∈ X(P)

where ˜̄∇ = ∇̄ − S̄, and ∇̄ is the Levi-Civita connection of ḡ.

So the covariant derivative of the connection form ω with respect

to ˜̄∇ is “proportional” to itself by a suitable linear operator.
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Reduction in a principal bundle

Theorem

Let (P, ḡ) be a Riemannian manifold. Let π : P → M be a principal

bundle with structure group H acting by isometries, and endowed with

mechanical connection ω. For every H-invariant homogeneous

Riemannian structure S̄ in P with ˜̄∇ = ∇̄ − S̄, if

˜̄∇ω = α · ω

for a certain 1-form α in P taking values in End(h). Then the tensor

field defined by

SX Y = π∗(S̄X H Y H) X ,Y ∈ X(M)

is a homogeneous Riemannian structure in (M, g).
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Reduction in a principal bundle

Proof.

The tensor field S is well-defined by H-invariance of S̄.

For all X ,Y ∈ X(M)

ω( ˜̄∇XH Y
H) = X

H
(
ω(Y H)

)
−

( ˜̄
∇XHω

)
(Y H)

= −α(X H)
(
ω(Y H)

)
= 0,

thus
(
∇̃X Y

)H

= ˜̄
∇XH Y H (where ∇̃ = ∇− S).

With this one proves that S satisfies Ambrose-Singer equations: equations for g

and S are easy, but equation for the curvature R is much more delicate (the

curvature form of the mechanical connection appears).
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Reduction of homogeneous classes

Proposition

The classes S1, S3, S1 ⊕ S2 and S1 ⊕ S3 are invariant under the

reduction procedure.

For the classes S2 and S2 ⊕ S3 (for which the trace c12 of the

homogeneous structure must vanish) one has

c12(S)(X ) = c12(S̄)(X H)− ḡ(H,X H) X ∈ X(M),

where H is the mean curvature of the fibre (as a sub-Riemannian

manifold of (P, ḡ)) at each point.

In particular the classes S2 and S2 ⊕ S3 are invariant under

reduction if and only if the fibres are minimal sub-Riemannian

manifolds of (P, ḡ).
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Examples

In the fibration RH(n) → RH(n − 1) (Ḡ = RH(n),H = R), the standard S1

structure reduces to the standard S1 structure. For

Ḡ = SO(n − 2)RH(n),H = R, a family of structures in the generic class

S1 ⊕ S2 ⊕ S3 reduces to a family of structures in the generic class, and for one

value of the family parameter to the standard S1 structure.

In the Hopf fibrations S3
→ S2 (Ḡ = U(2),H = U(1)) and S7

→ CP(3)
(Ḡ = U(4),H = U(1)) (fibres are totally geodesic), a family of S2 ⊕ S3 structures

reduces to the symmetric case S = 0.

In the Hopf fibration S7
→ CP(3) (Ḡ = Sp(2)U(1),H = U(1)), a 2-parameter

family of S2 ⊕ S3 structures reduce to a 1-parameter family of S2 ⊕ S3 structures.
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Extra Geometry

Theorem (Kiričenko)

Let (M, g) be a connected, simply connected and complete Riemannian manifold, and

T1, ...,Tn tensor fields in M. Then (M, g) is Riemannian homogeneous with T1, ...,Tn

invariant if and only if it admits a homogeneous Riemannian structure S such that

∇̃Ti = 0, i = 1, ..., n.

A homogeneous Riemannian structure S in an almost contact metric manifold

(M, φ, η, ξ, g) is called an homogeneous Riemannian almost contact metric

structure if ∇̃φ = 0. If (M, φ, η, ξ, g) is moreover (almost) Sasakian then S is

called (almost) Sasakian.

A homogeneous Riemannian structure S in an almost Hermitian manifold

(M, J, g) is called an homogeneous Riemannian almost Hermitian structure if

∇̃J = 0. If (M, J, g) is moreover (almost) Kähler then S is called (almost) Kähler.
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Fiberings of almost contact manifolds

Theorem (Ogiue): Let (P, φ, ξ, η) be an invariant strictly regular almost contact

manifold and M the space of orbits given by ξ. Then π : P → M is a principal

bundle, η is a connection form, and J(X ) = π∗(φ(X
H)), X ∈ X(M) is an almost

complex structure in M.

When the almost contact structure (P, φ, ξ, η, ḡ) is metric the

connection η is the mechanical connection.

If moreover (P, φ, ξ, η, ḡ) is (almost) Sasakian then (M, J, g) is

(almost) Kähler.

If S̄ is an homogeneous almost contact metric structure then

( ˜̄∇φ = 0 ⇒) ˜̄∇η = 0, so we are in the situation of the Reduction

Theorem above with α = 0, ω = η.
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Homogeneous Almost contact-Hermitian and

Sasakian-Kähler reduction

Proposition

If S̄ is a homogeneous almost contact metric structure on

(P, φ, ξ, η, ḡ), then it can be reduced to a homogeneous almost

Hermitian structure S on (M, J, g). If moreover (P, φ, ξ, η, ḡ) is (almost)

Sasakian then S is a homogeneous (almost) Kähler structure.
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Homogeneous Almost contact-Hermitian and

Sasakian-Kähler reduction

Examples:

In the Hopf fibrations S3
→ S2 and S7

→ CP(3) a family of homogeneous

Sasakian structures reduces to the unique homogeneous Kähler structures

S = 0 in S2 and CP(3) respectively.

A homogeneous Sasakian structure in the trivial bundle CH(n)× R → CH(n)
reduce to a nontrivial homogeneous Kähler structure.

M. Castrillón, I. Luján (ICMAT, UCM) September 23, 2011 29 / 30



Future work

Reduction the other way around

(P, ḡ)

H
��

///o/o/o ?OO
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(M, g) ///o/o/o S

Geometric study of the condition ˜̄∇ω = α · ω (which leads to an

“equivariant” version of Kiričenko’s Theorem).

Application to symplectic/Kähler reduction (resp. hyper Kähler

reduction).
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