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An intrinsic problemwhen using hemodynamic responses for the brain-machine interface

is the slow nature of the physiological process. In this paper, a novel method that

estimates the oxyhemoglobin changes caused by neuronal activations is proposed and

validated. In monitoring the time responses of blood-oxygen-level-dependent signals

with functional near-infrared spectroscopy (fNIRS), the early trajectories of both oxy- and

deoxy-hemoglobins in their phase space are scrutinized. Furthermore, to reduce the

detection time, a prediction method based upon a kernel-based recursive least squares

(KRLS) algorithm is implemented. In validating the proposed approach, the fNIRS signals

of finger tapping tasks measured from the left motor cortex are examined. The results

show that the KRLS algorithm using the Gaussian kernel yields the best fitting for both

1HbO (i.e., 87.5%) and 1HbR (i.e., 85.2%) at q = 15 steps ahead (i.e., 1.63 s ahead

at a sampling frequency of 9.19Hz). This concludes that a neuronal activation can be

concluded in about 0.1 s with fNIRS using prediction, which enables an almost real-time

practice if combined with EEG.

Keywords: hemodynamic response, prediction, tracking, vector phase analysis, brain-machine interface (BMI),

functional near-infrared spectroscopy (fNIRS)

INTRODUCTION

Similar to functional magnetic resonance imaging and electroencephalography (EEG), functional
near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that measures
hemoglobin oxygenation changes in the brain (Kato et al., 1993; Villringer et al., 1993). fNIRS can
measure the absolute as well as relative concentration changes of oxyhemoglobin (HbO/1HbO)
and deoxyhemoglobin (HbR/1HbR) using multiple near-infrared lights within the range of
650∼1,000 nm (Pellicer and Del Carmen Bravo, 2011; Boas et al., 2014; Nguyen et al., 2016). It
offers several advantages, including acceptable temporal and spatial resolution (Hong and Naseer,
2016; Nguyen andHong, 2016), portability, and low cost (Ferrari and Quaresima, 2012).With these
advantages, fNIRS has successfully demonstrated its potential as a viable neuroimaging tool for
applications to the health care industry (Hong and Yaqub, 2019), neurological disorders (Obrig,
2014; Ghafoor et al., 2019; Yang et al., 2019), psychiatric disorders (Ohi et al., 2017), behavioral and
cognitive development (Watanabe et al., 2017; Yaqub et al., 2018), and brain-computer interfaces
(BCIs) (Nicolas-Alonso and Gomez-Gil, 2012; Naseer and Hong, 2015; Schudlo and Chau, 2018;
Shin and Im, 2018).
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The measured fNIRS signals (i.e., 1HbO, 1HbR) can be
categorized into three durations (Frostig et al., 1990; Ernst and
Hennig, 1994): (i) the initial dip, which represents the early
extraction of oxygen by the nearby active neurons causing
the 1HbO/1HbR to decrease/increase, (ii) the conventional
hemodynamic response (HR) that is the large increase in
cerebral blood flow (CBF) resulting in an increase/decrease
in 1HbO/1HbR, respectively, and (iii) the undershoot before
going back to the rest state. The changes in 1HbO/1HbR upon
the functional stimulation can be translated into meaningful
commands for BCI applications (Matthews et al., 2008). These
converted signals can be further used to actuate external devices
such as robotic arm/leg or wheelchairs for improving the quality
of patient lives (Mcfarland and Wolpaw, 2010, 2011; Ortiz-
Rosario and Adeli, 2013; Yazdani et al., 2018). In particular,
fNIRS devices are portable and have shown great potential for
BCI applications. The main limitation of fNIRS for BCI is its
slow nature of the HR and the inherent delay from the onset
of the neuronal activity (Jasdzewski et al., 2003; Cui et al., 2010;
Ahn and Jun, 2017), which restricts its use for online BCI
applications as well as hybridization with other rapid techniques
such as EEG (Jiao et al., 2018; Li et al., 2018; Yang et al.,
2018), magnetoencephalography, etc. Because of this limitation,
various features in different temporal windows of 0–5, 2–7, 0–
10, 0–15, 0–17, and 0–20 s were used in multi-class classification
algorithms to classify HRs associated with the same or different
brain regions for fNIRS-BCI applications (Power et al., 2011;
Khan et al., 2014; Schudlo and Chau, 2014; Gateau et al., 2015;
Khan and Hong, 2015; Hong et al., 2017; Shin et al., 2017; Liu
et al., 2018; Yi et al., 2018). Thus far, the features frequently
used from these windows include signal mean, signal slope, signal
peak, skewness, kurtosis, variance, standard deviation, number
and sum of peaks, root mean square, median, etc. (Hwang et al.,
2016; Naseer et al., 2016; Liu and Hong, 2017; Hong et al., 2018b;
Wibowo et al., 2018).

Another means of addressing this delay is to utilize the initial
dip for fast fNIRS-BCI applications. The initial dip is an early
change in oxygenation prior to any subsequent increase in CBF,
which is spatially more specific to the site of neuronal activity
(Vanzetta and Grinvald, 2008; Hong and Zafar, 2018). However,
there is also a time lag in detecting the initial dip (Hong and
Naseer, 2016). A previous study by Hong and Naseer (2016)
showed that the initial dip could be detected using a vector phase
diagram with a single threshold circle. The vector phase diagram
is a computationally efficient method to detect both the initial
dip and the HR by displaying the trajectories of 1HbO and
1HbR, as orthogonal components, in the 1HbO-1HbR polar
coordinates (Oka et al., 2015). It was further proposed to use
q-step-ahead prediction scheme in combination with the vector
phase diagram to reduce the time lag in detecting the initial dip.
They showed that the initial dip could be detected in 0.9 s using
the q-step-ahead prediction scheme, showing high potential for
BCI applications. Later, Zafar and Hong (2017) attempted to find
the features and temporal window size for classifying the initial
dip duration in fNIRS signals of different mental tasks. They
showed that the running temporal window size for fNIRS could
be reduced from 5 to 2.5 s using initial dip features (i.e., signal
mean and signal minimum) in the classification process. Li et al.

FIGURE 1 | Concept of vector phase diagram with dual threshold circles

(Hong and Zafar, 2018; Zafar and Hong, 2018).

(2017) also used the mean value of 1HbO and 1HbR signals in
the 0–2 s window as an initial dip feature and achieved 85.5%
classification accuracy for the classification of left- and right-
hand movements. Similarly, Khan and Hong (2017) used signal
minimum as an initial dip feature and achieved a classification
accuracy of 75.6% in classifying four mental tasks in a reduced
window size (i.e., 0–2 s).

The use of dual threshold circles in the vector phase diagram
was proposed to improve the detection of both initial dip and
the conventional HR (Zafar and Hong, 2018), see Figure 1.
The threshold circles in the vector phase analysis helps to
minimize the false detection of resting-state fluctuation and large
fluctuations of 1HbO and 1HbR signals during the task period.
The radius of the inner circle was set to the maximum HbO
during the resting state, and the radius of the outer circle was set
to the sum of the radius of the inner circle and 30% of the peak
value of the main HR. The peak value of the HR was determined
through the averaging over trials measured in the training phase.
They showed that the use of dual threshold circles in the vector
phase diagram resulted in an enhancement of the classification
accuracies of two-finger tapping tasks. They also used the signal
mean and the minimum signal value in 0–2.5 s time window
to classify two-finger tapping tasks. However, windows of 0–
2 s or 0–2.5 s are still too large for real-time BCI applications
and hybridization of fNIRS with other rapid techniques such
as EEG. Furthermore, the previously mentioned q-step-ahead
prediction scheme by Hong and Naseer (2016) to reduce the
delay was an offline analysis, and the validity of the predicted
signals with multiple steps was not examined. Knowing the
maximal prediction size of the q-step-ahead prediction method
is important because the error of the predicted signals increases
significantly with the increase of the number of step sizes. In
addition, for real-time BCI applications, an online scheme is
required to reduce the onset delay in fNIRS signals.

In this study, the use of a kernel recursive least squares
algorithm (KRLS) is proposed for the q-step-ahead prediction of
fNIRS signals. Threemost commonly used kernels (i.e., Gaussian,
polynomial, and sigmoid) are tested to compare the errors in the
predicted fNIRS signals. Then, the effectiveness of the proposed
prediction scheme was evaluated using fNIRS signals of finger
tapping tasks measured from the left motor cortex of eleven
subjects. The results of the proposed scheme were compared
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with those of the commonly used recursive least squares (RLS)
algorithm. This paper further presents the applicability of the q-
step-ahead prediction scheme to reduce the time lag in detecting
the initial dips in fNIRS signals.

METHODS

Brain Activity Model and Kernel Recursive
Least Square
In this paper, a brain activity is modeled in a linear form using the
autoregressive moving average with exogenous signals (ARMAX)
model as follows.

yi(k) =
no
∑

n= 1

ainy
i(k− n)+

mo
∑

m= 1

bim (m)u(k−m)

+
po
∑

p= 1

cip (p)w
i(k− p)+ co · 1+ εi(k) (1)

where i represents the channel number; y is the measured
1HbO/1HbR; u is the desired hemodynamic response function
(dHRF);w is the physiological noise; ε is the zero-mean Gaussian
noise; an, bm, cp, and co are unknown coefficients that are
recursively estimated; and no, mo, and po are the orders of the
system, input, and exogenous signals, respectively. For fNIRS, the
exogenous signalw consists of specifically three sinusoidal signals
representing cardiac, Mayer, and respiration related physiological
noises (Abdelnour andHuppert, 2009; NguyenH.-D. et al., 2018).
Also, the exogenous signals can be dropped out in the estimation
process (i.e., po = 0) if the prediction/tracking of the measured
signal is focused. Nevertheless, the fNIRS signals were low- and
high-pass filtered to minimize the effect of the physiological
noises before the estimation process. Equation (1) can be written
in a simplified vector form as follows.

yi(k) = ϕT(k)θ i(k)+ ei(k) (2)

ϕT(k) = [y(k− 1) · · · y(k− no)

u(k− 1) · · · u(k−mo) w(k− 1) · · · w(k− po) 1]

(3)

θ i(k) = [ai1 · · · aino bi1 · · · bimo
ci1 · · · c1po co]

(4)

where ϕ(k) ∈ ℜ(n+m+p+1)×1 is the regression vector and
superscript T stands for the transpose operator. Figure 2 shows
the estimation/prediction scheme.

In this study, dHRF [i.e., u(k)] was generated by convolving
the canonical HRF (cHRF), denoted by h(k), with a stimulation
period, s(k), as follows.

u(k) =
k−1
∑

l= 0

h(l)s(k− l), (5)

s(k) =
{

1, if k ∈ task,
0, if k ∈ rest,

(6)

FIGURE 2 | Online estimation/prediction scheme.

where task and rest represent the task period and the rest period,
respectively (task = 10 s and rest = 20 s in this study). cHRF was
generated as a linear combination of three gamma functions by
the following equation (Shan et al., 2014).

h(k) =
3
∑

j=1

Aj

kαj−1β
αj
j e−βjk

Ŵ(αj)
, (7)

where j represents the number of gamma functions, Aj is the
amplitude, αj and βj tune the shape and the scale, respectively,
and k is the time step (in this work,A1 = −1.5,A2 = 7,A3 = −2,
α1 = 1.5, α2 = 6, α3 = 16, and β1 = β2 = β3 = 1 were
used). The unknown coefficients in Equation (2) are estimated
and updated using the KRLS based on the optimization of the
cost function given by

min
θ(k)

JKRLS =
N
∑

k= 1

λN−k
∣

∣

∣
y(k)− κ(ϕ(k), ·)Tθ(k− 1)

∣

∣

∣

2

+ RλN
∥

∥θ(k− 1)
∥

∥

2

H
, (8)

8(k) = [κ(ϕ(1), ·) κ(ϕ(2), ·)
· · · κ(ϕ(k), ·)]T (9)

where κ represents the Mercer kernel, 8 is the kernel matrix
of all k input data points, R is a positive number known as the
regularization parameter, H represents the reproducing kernel
Hilbert space (RKHS) associated with the Mercer kernel, and λ

(0.98 in this study) is the forgetting factor. The performances of
the following three most commonly used kernels in improving
the prediction of the fNIRS signals are tested (Muller et al., 2001):

(i) Gaussian kernel

κ(ϕ,ϕ′) = exp

(

−
∥

∥ϕ − ϕ′∥
∥

2

2σ 2

)

(10)

where σ is a scaling factor, and ϕ′represents the new
upcoming data.

(ii) Polynomial kernel

κ(ϕ,ϕ′) =
(

ϕTϕ′ + c
)p

(11)
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where c is a non-negative constant, and p is the order of the
polynomial kernel.

(iii) Sigmoid kernel

κ(ϕ,ϕ′) = tanh
(

s(ϕTϕ′)+ t
)

(12)

where s and t are suitable non-negative constants.
The basic idea is to map input data points to a high

dimensional feature space (i.e., RKHS). This process allows the
transformation of linear inner products into RKHS by simply
changing their inner product into kernels (Schölkopf and Smola,
2002; Liu et al., 2010). The transformed feature space is then
solved using the linear algorithm. The advantage of kernel-based
algorithms is that they have a unique global solution that can be
derived by solving a convex optimization problem (Chen et al.,
2014). Furthermore, if data show a non-linear relationship, linear
regression techniques cannot model them adequately. The kernel
method can address this issue by moving to another feature space

that is more likely to correspond to a linear model. However, the
kernel method suffers from the overfitting problem because the
Hilbert space induces high dimensionality of data. To address
the issue of overfitting, the solution is penalized by limiting it to
the L2 norm, as shown in Equation (8) (Evgeniou et al., 2000;
Pillonetto et al., 2014), which is solved and updated as follows
(Liu et al., 2010).

θ(k) = 8(k)[Rλ + 8(k)T8(k)]
−1

y(k),

θ(k) = 8(k)a(k), a(k) = Q(k)y(k), (13)

Q(1) = [Rλ + κ(ϕ(1),ϕ(1))]−1, a(1) = Q(1)y(1), (14)

K(k) = K(k− 1)Tκ(ϕ(k), ·) = [κ(ϕ(1),ϕ(k)), · · ·,
κ(ϕ(k− 1),ϕ(k))]T , (15)

z(k) = Q(k− 1)K(k), (16)

δ(k) = Rλ + κ(ϕ(k),ϕ(k))− zT(k)K(k), (17)

FIGURE 3 | Emitter-detector placement and experimental paradigm for the right-hand finger tapping task: (A) Emitter-detector placement and their distances,

(B) experimental paradigm.
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Q(k) = δ−1(k)

[

Q(k− 1)δ(k)+ z(k)zT(k) −z(k)
−z(k) 1

]

, (18)

e(k) = y(k)− KT(k)a(k− 1), (19)

a(k) =
[

a(k− 1)− z(k)δ−1(k)e(k)
δ−1(k)e(k)

]

. (20)

As the kernel matrix grows linearly with the number of
observations, the computational complexity of KRLS increases.
The complexity is reduced by using the approximate linear

dependency (ALD) criterion (Engel et al., 2004). The KRLS-
ALD algorithm has been implemented using theMatlabTM kernel
adaptive filtering toolbox (Van Vaerenbergh and Santamaría,
2013; Van Vaerenbergh, 2017).

Accordingly, using Equation (2), the estimated brain activity
model can be represented as

ŷi(k) = ϕT(k)θ̂ i(k)+ ei(k). (21)

For q-step-ahead prediction, Equation (21) can be written
as follows.

FIGURE 4 | Fitting of 1HbO and 1HbR signals for active (Ch. 18) and non-active (Ch. 3) channels at q = 1 for Sub. 1: (A,B,E,F) were obtained by using the RLS

method; (C,D,G,H) were obtained by using the Gaussian-kernel RLS method.
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ŷi(k+ q) = ϕT(k+ q)θ̂ i(k)+ ei(k). (22)

The performance of the algorithm was tested using the
percentage fitting (%FIT) criterion as follows (Pillonetto et al.,
2014).

FIT = 100













1−

√

√

√

√

√

√

√

√

N
∑

k= 1

(yi(k)− ŷi(k))2

N
∑

k= 1

(yi(k)−mean(yi))2













. (23)

The performance criterion in (23) quantifies how much of the
variance of y is captured by the q-step-ahead predicted signal
(Pillonetto et al., 2014). Furthermore, %FIT criteria measure how
accurately the q-step-ahead predicted signals are estimated.

Experimental Data
Previously published experimental data (Zafar and Hong, 2018)
of right-hand (thumb and little) finger tapping sessions from
11 subjects were used for validating the proposed q-step-ahead
prediction scheme. Brain signals generated by the finger-tapping
were acquired from the left motor cortex using the frequency
domain fNIRS system (ISS Imagent, ISS Inc.) at a sampling rate of
9.19Hz. The electrode placement and the corresponding emitter-
detector distances are shown in Figure 3A. A total of 36 channels
were formed using emitter-detector pairs.

The experimental paradigm is shown in Figure 3B. The
experimental paradigm consists of two sessions of finger
tapping tasks. A session is composed of six trials of 30 s.
Each trial includes a 10 s activity task followed by a 20 s
rest. During the task period, the subjects were instructed
to tap their right-hand finger as fast as they could without
paying attention to the number of taps. The raw data
(1HbO and 1HbR) obtained from the ISS Imagent data
acquisition and analysis software (ISS-Boxy) were pre-processed
to remove physiological noises related to respiration, cardiac,
and low-frequency drift signals. Fourth-order Butterworth low-
and high-pass filters with cutoff frequencies of 0.15 and
0.01Hz, respectively, were used to minimize the respiration,
cardiac, and low-frequency drift signals from the obtained
fNIRS signals.

Detection of Initial Dip
The initial dip will be detected through the vector phase analysis
with dual threshold circles (Yoshino and Kato, 2012; Hong
and Naseer, 2016; Zafar and Hong, 2018), see Figure 1. Vector
phase analysis is a polar coordinate plane method defined
by 1HbO and 1HbR as orthogonal vector components. Two
other vector components, cerebral oxygen exchange (1COE)
and cerebral blood volume (1CBV), are obtained by rotating
the vector coordinate system by 45◦ counterclockwise using
the following equations (Yoshino et al., 2013; Khan et al.,
2018).

TABLE 1 | Averaged %FIT for 1HbO and 1HbR over all channels using RLS after training and testing.

Sub. %FIT

q = 1

(0.1 s)

q = 5

(0.54 s)

q = 10

(1.08 s)

q = 15

(1.63 s)

q = 20

(2.17 s)

1HbO 1HbR 1HbO 1HbR 1HbO 1HbR 1HbO 1HbR 1HbO 1HbR

1 69.8

± 8.6

68.3

± 6.3

66.6

± 9.3

64.9

± 6.9

62.6

± 10.0

60.8

± 7.5

59.2

± 10.6

57.2

± 8.1

56.6

± 10.9

54.2

± 8.5

2 65.5

± 9.3

63.7

± 7.4

61.6

± 10.1

59.7

± 8.1

57.1

± 11.2

54.9

± 8.9

52.9

± 12.1

50.5

± 9.6

49.6

± 12.8

46.9

± 10.2

3 67.0

± 6.6

65.7

± 5.4

63.2

± 7.2

61.6

± 5.9

58.7

± 7.8

56.9

± 6.5

54.8

± 8.4

52.8

± 7.1

51.5

± 8.9

49.4

± 7.5

4 69.4

± 9.8

68.7

± 6.5

66.0

± 10.4

65.3

± 7.0

61.9

± 11.2

61.3

± 7.5

58.2

± 11.8

57.7

± 8.4

55.0

± 12.3

54.6

± 8.4

5 65.4

± 7.3

64.4

± 6.2

61.6

± 7.8

60.6

± 6.6

57.1

± 8.4

55.9

± 7.2

53.1

± 8.9

51.7

± 7.8

49.7

± 9.3

48.2

± 8.2

6 73.0

± 9.4

69.4

± 7.5

70.1

± 10.4

66.1

± 8.3

66.5

± 11.6

62.1

± 9.2

63.3

± 12.6

58.6

± 10.1

60.5

± 13.4

55.6

± 10.8

7 76.1

± 6.1

75.3

± 4.3

73.2

± 6.4

72.5

± 4.7

69.8

± 6.8

69.2

± 5.2

66.7

± 7.3

66.2

± 5.6

64.1

± 7.7

63.6

± 6.0

8 73.6

± 8.4

67.9

± 6.1

70.5

± 8.9

64.4

± 6.6

66.9

± 9.6

60.2

± 7.4

63.7

± 10.2

56.5

± 8.1

61.1

± 10.6

53.5

± 8.6

9 68.8

± 6.9

64.9

± 4.5

65.4

± 7.4

61.2

± 4.8

61.5

± 8.1

56.7

± 5.2

58.0

± 8.5

52.8

± 5.4

55.1

± 8.9

49.6

± 5.7

10 76.1

± 9.5

71.3

± 7.1

73.2

± 10.2

67.9

± 7.7

69.7

± 11.0

63.9

± 8.5

66.4

± 11.6

60.3

± 9.3

63.5

± 11.9

57.2

± 9.9

11 70.1

± 8.1

66.8

± 6.0

67.0

± 8.8

63.2

± 6.5

63.2

± 9.5

58.9

± 7.1

59.9

± 10.1

55.2

± 7.6

57.2

± 10.4

52.2

± 8.1

Mean

± SD

70.4

± 8.2

67.9

± 6.1

67.1

± 8.8

64.3

± 6.6

63.2

± 9.6

60.1

± 7.3

59.7

± 10.2

56.3

± 7.9

56.7

± 10.9

53.2

± 8.4
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1CBV = 1√
2
(1HbO+ 1HbR), (24)

1COE = 1√
2
(1HbR− 1HbO). (25)

The magnitude and the phase of a vector p= (1HbO, 1HbR) in
the phase plane can be calculated as follows.

∣

∣p
∣

∣ =
√

1HbO2 + 1HbR2, (26)

6 p = tan−1

(

1HbR

1HbO

)

= tan−1

(

1COE

1CBV

)

+ 45o. (27)

The degree of oxygen exchange is defined by the ratio of 1COE
and1CBV. Therefore, the oxygen exchange in the blood vessel is
represented by the change in 1COE. Using the abovementioned
four indices, eight phases are defined on the vector phase
diagram, see Figure 1. Phases 1–5 (i.e., Phase 1: 0 < 1HbR <

1HbO, 1COE < 0 < 1CBV; Phase 2: 0 < 1HbO < 1HbR, 0
< 1COE < 1CBV; Phase 3: 1HbO < 0 < 1HbR, 0 < 1CBV
< 1COE; Phase 4: 1HbO < 0 < 1HbR, 1CBV < 0 < 1COE;
Phase 5: 1HbO < 1HbR < 0, 1CBV < 0 < 1COE) are defined
as the initial dip phases because they reflect an increase in either
1HbR or 1COE, whereas Phases 6 to 8 (i.e., Phase 6: 1HbR<

1HbO < 0, 1CBV < 1COE < 0; Phase 7: 1HbR < 0 < 1HbO,
1COE < 1CBV < 0; Phase 8: 1HbR < 0 < 1HbO, 1COE < 0
< 1CBV) are defined as HR phases. If there are no threshold
circles in the vector diagram, the resting-state fluctuation and
large fluctuations of 1HbO and 1HbR signals during the task
period with 1COE > 0 can easily be interpreted as an initial
dip. Threshold circles (i.e., dual threshold circles) incorporated
in the vector phase analysis help in minimizing the detection
of false dips (Hong and Naseer, 2016; Zafar and Hong, 2018).
The radius of the first (inner) threshold circle in Figure 1 was
determined during the resting state period as follows (Hong and
Naseer, 2016).

r1 = max

(

√

1HbO2
resting + 1HbR2

resting

)

. (28)

The single (inner) threshold circle can help to separate the
resting-state fluctuation from the initial dip and task-related
HR. However, a large fluctuation of 1HbO and 1HbR above
the threshold circle can still falsely be interpreted as an initial
dip. Therefore, a second (outer) threshold circle as an upper
bound is drawn on the vector diagram to separate large 1HbO
and 1HbR fluctuations from the initial dip. The radius for
the second threshold circle was determined using the following

TABLE 2 | Averaged %FIT for 1HbO and 1HbR over all channels using KRLS with the Gaussian kernel after training and testing.

Sub. %FIT

q = 1

(0.1 s)

q = 5

(0.54 s)

q = 10

(1.08 s)

q = 15

(1.63 s)

q = 20

(2.17 s)

1HbO 1HbR 1HbO 1HbR 1HbO 1HbR 1HbO 1HbR 1HbO 1HbR

1 94.4

± 0.8

93.6

± 1.2

92.7

± 1.6

91.5

± 1.8

90.4

± 2.7

89.0

± 2.8

88.1

± 3.7

86.6

± 3.5

85.9

± 4.6

84.4

± 4.2

2 94.6

± 1.0

92.2

± 4.1

92.0

± 2.2

89.4

± 4.2

88.7

± 4.1

85.5

± 4.6

85.5

± 5.9

81.9

± 5.6

82.7

± 7.5

78.8

± 6.7

3 94.3

± 0.7

91.2

± 4.0

91.9

± 1.7

88.4

± 3.8

88.5

± 3.1

84.9

± 4.1

85.3

± 4.5

81.7

± 4.6

82.4

± 5.7

78.9

± 5.3

4 94.7

± 1.0

92.8

± 1.8

92.9

± 1.3

90.9

± 2.2

90.4

± 2.7

88.3

± 3.0

87.8

± 4.1

85.9

± 3.8

85.4

± 5.4

83.6

± 4.5

5 94.4

± 2.1

92.9

± 3.2

92.3

± 2.1

90.5

± 3.1

89.5

± 2.6

86.9

± 3.3

86.7

± 3.6

83.6

± 4.0

84.3

± 4.6

80.6

± 4.6

6 94.8

± 0.9

93.1

± 2.1

93.3

± 1.6

91.1

± 2.6

91.2

± 2.6

88.5

± 3.3

88.9

± 3.8

85.9

± 4.1

86.6

± 5.0

83.6

± 4.9

7 95.1

± 0.9

94.9

± 0.8

93.2

± 1.4

93.1

± 1.2

90.7

± 2.5

90.8

± 2.0

88.3

± 4.0

88.6

± 2.7

86.1

± 4.6

86.5

± 3.5

8 94.6

± 0.9

92.2

± 2.4

92.2

± 1.6

89.9

± 2.8

89.5

± 2.5

87.1

± 3.6

87.1

± 3.4

84.0

± 5.4

84.9

± 4.2

82.1

± 5.0

9 94.3

± 0.6

93.9

± 0.5

92.4

± 1.4

92.0

± 1.1

89.8

± 2.4

89.1

± 2.2

87.3

± 3.3

86.3

± 3.4

85.0

± 4.2

83.6

± 4.5

10 95.4

± 1.0

94.4

± 1.4

93.7

± 1.4

91.8

± 1.4

91.5

± 2.4

88.7

± 2.2

89.3

± 3.4

85.8

± 3.5

87.5

± 4.3

83.3

± 4.7

11 94.4

± 1.1

93.6

± 1.1

92.8

± 1.6

91.7

± 1.3

90.7

± 2.4

89.1

± 2.1

88.5

± 3.4

86.5

± 3.1

86.6

± 4.2

84.1

± 4.1

Mean

± SD

94.6

± 1.0

93.2

± 2.1

92.7

± 1.6

90.9

± 2.3

90.1

± 2.7

88.0

± 3.0

87.5

± 3.9

85.2

± 4.0

85.2

± 4.9

82.7

± 4.7
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equation (Zafar and Hong, 2018).

r2 = r1 + 0.3(p1 + SD), (29)

where p1 and SD are the peak value and standard deviation
of the averaged 1HbO trial over several trials from the most
active channel, where the most active channel means the channel
that shows the largest difference between the maximum 1HbO
values in the resting state and the HR of the first trial during
the training stage. The initial dips are detected if the trajectory
lies in any phase from Phase 3 to Phase 5 and remains within
the two threshold circles within first 2–4 s of the task period,
and it moves to either Phases 7 or 8, after 2–4 s. The first (i.e.,
inner) threshold circle is used to detect the time instance of the
occurrence of an initial dip and the HR. Any trajectory going
outside the secondary threshold circle is considered as a false dip
or noise.

RESULTS

The data during the resting-state and the first session were used
in the training stage, whereas the second session data were used
to test the proposedmethod. The parameters of the Gaussian (i.e.,
σ ), polynomial (i.e., c and p), and sigmoid (i.e., s and t) kernels
were determined iteratively, and the value with the maximum

%FIT for each kernel was selected for further analysis. Using the
data of 792 channels [i.e., 11 subjects× (36 HbO+ 36 HbR)], the
values of parameters σ , c, p, s, and t for the Gaussian, polynomial,
and sigmoid kernels were found to be 1 in the training stage.
For the regularization parameter (R), several different values were
tested through trial and error, and R= 10−8 was found to achieve
the best fitting (i.e., %FIT) of the predicted signals. R > 10−8

did not affect the %FIT of the predicted signals, but lower values
decreased %FIT. Figure 4 shows the fitting of the one-step-ahead
predicted 1HbO and 1HbR signals on top of the measured
signals (1HbO,1HbR) using the RLSmethod and the Gaussian-
kernel RLS method for both active (i.e., Ch. 18) and non-active
(i.e., Ch. 3) channels of Subject 1, respectively.

Tables 1–4 reports the %FIT of 1HbO and 1HbR for
individual subjects using RLS and KRLS. The statistical
significance of the %FIT was verified using two-sample t-
tests. Signal information in the predicted signals (i.e., %FIT)
significantly decreases (p < 0.05) as the step size increases.
Table 5 shows a comparison of the averaged %FITs of
RLS and KRLS with the Gaussian, polynomial, and sigmoid
kernels for different q-step-ahead predicted fNIRS (1HbO,
1HbR) signals.

A number of previous studies reported that the peak of
the initial dip occurred at approximately 1.9–2.5 s (Hu and
Yacoub, 2012; Zafar and Hong, 2017). Therefore, q = 15

TABLE 3 | Averaged %FIT for 1HbO and 1HbR over all channels using KRLS with the polynomial kernel after training and testing.

Sub. %FIT

q = 1

(0.1 s)

q = 5

(0.54 s)

q = 10

(1.08 s)

q = 15

(1.63 s)

q = 20

(2.17 s)

1HbO 1HbR 1HbO 1HbR 1HbO 1HbR 1HbO 1HbR 1HbO 1HbR

1 93.5

± 2.4

92.6

± 2.4

91.6

± 3.4

90.6

± 2.6

89.1

± 5.1

88.1

± 3.2

86.5

± 6.6

85.7

± 3.8

84.1

± 7.9

83.6

± 4.3

2 94.3

± 0.9

87.5

± 14.1

91.7

± 2.1

84.7

± 13.7

88.4

± 4.0

81.0

± 13.4

85.2

± 5.7

77.5

± 13.4

82.4

± 7.4

74.4

± 13.7

3 94.0

± 1.2

83.1

± 19.7

91.4

± 1.9

80.4

± 19.7

88.1

± 3.2

77.1

± 20.0

84.8

± 4.6

73.8

± 20.4

81.9

± 5.8

71.1

± 21.0

4 94.5

± 1.1

89.5

± 7.3

92.6

± 1.5

87.6

± 7.3

89.9

± 2.7

85.1

± 7.4

87.3

± 4.0

82.5

± 7.7

84.8

± 5.2

80.3

± 8.1

5 94.2

± 1.8

90.5

± 8.0

91.9

± 2.2

87.8

± 7.6

89.1

± 2.3

84.2

± 7.3

85.7

± 4.5

80.8

± 7.2

83.1

± 4.9

78.0

± 7.3

6 94.7

± 0.8

91.8

± 4.9

93.3

± 1.5

89.7

± 5.2

91.2

± 2.5

87.1

± 5.8

89.0

± 3.7

84.4

± 6.6

86.7

± 4.8

82.1

± 7.5

7 95.1

± 0.9

94.1

± 2.9

93.1

± 1.4

92.2

± 2.8

90.6

± 2.4

89.9

± 3.1

88.2

± 3.5

87.6

± 3.4

86.0

± 4.5

85.5

± 3.9

8 94.5

± 0.9

91.2

± 4.3

92.1

± 1.6

88.9

± 4.5

89.3

± 2.5

86.0

± 4.9

86.9

± 3.4

83.2

± 5.5

84.8

± 4.2

80.8

± 6.1

9 94.1

± 0.9

93.6

± 0.8

92.2

± 1.5

91.5

± 1.3

89.5

± 2.4

88.5

± 2.9

86.9

± 3.4

85.5

± 3.6

84.6

± 4.3

82.8

± 4.7

10 95.3

± 0.9

93.8

± 2.4

93.6

± 1.4

91.2

± 2.2

91.4

± 2.4

88.1

± 2.8

89.4

± 3.4

85.2

± 3.8

87.4

± 4.8

82.6

± 4.9

11 94.4

± 0.8

93.3

± 1.6

92.8

± 1.4

91.3

± 1.8

90.6

± 2.3

88.7

± 2.5

88.4

± 3.1

86.1

± 3.4

86.4

± 3.8

83.8

± 4.3

Mean

± SD

94.4

± 1.1

91.0

± 6.2

92.4

± 1.8

88.7

± 6.2

89.7

± 2.9

85.8

± 6.7

87.1

± 4.2

82.9

± 7.2

84.7

± 5.2

80.5

± 7.8
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(i.e., 1.63 s since the sampling frequency was 9.19Hz in this
study) was selected for further analysis. Table 1 shows that
KRLS with the Gaussian kernel yielded the best fitting (p
< 0.05) for the 1.63 s ahead predicted 1HbO (i.e., 87.5%)
and 1HbR (i.e., 85.2%) signals as compared to all other
methods. Therefore, the Gaussian-kernel RLS was further used
for reducing the delay in detecting initial dips in the fNIRS
signals. Figure 5 shows the 15-step-ahead predicted 1HbO and
1HbR signals of active channels for different subjects. It can
be clearly seen that the predicted signals are well-ahead (i.e.,
blue dotted lines) and perfectly tracking the measured signals
(solid red line).

A comparison of vector-phase trajectories usingmeasured and
1.63 s ahead predicted fNIRS signals for Subject 3 is shown in
Figure 6. Table 6 shows the times of initial dip detection using
15-step-ahead predicted 1HbO and 1HbR signals for active
channels of all subjects.

DISCUSSIONS

The newly emerging neuroimaging modality (i.e., fNIRS) has a
disadvantage of inherent onset delay from neuronal activation,
which limits its application for rapid BCIs. To overcome this,
the use of a kernel method for q-step-ahead prediction of fNIRS
signals was proposed for the first time. The novelty of this study

lies in using an online prediction scheme to reduce this onset
delay for online applications.

A previous study by Hong and Naseer (2016) could
reduce the delay in detecting initial dip in fNIRS signals to
approximately 0.9 s using an offline q-step-ahead ARMAX
model-based prediction scheme. Our results (Tables 1–
5) reveal that the fitting accuracy of the q-step-ahead
predicted signals decreased significantly (p < 0.05) with the
increase of prediction step sizes. Therefore, the selection
of a proper step size is very crucial to ensure that the
predicted signals contain the maximum information of the
measured signals.

In this study, a linear combination of three gamma functions
was used (i.e., dHRF, see Figure 2). Most early studies used only
s two-gamma-function dHRF to analyze the fNIRS time-series
(Abdelnour and Huppert, 2009; Ye et al., 2009; Hu et al., 2010). A
key drawback in using two gamma functions is that the initial
dip duration is neglected in the estimation/prediction process.
This limitation was overcome by using three gamma functions,
which provides an extra degree of freedom by including the initial
dip in the dHRF model for better estimation/prediction of the
fNIRS signal.

The KRLS algorithm improves the fitting of the predicted
signals as compared to the RLS algorithm by moving from
the input space to the transformed feature space, i.e., a high
dimensional space (see Tables 1–5). The non-linear relationship

TABLE 4 | Averaged %FIT for 1HbO and 1HbR over all channels using KRLS with the sigmoid kernel after training and testing.

Sub. %FIT

q = 1

(0.1 s)

q = 5

(0.54 s)

q = 10

(1.08 s)

q = 15 (1.63 s) q = 20

(2.17 s)

1HbO 1HbR 1HbO 1HbR 1HbO 1HbR 1HbO 1HbR 1HbO 1HbR

1 86.3

± 13.2

66.1

± 24.5

84.1

± 12.9

64.2

± 24.2

81.5

± 12.7

61.8

± 23.9

78.9

± 12.6

59.5

± 23.7

76.7

± 12.6

57.4

± 23.6

2 87.5

± 9.7

63.6

± 26.2

84.5

± 9.2

60.9

± 25.1

80.8

± 9.1

57.4

± 23.8

77.3

± 9.2

54.1

± 22.8

74.2

± 9.7

51.2

± 22.1

3 84.0

± 13.2

53.8

± 27.3

81.0

± 12.8

51.5

± 26.6

77.2

± 12.4

48.7

± 25.8

73.7

± 12.3

45.8

± 25.1

70.7

± 12.3

43.4

± 24.5

4 86.8

± 13.6

61.6

± 27.1

84.6

± 13.5

59.7

± 26.8

81.7

± 13.4

57.2

± 26.6

78.9

± 13.3

54.7

± 26.4

76.3

± 13.4

52.5

± 26.3

5 89.1

± 6.2

70.2

± 19.1

86.4

± 6.1

67.8

± 18.6

82.9

± 6.2

64.6

± 18.0

79.7

± 6.6

61.7

± 27.5

76.8

± 7.3

59.1

± 17.3

6 87.9

± 10.7

73.9

± 22.9

86.2

± 10.5

72

± 22.6

83.8

± 10.4

69.4

± 22.2

81.4

± 10.4

66.9

± 21.9

79.1

± 10.5

64.7

± 21.7

7 94.0

± 3.2

84.7

± 16.7

91.8

± 3.4

82.8

± 16.4

89.2

± 3.8

80.4

± 16.1

86.6

± 4.4

78.1

± 15.8

84.2

± 5.1

76.0

± 15.7

8 84.3

± 16.5

66.8

± 20.1

82.1

± 16.1

64.8

± 19.7

79.4

± 15.6

62.2

± 19.2

77.1

± 15.3

59.7

± 18.8

74.9

± 15.0

57.4

± 18.5

9 91.1

± 5.8

82.3

± 13.4

88.7

± 5.5

79.8

± 13.0

85.8

± 5.2

76.6

± 12.6

83.1

± 5.2

73.7

± 12.3

80.8

± 5.4

71.2

± 12.2

10 90.3

± 6.4

75.4

± 18.4

88.4

± 6.3

73.1

± 17.8

86.1

± 6.3

70.2

± 17.2

83.8

± 6.5

67.5

± 17.0

81.7

± 7.0

65.1

± 16.9

11 91.3

± 4.5

76.4

± 22.7

89.4

± 4.5

74.0

± 22.2

86.9

± 4.6

70.9

± 21.5

84.5

± 4.9

68.1

± 21.1

82.4

± 5.2

65.5

± 20.9

Mean

± SD

88.4

± 9.3

70.4

± 21.6

86.1

± 9.2

68.2

± 21.2

83.2

± 9.1

65.4

± 20.6

80.4

± 9.2

62.7

± 21.1

77.9

± 9.4

60.3

± 19.9
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TABLE 5 | Comparison of the averaged %Fits of RLS and KRLS (Gaussian, polynomial, sigmoid) for different q-step-ahead predicted 1HbO and 1HbR signals after

training and testing.

q-step %Fit of fNIRS signals

1HbO 1HbR

RLS KRLS with

Gaussian

KRLS

with polynomial

KRLS with

sigmoid

RLS KRLS with

Gaussian

KRLS

with polynomial

KRLS with

sigmoid

1

(0.1 s)

70.4

± 8.3

94.6

± 1.0

94.4

± 1.1

88.4

± 9.3

67.9

± 6.1

93.2

± 2.1

91.0

± 6.2

70.4

± 21.6

5

(0.54 s)

67.1

± 8.8

92.7

± 1.6

92.4

± 1.8

86.1

± 9.2

64.3

± 6.6

90.9

± 2.3

88.7

± 6.2

68.2

± 21.2

10

(1.08 s)

63.2

± 9.6

90.1

± 2.7

89.7

± 2.9

83.2

± 9.1

60.1

± 7.3

88.0

± 3.0

85.8

± 6.7

65.4

± 20.6

15

(1.63 s)

59.7

± 10.2

87.5

± 3.9

87.1

± 4.2

80.4

± 9.2

56.3

± 7.9

85.2

± 4.0

82.9

± 7.2

62.7

± 21.1

20

(2.17 s)

56.7

± 10.9

85.2

± 4.9

84.7

± 5.2

77.9

± 9.4

53.2

± 8.4

82.7

± 4.7

80.5

± 7.8

60.3

± 19.9

FIGURE 5 | Measured and 1.63 s ahead predicted signals (q = 15) of HbO (left) and HbR (right) with the Gaussian-kernel RLS algorithm: (A) Sub. 1 (Ch. 21), (B) Sub.

8 (Ch. 18), and (C) Sub. 10 (Ch. 30).

in the data cannot be adequately modeled by using linear
regression techniques. The advantage of moving to a higher
dimensional space is that there is a high probability that the data

corresponds to a linear model, and it can be solved using the
linear algorithms (Liu et al., 2010). Regarding the kernels, the
Gaussian kernel yielded the best fitting of the predicted 1HbO

Frontiers in Neurorobotics | www.frontiersin.org 10 February 2020 | Volume 14 | Article 10

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zafar and Hong Reduction of Onset Delay in fNIRS Signals

FIGURE 6 | Comparison between measured and predicted (1.63 s) signals (Sub. 3, Ch. 21).

TABLE 6 | Time of initial dip detection using 1.63 s (q = 15) ahead prediction.

Sub. Channel Time of initial dip detection (sec)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

1 21 0.65 0.11 0.11 0.11 Not detected Not detected

2 18 0.11 0.11 0.21 0.65 Not detected 0.65

3 21 0.11 0.11 Not detected 0.11 Not detected 0.11

4 29 0.11 0.11 0.11 0.32 0.11 0.21

5 33 0.11 0.32 0.21 Not detected 0.21 0.11

6 29 0.11 0.43 Not detected Not detected Not detected 0.11

7 17 0.11 Not detected 0.21 0.21 0.11 Not detected

8 21 Not detected 0.11 Not detected 0.32 0.11 Not detected

9 17 Not detected 0.21 0.43 0.21 0.21 Not detected

10 29 0.11 0.32 0.65 0.65 0.11 0.11

11 33 0.11 Not detected 0.11 0.11 Not detected 0.11

(i.e., 87.5%) and 1HbR (i.e., 85.2%) signals at q = 15 step-
ahead. The polynomial kernel also yielded good results for the
1HbO signals, but the fitting slightly decreased for the 1HbR
signals. In contrast, the fitting of both 1HbO and 1HbR signals
significantly decreased for the sigmoid kernel. Furthermore, the
fitting of the predicted 1HbR signals was lower than that of the
predicted 1HbO.

Early studies reported that the peak of initial dip occurred
around 1.9–2.5 s (Malonek and Grinvald, 1996; Yacoub and Hu,
2001; Yacoub et al., 2001; Hu and Yacoub, 2012; Zafar and
Hong, 2017). From this viewpoint, 1.63 s ahead prediction was
selected in this study for an early detection of initial dips.
Nevertheless, the peak of an initial dip depends on various

factors, such as the type of task performed, the duration of
the task period, and the brain area under investigation. The
trajectories (Figure 6) for both measured and predicted signals
were almost the same, showing that the predicted signals were
well-tracking the measured signals. However, if the fitting of
the predicted signal is not adequate, the trajectory can lead to a
wrong decision regarding the detection of initial dip or HR. With
1.63 s ahead prediction (Table 6), the initial dips were detected
in minimum 0.11 s (maximum 0.65 s), which is much lower than
that of Hong and Naseer (2016) (i.e., 0.9 s). Furthermore, the
initial dip phenomenon did not occur in some trials. In the
literature, this issue has been discussed considering several issues.
One interesting report is that it is due to the use of caffeine before
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the experiment (Behzadi and Liu, 2006; Hong and Zafar, 2018).
In addition, the detection time of the initial dip varies among
trials and subjects (Hu et al., 2013).

Finally, this study demonstrated a step moving toward
the development of a real-time BCI and a brain monitoring
system using fNIRS. The significance of this study lies in the
fast detection of activity-related responses in fNIRS signals.
Even if an initial dip is not present, the inherent onset delay
in the conventional HR can be reduced using the proposed
q-step-head prediction scheme. Moreover, the use of q-step-head
prediction with improved fitting can help in the hybridization
of fNIRS with other rapid modalities such as EEG. Nevertheless,
further research is still required to improve the fitting of the
predicted fNIRS signals with an accuracy more than 90% using
advanced signal processing (Ghafoor et al., 2017; Chen et al.,
2018; Hong et al., 2018a) and adaptive algorithms (Iqbal et al.,
2018; Nguyen Q. C. et al., 2018). In the future, other types of
kernels should also be investigated for further improvement
of the predicted fNIRS signals. The limitations of this study
are as follows: (i) the order of the system (an) and the input
(bn) was set as 1 to ensure low computational complexity.
Therefore, the optimal order of the system and the input for the
prediction of fNIRS signals should be investigated further. (ii)
Exogenous signals were excluded from the estimation/prediction
process. These signals should be considered for
further improvement of the predicted fNIRS signals in
the future.

CONCLUSION

In this study, the q-step-ahead prediction scheme based on KRLS
was used to reduce the onset delay from the neuronal activation
in fNIRS signals. fNIRS signals of right-hand finger tapping task
acquired from the left motor cortex were used to evaluate the
performance of the prediction scheme. The results show that
the Gaussian kernel yields the best fitting for both 1HbO (i.e.,

87.5%) and 1HbR (i.e., 85.2%) signals at q = 15 step ahead
prediction (i.e., 1.63 s with the sampling frequency of 9.19Hz).

The application of the scheme was found to reduce the delay
in detecting the initial dip. The improvement in the fitting of
1.63 s ahead predicted fNIRS signals enabled the detection of
initial dip in 0.1 s. The reduction in the onset delay is a significant
improvement in the development of real-time BCI applications
using fNIRS.
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